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Information-Constrained Optimal Control of Distributed Systems with

Power Constraints

V. Causevic†, P. Ugo Abara† and S. Hirche

Abstract— In this paper we address the problem of
information-constrained optimal control for an interconnected
system subject to one-step communication delays and power
constraints. The goal is to minimize a finite-horizon quadratic
cost by optimally choosing the control inputs for the subsystems,
accounting for power constraints in the overall system and
different information available at the decision makers. To this
purpose, due to the quadratic nature of the power constraints,
the LQG problem is reformulated as a linear problem in
the covariance of state-input aggregated vector. The zero-
duality gap allows us to equivalently consider the dual problem,
and decompose it into several sub-problems according to the
information structure present in the system. Finally, the optimal
control inputs are found in a form that allows for offline
computation of the control gains.

I. INTRODUCTION

Technological advances in computation and communica-

tion, and societal needs have revived the research interest

in control of interconnected systems [5]. Some examples

include smart grids, communication networks, and trans-

portation systems. Traditionally, arguments in favor of dis-

tributed control (compared to centralized) are geographically

distributed sensors, limited local computational power at

the plant side, robustness against single-node failure and

information privacy.

In general, the design of distributed control is difficult

because it imposes information constraints on individual

decision makers. Such constraints arise due to either partial

information exchange between decision makers or communi-

cation delay. In the problem we address herein, decision mak-

ers are able to communicate the full information they receive

- either due to own measurements or from other decision

makers, however, with delay. In other words, information

constraints are due to communication delays between deci-

sion makers. The information constraints, sometimes referred

to as information structure, play a key role in determining the

optimal control and decide on its computational tractability.

Indeed, in [6] a linear quadratic Gaussian team problem is

constructed with a non-classical information pattern and it

is shown that a linear controller is not necessarily optimal.

This problem is addressed in [7] where it is shown that the
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so-called partially nested information structure guarantees

existence of optimal control laws that are linear in the

associated information. Finally, a strong result characterizing

the class of all information-constrained problems which may

be cast as a convex program is given in [9].

Inspiration for our approach is given by the work in [4] which

suggests that the information hierarchy existing between

the decision makers can be exploited to obtain the optimal

solution. First explicit solutions to linear quadratic Gaussian

team problems that adopt similar approach are given in

[10]. The authors however, consider a typical unconstrained

linear quadratic team problem. But in reality, e.g. actuation

capabilities are limited and thus must be accounted for in

the design procedure.

The main contribution of this paper is a method to compute

optimal control laws, for a power-constrained system with

given information structure. We assume the latter to be

induced by a one-step communication delays between the

decision makers. To this end, the problem is reformulated

in its dual Lagrangian form, where the covariance of the

state-input aggregated vector is defined as decision variable.

The information structure is then exploited to split the

optimization problem into simpler sub-problems that have

alike structure. Indeed, in-network control [2] is seen as

the decomposition of a complex task into smaller sub-

tasks resulting in computationally inexpensive local control

actions. From an application point of view, the goal is to

implement and analyze the developed approach within a

network infrastructure, exploiting the possibility of existing

(but limited) in-network processing, in order to improve

control performance.

The remainder of the paper is outlined as follows. We start

with problem setup in II. The method to decouple problem

into several sub-problems via covariance decomposition is

presented in section III. In section IV we provide structural

characterization of the solution to the problem and finally

conclusions are given in V.

II. PROBLEM SETTING

Consider a large-scale interconnected dynamical system

composed of N physically-coupled linear time-invariant

(LTI) subsystems. Formally, the physical interconnections

are described through a graph G = (V ,E ). We will refer

to it as the physical interconnection graph. Each node i ∈ V

corresponds to one of the subsystems i∈ {1, . . . ,N}. An edge

( j, i)∈ E if dynamics of node i is directly affected by node j.

We assume that G is connected and undirected, i.e., (i, j)∈ E

if and only if ( j, i) ∈ E . The set of direct neighbors of
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decision maker i is defined as Ni = { j |( j, i)∈ E }. The length

of the shortest path between nodes i and j will be denoted

by di j. Clearly, if j ∈ Ni then di j = 1. The dynamics of the

i-th subsystem is given by a first order stochastic difference

equation

xi(k+ 1) = Aixi(k)+Biui(k)+ ∑
j∈Ni

Ai jx j(k)+wi(k), (1)

where Ai ∈ R
ni×ni , Ai j ∈ R

ni×n j , Bi ∈ R
ni×mi , xi(k) ∈ R

ni

is the state and ui(k) ∈ R
mi is the control signal of the i-

th subsystem. The noise process wi(k) ∈ R
ni is zero-mean

i.i.d. Gaussian noise with covariance matrix Σw. The initial

state xi(0) is a random variable with zero-mean and finite

covariance Σx. Moreover, xi(0) and wi(k) are assumed to be

pair-wise independent at each time instant k and every i. For

a more compact notation, equation (1) can be rewritten as

x(k+ 1) = Ax(k)+Bu(k)+w(k) (2)

where the stacked vectors are x(k) = (x⊤1 (k), . . . ,x
⊤
N (k))

⊤ ∈
R

n, w(k) = (w⊤
1 (k), . . . ,w

⊤
N (k))

⊤ ∈ R
n, u(k) =

(u⊤1 (k), . . . ,u
⊤
N (k))

⊤ ∈R
m, n = ∑N

i=1 ni and m = ∑N
i=1 mi. The

admissible control policies at time instant k are measurable

functions of the information available to each decision

maker i (sometimes also referred to as player i)

ui(k) = γ i
k(I

i
k ) (3)

where I i
k , k = 0, . . . ,T − 1, is defined as

I
i

k = {I i
k−1,x

i
k,u

i
k−1}

⋃

j∈Ni

{I
j

k−1}, k > 0, (4)

and I i
0 = {xi

0}. In other words, the information set of each

decision maker i is updated at time instant k by the current

state and the one-step delayed information from the direct

neighbors Ni. The objective is to minimize the following

global control cost

JC = E

[

T−1

∑
k=0

[

x(k)
u(k)

]⊤

Q

[

x(k)
u(k)

]

+ x(T )⊤QT x(T )

]

(5)

where the matrix Q is partitioned according to the vector

z(k) =
[

x(k)⊤u(k)⊤
]⊤

i.e.

Q =

[

Qxx Qxu

Qux Quu

]

. (6)

The matrix Quu is assumed to be positive-definite matrix,

while Q and QT are assumed to be semi-definite positive.

We also assume controllability of pair (A,B) as well as

detectability of (Q
1
2 ,A). Moreover, it is assumed that each

decision maker knows the parameters of the overall system.

The cost (5) is to be minimized under power constraints,

which are defined as

E
[

z(k)⊤Wi z(k)
]

≤ pi
k, ∀i = 1, . . . ,M (7)

where Wi ∈ R
(n+m)×(n+m), i = 1, . . . ,M, is a positive semi-

definite weighting matrix. By appropriate choice of Wi, the

set of constraints in (7) captures either constraints present

in the power of the overall system, or those related to the

individual subystems. Ultimately, the problem is formally

stated as

min
γ0:T−1

E

[

T−1

∑
k=0

[

x(k)
u(k)

]⊤

Q

[

x(k)
u(k)

]

+ x(T )⊤QT x(T )

]

(8)

s.t. (2), (3), (7)

where γk = [γ1
k , . . . ,γ

N
k ] is composed of all players control

policies. Before stating the main result of this section we

define the notion of partial nestedness [11].

Definition 1: The information structure Ik =
{

I 1
k , . . . ,I

N
k

}

is partially nested if, for every admissible

policy (3), whenever ui(τ) affects I
j

k , then I i
τ ⊂ I

j
k .

Lemma 1 (Partial nestedness): The information structure

defined by (4) is partially nested.

Proof: Let d ji be the length of shortest path j → i

in the physical interconnection graph. Considering (4), the

information set I i
k is influenced by measurement x j(k −

d ji), or equivalently by u j(k − d ji − 1). Thus, to check if

information structure (4) is partially nested, one should verify

the condition: I
j

k−d ji−1 ⊂ I i
k . Recalling the assumption that

graph G is connected and undirected, the information sets of

decision makers i and j are explicitly written as

I
i

k =
⋃

n=1,...,N

{xn(0 : k− dni)} ,

I
j

k−d ji−1 =
⋃

n=1,...,N

{

xn(0 : k− dn j − d ji− 1)
}

,

which reduces the partial nestedness condition to: dn j+d ji+
1 ≥ dni. Since dni is the length of the shortest path between

nodes n and i in G , one can write: dni ≤ dn j + d ji < dn j +
d ji + 1 which concludes the proof.

Taking into consideration that problem (8) is subject to

power constraints, it is convenient to reformulate it in terms

of covariance as the new decision variable

V (k) = E
[

z(k)z(k)⊤
]

= E

[

[

x(k)
u(k)

][

x(k)
u(k)

]⊤
]

With the additional constraint given by (3), problem (8) is

posed as a covariance selection problem

min
V (0:T−1)�0

tr(QTVxx(T ))+
T−1

∑
k=0

tr(QV (k)) (9)

s.t. FV (0)F⊤ = Σx
[

A B
]

V (k)
[

A B
]⊤

+Σw = FV (k+ 1)F⊤

tr(WiV (k))≤ pi
k, ∀i = 1, . . . ,M

where F =
[

I 0
]

. Part of the result above is derived from

the fact that, for a generic matrix Θ the following identity

holds

E
[

z(k)⊤Θz(k)
]

= tr (ΘV(k)) .



Additionally, rewriting the system dynamics equation (2) in

terms of a covariance variable V

FV (k+ 1)F⊤ =Vxx(k+ 1) = E
[

x(k+ 1)x(k+ 1)⊤
]

=
[

A B
]

V (k)
[

A B
]⊤

+Σw

and translating the initial condition E
[

x(0)x(0)⊤
]

= Σx into

Vxx(0) = E
[

x(0)x(0)⊤
]

= FV (0)F⊤ = Σx,

the form in (9) is obtained.

III. INFORMATION DECOMPOSITION

A. Covariance Decomposition

For the sake of simplicity of derivation we demonstrate

the method on a two-player system. Considering the state

equation (2), each decision maker at each time instant k is

able to compute the estimate of the state x based on the

common information I 0
k the two players have at time instant

k, i.e.

I
0

k = I
1

k ∩I
2

k = {x(0 : k− 1),u(0 : k− 1)}, (10)

later referred to as the coordinator’s information set. The

estimate is given by

x̂(k) = E
[

x(k)|I 0
k

]

= Ax(k− 1)+Bu(k− 1), (11)

since E
[

w(k− 1)|I 0
k

]

= 0. Locally, after measuring its own

state xi each decision maker can compute the local noise

value at the previous time step as

ωi(k) = wi(k− 1) = xi(k)−M⊤
i x̂(k) (12)

where M⊤
1 =

[

I 0
]⊤

, M⊤
2 =

[

0 I
]⊤

.

The quantities x̂,ω1,ω2 form a pair-wise independent com-

ponents of state. Due to linearity of the state decomposition

given by (11), (12) and partial nestedness of the information

structure (4) one can represent the optimal control input in

the form

u(k) = φ̂ (k)+

[

φ1(k)
φ2(k)

]

(13)

where φ̂ (k) =−L0(k)x̂(k), φ1(k) =−L1(k)ω1(k) and φ2(k) =
−L2(k)ω2(k), for some gains L0,L1,L2. Aiming for the

decomposition of problem (9), we define a vector z̄ of state

components x̂,ω1,ω2 and input components φ̂ ,φ1,φ2

z̄(k) =
[

x̂(k)⊤ φ̂(k)⊤|ω1(k)
⊤ φ1(k)

⊤|ω2(k)
⊤ φ2(k)

⊤
]⊤

(14)

whose blocks are independent. Additionally, denoting the

state decomposition (11) - (12) and input decomposition in

(13) as

(x0(k),x1(k),x2(k)) = (x̂(k),ω1(k),ω2(k)),

(u0(k),u1(k),u2(k)) = (φ̂ (k),φ1(k),φ2(k)).

the covariance matrix of z̄(k) is given by

V̄ (k) = E
[

z̄(k)z̄(k)⊤
]

=





V 0(k) 0 0

0 V 1(k) 0

0 0 V 2(k)



 (15)

where covariance matrices V l , l ∈ {0,1,2}, of the individual

blocks are

V l(k) = E

[

[

xl(k)
ul(k)

][

x(k)
u(k)

]⊤
]

=

[

Vxl xl (k) Vxlul (k)
Vulxl (k) Vulul (k)

]

.

The sparsity of V̄ is due to block-independency of the vector

z̄ and due to presence of zero-mean Gaussian noise.

Finally, recalling (1), for the sake of compactness, A and B

are partitioned as

A =
[

A1|A2

]

, B =
[

B1|B2

]

.

where A1 ∈R
n×n1 , A2 ∈R

n×n2 , B1 ∈R
n×m1 and B2 ∈R

n×m2 .

Similarly, referring to (6), matrix Q is partitioned as

Q = [Qx1
|Qx2

|Qu1
|Qu2

]

where Qx1
∈ R

(n+m)×n1 , Qx2
∈ R

(n+m)×n2 , Qu1
∈ R

(n+m)×m1 ,

and Qu2
∈ R

(n+m)×m2 . Furthermore, we define the following

two matrices

Q1 = [Qx1
|Qu1

], Q2 = [Qx2
|Qu2

].

B. Equivalent Problem Formulation

In order to rewrite the constraints appearing in equation

(9) as a function of V̄ , vectors x(k), u(k), z(k) are obtained

pre-multiplying the new variable z̄(k) according to

x(k) =Cxz̄(k), u(k) =Cuz̄(k), z(k) =Cz̄(k). (16)

where

C =

[

Cx

Cu

]

=









I 0
I 0

0 0

0 0

I 0

0 I
0 I

0 0

0 0

0 I









.

The evolution of the original state x(k) expressed as a

function of z̄(k) is now

x(k+ 1) =
[

A B
]

C z̄(k)+w(k). (17)

Combining the expressions in equations (15), (16) and (17)

the variance of the state x can be written as

Vxx(k) = E
[

x(k)x(k)⊤
]

(18)

= E
[

(Cxz̄(k))(Cx z̄(k))⊤
]

=CxV̄ (k)C⊤
x

In the same way the variance of input u(k) equals

Vuu(k) = E
[

u(k)u(k)⊤
]

=CuV̄ (k)C⊤
u (19)

Finally, from (2) and (18), the evolution of the system’s state

imposes the following recursive covariance equation

CxV̄ (k+ 1)C⊤
x =Vxx(k+ 1) = E

[

x(k+ 1)x(k+ 1)⊤
]

(20)

=
[

A B
]

C E
[

z̄(k)z̄(k)⊤
]

C⊤
[

A B
]⊤

+E
[

w(k)w(k)⊤
]

=
[

A B
]

CV̄ (k)C⊤
[

A B
]⊤

+Σw.



Similarly from the assumption on the state initial condition,

the equivalent condition for the covariance is written as

Vxx(0) = E
[

x(0)x(0)⊤
]

=CxV̄ (0)C⊤
x = Σx. (21)

We then have the following proposition which is the main

achievement of this subsection.

Proposition 1: Let V̄ be the covariance of the extended

vector z̄. Problem (8) is equivalent to

min
V̄ (0:T )�0

tr(C⊤
x QTCxV̄ (T ))+

T−1

∑
k=0

tr(C⊤QCV̄ (k)) (22)

s.t. CxV̄ (0)C⊤
x = Σx

CxV̄ (k+ 1)C⊤
x =

[

A B
]

CV̄ (k)C⊤
[

A B
]⊤

+Σw

tr(C⊤WiCV̄ (k)) ≤ pi
k

Proof: The proof follows from problem in (8) and

equations (20) and (21).

Remark 1: Although the methodology is presented for the

case of 2-player system, it can be extended to a system of

N players using an algorithmic approach for state decompo-

sition [8].

IV. INFORMATION-ORIENTED OPTIMIZATION VIA DUAL

DECOMPOSITION

In this section we proceed to define the dual problem

to (22), which allows to transform the original constrained

problem (8) into an unconstrained one. To this end, we

introduce dual variables S(k)∈R
n×n,k = 0, . . . ,T, to account

for constraints on the evolution of V̄ (k), as defined in

(20) and (21) . Additionally, dual scalar variables τi(k) ∈
R
+ ,k = 0, . . . ,T − 1, are defined to account for power con-

straints in the overall system.

A. Computation of Dual Variables

Introducing the Langrange multipliers S(0), . . . ,S(T ) and

τi(0), . . . ,τi(T − 1) the primal problem (22) is equivalent to

max
S(0:T ),τi(0:T−1)

min
V̄ (0:T )

tr
(

S(0)(Σx −CxV̄ (0)C⊤
x )

)

+ tr(C⊤
x QTCxV̄ (T ))+

T−1

∑
k=0

tr(QCV̄ (k)C⊤)

+
T−1

∑
k=0

tr

(

S(k+ 1)
[

A B
]

CV̄ (k)C⊤
[

A B
]⊤

)

+
T−1

∑
k=0

tr

(

S(k+ 1)(Σw−CxV̄ (k+ 1)C⊤
x )

)

+
T−1

∑
k=0

M

∑
i=1

tr

(

τi(k)(C
⊤WiCV̄ (k)− pi

k

)

(23)

where the constraints in (22) now appear as part of the cost in

form of linear operators on covariance matrix V̄ (k). Defining

the Hamiltonian of the system

H(T ) = tr{CT
x (QT − S(T ))CxV̄ (T )}

H(k) = tr{C⊤(Q+
[

A B
]⊤

S(k+ 1)
[

A B
]

+

−

[

S(k) 0

0 0

]

+
M

∑
i=1

τi(k)Wi)CV̄ (k)} for k = 0, . . . ,T − 1

the dual problem in (23) is rewritten as

max
S(0:T ),τi(0:T−1)

min
V̄ (0:T )

H(T )+
T−1

∑
k=0

{H(k)+Σw trS(k+ 1)}+

+Σx trS(0)−
T−1

∑
k=0

M

∑
i=1

τi(k)pi
k.

With the boundary condition on the Hamiltonian it follows

H(T ) = 0, hence S(T ) = QT . The dual function is finite if

and only if

Q+
[

A B
]⊤

S(k+1)
[

A B
]

−

[

S(k) 0

0 0

]

+
M

∑
i=1

τi(k)Wi � 0.

(24)

Since the primal problem (22) is convex and constraints

are affine, Slater’s condition can be relaxed. Indeed, the

constraints in (22) are composed of linear equalities and

inequalities and domain of the defined cost function is open,

the Slater’s condition reduces to feasibility. To this end, it

is easy to verify that the set of constraints in (22) defines a

non-empty region. Hence, the dual problem is equivalent to

the primal and is stated as

max
S(0:T ),τi(0:T−1)

tr(S(0))Σx +Σw

T

∑
k=1

trS(k)−
T−1

∑
k=0

M

∑
i=1

τi(k)pi
k

(25)

s.t. Q(k)

+

[

A⊤S(k+ 1)A− S(k) A⊤S(k+ 1)B
B⊤S(k+ 1)A B⊤S(k+ 1)B

]

� 0

S(T + 1) = 0

where the constraint in (25) is obtained from (24) by defining

Q(k) =



















Q+
M

∑
i=1

τi(k)Wi, k = 1, . . . ,T − 1

[

QT 0

0 0

]

, k = T.

(26)

With fixed values of τi, the previous equation is maximized

for every time-instant k with

S(k) = A⊤S(k+ 1)A+Qxx(k)−L(k)⊤Y (k)L(k) (27)

Y (k) = (B⊤S(k+ 1)B+Quu(k))

L(k) = Y (k)−1(B⊤S(k+ 1)A+Q⊤
xu(k))

which can be proved by analogously to [3]. Indeed, the

choice of S(k) should be made such that trS(k) is maximized

and at the same time constraint in (24) is satisfied, under the

condition that the optimal value of S(k+1) is known. To this

end, since any choice of S(k) with trace greater than the trace

of (27) violates the constraint in (24), the choice in (27) is

optimal. The variables τi have to be computed numerically

from (25) accounting for (27).

B. Optimal Information-constrained Control

In this subsection we show how to obtain the solution via

information decomposition. In paragraph III-A we introduced

state, input and covariance decomposition. In the 2-player’s



case, we obtain three information sets: I0,I1,I2, that

are defined by (4), (10) and referred herein as the coor-

dinator, first subsystem and second subsystem respectively.

Moreover, the coordinator is assumed to have the following

information about the overall system

(

A0,B0,Q
0
,x0(k)

)

, (A,B,Q, x̂(k)) .

Before stating the main result of this paper, we define the

expression for Jl
, l = 0,1,2 as

Jl(V l
,S,τ) = tr

(

QT F⊤
l V l(T )Fl

)

+
T−1

∑
k=0

tr
(

QlV l(k)
)

(28)

+ tr
{

S(k+ 1)
(

[

Al |Bl

]

V l(k)
[

Al |Bl

]⊤
)}

− tr

{

S(k+ 1)

(

F⊤
l V l(k+ 1)F +

Σw

3

)}

+ tr

{

S(0)

(

F⊤
l V l(0)Fl −

Σx

3

)}

+
T−1

∑
k=0

M

∑
i=1

tr
(

τi(k)WiV
l(k)− qi

k

)

where F0, F1 and F2 are such that

F0V 0(k)F0
⊤ =Vx̂x̂(k), (29)

F1V 1(k)F1
⊤ =

[

Vω1ω1
(k) 0

0 0

]

,

F2V 2(k)F2
⊤ =

[

0 0

0 Vω2ω2
(k)

]

.

Moreover, the definition of qi
k is given by identity: pi

k = 3qi
k.

We can now state the main result of this paper.

Theorem 1 (Information-constrained optimal control):

Let the system dynamics be given by equation (2).

Considering the optimization problem defined in (8) and

denoting by S(k) and τi(k) the optimal values of the dual

variables introduced in (23) we state the following.

i. The problem (8) is decoupled into the sum of inde-

pendent sub-problems that are linear in the respective

decision variables, i.e., it is equivalent to

2

∑
l=0

min
V l(0:T )

Jl(V l(0 : T ),S(0 : T ),τ1:M(0 : T − 1)) (30)

where Jl is defined in (28) and V l , l = 0,1,2 are defined

in (15).

ii. The optimal covariances V l , l = 0,1,2 of (30) are

computed according to

V l(k) =

[

V l
xx(k) V l

xu(k)
V l

ux(k) V l
uu(k)

]

, (31)

V l
xx(0) =

Σx

3
,

V l
ux(k) =−Ll(k)V

l
xx(k),

V l
uu(k) =V l

ux(k)
(

V l
xx(k)

)−1

V l
xu(k),

V l
xx(k+ 1) =

[

Al Bl

]

V l(k)
[

Al Bl

]⊤
+Σw.

where Ll(k) is

Ll(k) =
(

B⊤
l S(k+ 1)Bl +Ql

uu

)−1(

A⊤
l S(k+ 1)Bl +Ql

xu

)⊤
.

(32)
Proof: [of i.] From Proposition (22), problem (8) and

(22) are equivalent. Furthermore, from equations (12), (15)

and (23) accounting for the specific structure of matrix Cx

one gets

CxV̄ (k)C⊤
x =Vxx(k) =Vx̂x̂(k)+

[

Vω1ω1
(k) 0

0 Vω2ω2
(k)

]

= F0V 0(k)F0
⊤+F1V

1(k)F⊤
1 +F2V

2(k)F⊤
2

where F0, F1 and F2 are extraction matrices since

Vx̂x̂(k), Vω1ω1
(k) and Vω2ω2

(k) are square submatrices of

V 0(k),V 1(k) and V 2(k) respectively. On the other hand, from

the block-diagonal structure of V̄ (k) and sparsity of C, one

obtains

tr(QCV̄ (k)C⊤) = tr
(

QV 0(k)
)

+ tr
(

Q1V 1(k)
)

+ tr
(

Q2V 2(k)
)

Analogously, we obtain

[

A B
]

CV̄ (k)C⊤
[

A B
]⊤

=
[

A B
]

V 0(k)
[

A B
]⊤

+
[

A1 B1

]

V 1(k)
[

A1 B1

]⊤

+
[

A2 B2

]

V 2(k)
[

A2 B2

]⊤

With algebraic reordering the proof of the first part is

completed.

Proof: [of ii.] The second and fifth equation of (31)

stated follow respectively from the condition on the variance

of the initial state and equation (20). To prove the second and

third equation, observe that the decoupled problems in (30)

have a similar structure. Therefore, with the optimal values

of S(k) and τi(k), each problem in equation (30) is written

as

min
V l(0:T−1)�0

T−1

∑
k=0

tr(Zl(k)V l(k))+
T

∑
k=0

tr(S(k))−
T−1

∑
k=0

M

∑
i=1

τi(k)q
i
k

where Zl(k) is given by

Zl(k) =

[

XlYl
−1Xl

⊤ Xl

Xl
⊤ Yl

]

and the values of matrices Xl and Yl are computed recursively

Xl = Al
⊤S(k+ 1)Bl +Ql

xu

Yl = Bl
⊤S(k+ 1)Bl +Ql

uu.

To conclude the proof, exploiting the linearity of the sub-

problems, in order to compute the optimal covariances Vl

it is sufficient to verify if the condition tr(Zl(k)V l(k)) = 0

is satisfied for a certain choice of the covariance matrix Vl .

Indeed

tr(Zl(k)V l(k)) = tr

[

XlYl
−1Xl

⊤V l
xx +XlV

l
ux ∗

∗ X⊤
l V l

xu +YlV
l
uu

]



By imposing to the diagonal elements in latter equation to

be zero and recalling the assumption on positive-definitness

(and thus invertibility) of Ql
uu it follows:

V l
ux =−Y−1

l X⊤
l V l

xx =−LlV
l
xx

V l
uu =−Y−1

l XT
l V l

xu =V l
ux(V

l
xx)

−1V l
xu

which concludes the proof.

Corollary 1: Consider the system (1) and the optimization

problem defined in (8). For the 2-player system, the optimal

control law is given by

u(k) = u0(k)+

[

u1(k)
u2(k)

]

(33)

where ul(k), l = 0,1,2 is computed as

ul(k) =−Ll(k)x
l(k)

and Ll is defined by (32).

Proof: According to Proposition 1, the problem defined

in (8) is equivalent to the covariance selection problem in

(22). Since the latter is decomposed in Theorem 1 and

optimal values of covariances are provided by (30), the

optimal control law follows in straightforward manner. In-

deed, the control inputs referring to the coordinator and two

subsystems are given by

ul(k) =−V l
ux(k)V

l
xx

−1
(k)xl(k) =−Ll(k)xl(k) (34)

where

L0(k) = (B⊤S(k+ 1)B+Quu)
−1(A⊤S(k+ 1)B+Qxu)

⊤

L1(k) = (B⊤
1 S(k+ 1)B1+Q1

uu)
−1(A⊤

1 S(k+ 1)B1+Q1
xu)

⊤

L2(k) = (B⊤
2 S(k+ 1)B2+Q2

uu)
−1(A⊤

2 S(k+ 1)B2+Q2
xu)

⊤
.

C. Interpretation of Control Input Structure

Consider a 2-player network with one-step communication

delay as depicted in Fig. 1. It can be transformed into an

equivalent network by introducing a dummy node, herein

referred to as coordinator C (this is illustrated in Fig. 2).

The colocated control units of subsystems S1 and S2

are of limited computational power (e.g. they might be

routers, switches etc.) and limited memory. The coordinating

unit C is assumed to be able to perform more complex

computations. However, as it can be noted, it also has

access to limited information about the overall system - more

precisely, it knows a one-step delayed information about both

subsystems.

In our approach C computes and stores the sequences of

S(0 : T ) and τi(0 : T − 1) offline, based on equations (25)

and (27). During the system execution, at time-instant k,

the coordinator C sends the matrix S(k + 1) to the local

units. Then, using equations (34), the calculation of the

gains L1(k) and L2(k) is computed locally at the control

units of S1 and S2 by matrix multiplications, thus avoiding

additional memory requirements. Moreover, the coordinator

C , computes the estimate of the overall state based on

delayed knowledge, and passes the command to units S1

and S2. Hence, the corresponding inputs to be applied to

the plants are computed using local measurements and the

control signal from the coordinator.

S1 S2

1

1

Fig. 1. 2-player problem

S1 C S2

S(0 : T )

û(k) =−L̂(k)x̂(k)

1

0 0

1

S(k+ 1), û(k) S(k+ 1), û(k)

φ1(k) =−L1(k)x
1(k) φ2(k) =−L2(k)x

2(k)

u1(k) = φ1(k)+
[

I|0
]

û(k) u2(k) = φ2(k)+
[

0|I
]

û(k)

Fig. 2. Equivalent scheme at time instant k

V. CONCLUSIONS

In this paper a framework for power-constrained opti-

mization based on information decomposition is introduced.

The linear quadratic control problem with power constraints

is decomposed accordingly through covariance decomposi-

tion and Lagrangian dual reformulation. As presented, the

obtained equivalent problem is linear in the new decision

variables and the control gains are computed offline. The

approach adopted can be extended to a network of several

players.
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