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Abstract— Moving horizon estimation (MHE) is a con-
strained non-convex optimization problem in principle, which
needs to be solved online. One approach to avoid dealing with
several local minima is to linearize the nonlinear dynamics. This
type of convex approximation usually utilizes the estimated state
as a linearization trajectory, providing no guarantees of stability
and optimality in general. In this paper, we study the cascade of
a linear and linearized observer, which is called double MHE.
The first stage makes use of a model transformation, that in the
nominal case is globally equivalent to the nonlinear dynamics.
Since this approach does not consider the input and output
disturbances optimally, the second stage uses the first stage
estimates as an external signal for linearizing the nonlinear
dynamics to improve the quality of estimation. The overall
configuration can be transformed into two quadratic programs.
This approach not only avoids solving a non-convex optimiza-
tion problem, but also reduces the computational complexity
significantly compared to the one needed for solving a non-
convex problem. This estimation method has been validated
in a simulation study, where our approach converged to the
global minimum without the need to explicitly solve a non-
convex optimization problem.

I. INTRODUCTION

Moving horizon estimation (MHE) khar has emerged as a
powerful nonlinear state estimation technique that surpasses
typical recursive-based methods [1] such as the extended
Kalman filter [2] and the unscented Kalman filter [3];
see also [4], [5], [6] for comparison results. Most model
based control designs require a precise estimation method
in practice. This challenging problem either utilizes the
nonlinear dynamics explicitly under some type of stability
or boundedness consideration, or the linearized model is
employed in a sub-optimal estimation design; see [7].
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The MHE can consider the nonlinear dynamics as well
as the constraints explicitly in an optimization framework;
for an introduction see [8], [9]. Constraints on the states
and parameters can help the estimation method improve
the quality of estimates, which can further provide a better
control performance. Constraints on the unmeasured input
and output disturbances are usually used to model truncated
normal densities [10]. The main challenge in the MHE,
similar to any nonlinear optimization problem is, to obtain
the global solution in a time that is real-time tractable on
digital computers.

There are many approaches that approximate the non-
linear dynamic optimization problem by a convex one.
Many of these approaches express the dynamics—mostly by
linearization—hence obtaining the global solution is difficult
without having a reliable linearization path available. Re-
cently Johansen et al. utilized a model transformation that is
globally equivalent to the nonlinear dynamics with no input
and output disturbances in a multi stage estimation technique
[11]. The resulting model is linear time-varying (LTV),
where its time-varying parameters depend on a sequence
of the calculated/measured input and output. This trans-
formation considers the input and output disturbances sub-
optimally, hence the transformed system may not completely
reflect the stochastic model. Utilizing this transformed model
in an estimation framework that is designed optimally for a
class of disturbances, might end up with biased estimates.

This model transformation has been employed in a two
stage estimation method called double Kalman filtering (D-
KF) [11] and its stability analysis in discrete-time has been
studied in [12]. The first stage of the DKF utilizes the
transformed LTV model and provides globally convergent
estimates. The sub-optimal estimation might not be precise,
therefore the second stage linearizes the nonlinear dynamics
about the estimates provided by the first stage. The results
are expected to have an improved precision compared to a
classical extended Kalman filter (EKF). Since EKF uses its
own estimates as linearization point, it is probable that its
estimates converge to a wrong value if one of the following
scenarios happen: if the estimation algorithm is provided
with an initial guess that is far from the true initial value,
or if the system dynamics changes abruptly so the previous
estimates provide an inaccurate linearization path for EKF,
or if there exist multiple solutions for a specific series of
measurements [5].

This paper introduces the so-called double MHE cas-
cade configuration that is based on the idea presented in



[11]. Although MHE may in many practical cases improve
estimation precision, increase robustness to non-Gaussian
noise and sensor malfunctions by its window of moving
measurements and provide state constraints (e.g. see [6]), this
comes with a price of increased computational complexity
and implementation difficulties on digital computers having
limited computing power. The method proposed in this paper
aims not only to preserve the advantages of MHE over
Kalman-based methods, but also reduce its computational
complexity significantly.

The proposed method consists of two stages of linear
MHE—a convexified and a linearized MHE—in a cascade
configuration, where the result of the first stage provides a
linearization trajectory for the second stage. These two linear
MHE problems can be translated to two individual quadratic
programs (QP), where they can be easily implemented using
conventional QP solvers. Since the first stage utilizes the
globally equivalent LTV model in the nominal case, its
solution can be different than the global minimum in the
presence of input and output disturbances. Therefore, the
second stage uses the first stage estimates and improves the
estimation performance. Using a typical nonlinear solver for
the MHE problem, e.g. a gradient based method, renders
the estimation technique dependent on the initial guess. A
warm start method for solving a nonlinear MHE is similar
in the structure to the internal feedback of EKF, which
makes the method sensitive to sudden changes in dynamics
or a wrong initial guess. Hence, the performance may be
diminished and in some situations results in a sub-optimal
solution that is quite far from the global minimum. However,
the approach proposed in this paper avoids these weaknesses
by solving two consequent QPs, where in the nominal case
the first QP is convergent. Therefore, if the disturbances
are assumed bounded—even though it is not guaranteed—
this approach has an increased chance of obtaining a global
solution compared to the case of solving a nonlinear MHE
using a sub-optimal solver.

II. PROBLEM FORMULATION

Nonlinear process dynamics is defined by

(1a)
(1b)

Tpy1 =f(Tx, ug) + wg,
yr =h(xk) + v,

where z;, € X C R”, up, € U € R™, wp € R" and
v € RP are the state vector, control signal, input and
output disturbances, respectively. The nonlinear dynamics
is denoted by f(,-) : X x U — X and the nonlinear
measurement function is expressed by h(-) : X — RP.
Furthermore, y € R? is the bounded observed output. The
discrete time index is denoted by k.

Assumption 2.1: The sets X and U are compact with 0 €
Xand 0 € U.

Assumption 2.2: There exists a map ¥(-,-) : RPN x
R™N-1) _ R”, which is Lipschitz continuous in all of
its arguments and a positive integer [V such that the state of

(1) for all K > N — 1 can be written as

xr = ()=, (Uj)f;ll)’
where | =k — N + 1.

A. Linear models

This subsection introduces two types of linear models that
will be later utilized in the double moving horizon estimation
framework. The first model is globally equivalent to the
system in (1) with the disturbances removed; their output
responses for any input is identical. The second model is
the linearized version of (1) about an arbitrary linearization
trajectory.

1) LTV model: Using Assumption 2.2, it is possible to
transform the nonlinear system (1) into the following LTV
model

Th41 :f(O,uk) + Frxyp + g,
Yk Zh(O) + Hpxp + O,

F((y)i, (w)hZ)) and He =
H((y;)h=, (uj);?;ll) are the time varying parameters
that provide an equivalent model for the nonlinear dynamics
(1) globally, assuming w; = 0 and v, = 0. The disturbances
can be reformulated as

(2a)
(2b)

where Fj. =

’

W = Wi + U,)((yj)?:“ (uj )?;117 (’Uj)?:l)v
1 =0 ((y;) 5= (w)hZ) s (0))52).

For more information on this approach readers are encour-
aged to consult [11], [12].

Remark 2.1: The main challenge in utilizing the trans-
formed LTV model (2) is the possibility of transforming
the characteristics of input and output disturbances. Since
most of the optimal estimation methods make some assump-
tions on the disturbances, those might not hold after the
transformation. Therefore, different tuning is necessary if
the estimation technique is utilizing the LTV model, since
it is quite hard to achieve an analytical expression for the
transformed disturbances.

The following example describes how the transformed
model can be obtained, and illustrates the effect of this
transformation on the disturbances following the discussion
in Remark 2.1.

Example 2.1: Let a scalar system with nonlinear dynam-
ics and measurement function in discrete time be described
as

3 2
Th41 = Xy, + TRup + Wi,
2
yk == xk + Uk7

where x; € Rt and one can immediately calculate the state

as T3 = yr — vx — T = \/Yr — U, which can further
simplify the nonlinear dynamics as

Tet1 = (Yp — vk)xk + (yr — vk)uk + wg,

Yk = TkV Yk — Vg + V-



Furthermore, the LTV model can be simplified as
Tht1 = YuTk + YrUs + Wy 1= Frxp + Grug + Wi,
Yk = VJYrTr + O = Hpxy + O,

where the transformed input disturbance is denoted as wy =
Wk — VEUE — Vk+/Yr — v and the transformed output distur-

bance is Up = yr — \/ Y (yx — vi). Note that ¥y and wy, are

zero if wy, and vy, are zero.

Definition 1: A LTV system of the form (2) is uniformly
completely observable (UCO) if there exist constants c;, cy €
R* and a positive integer N such that

N-1
al < Z [ Hiyi®(k + i, k)| < col
i=0

for all £ > 0, where the transition matrix is defined as
O(k+i,k) = Fryio1Frpio- - Fr,

for 0 <i < N — 1, while ®(k, k) = 1.

Assumption 2.3: The LTV system (2) is UCO.

2) Linearized model: The linearization of (1) about an
arbitrary state Ty, results in the following linear system

Tpy1 =f(Tr, ur) + Ar(zi — r) + Qi + wy,
yr =h(Zy) + Crp(xk — Tr) + R + vy,

(3a)
(3b)

where the matrices A and C}, are defined as

T
= Tm(xk’uk)’ Cr = Dy (ZTx)

and the higher order terms are denoted by Qj and Ry. Their
boundedness properties depend directly on the behavior of
Zy. From [12, Prop. 4.2.], denoting ¥ := Tj, — x, gives that
there exist constants ¢, and ¢,, such that

1kl < eqll@ell?, IRkl < erllzell?,

Therefore if zj, is provided by an estimator with converging
estimation error, the higher order terms in (3) vanish asymp-
totically.

Assumption 2.4: The linearized system (3) is UCO.

Assumption 2.5: The evolution of the linear/linearized
systems in (2) or (3) respects the constraints; i.e. from
any initial state and for any possible sequence of input
disturbances (wj);?;é € WF, the state satisfies the constraint;
zp € X,

Ag

vk > 0.

III. LINEAR MOVING HORIZON ESTIMATION

In this paper we formulate the linear and linearized MHE
(LMHE) utilizing the linear dynamics in (3). Note that this
formulation is also valid for the system in (2). This esti-
mation method is the solution to the following constrained
optimal control problem in discrete time

LMHE: ©f = I?i%fl Ok (&1, (§)52)) (4a)
T1,(85)5=1

St T4 =A;z;+b;+&, i=1...,k—1, (4b)

Yi :Cii’i+di+Vi, i:l,...,k, (4C)

z; € X, fiEW, i=1,...,k, (4d)

where the cost function is defined by

k-1 k
Ok (21, (§)52)) = Of Hl@i—sill B+ D _ €15, +D_ IIvill,
i=l i=l
where Q; = Q] = 0 and R; = R] > 0 are the tuning param-
eters with the appropriate dimension. The arrival cost term
is defined by P, = P > 0 and s;, serves to approximate the
effect of the missing data outside the moving horizon; see
[8]. Note that b; and d; are the time-varying terms that can
be easily calculated either from (3) or (2), depending on the
model that is used in the LMHE formulation.

The main contribution of this work is to reduce the com-
putational complexity of the estimation method compared
to the one needed to solve an NMHE, and to increase the
possibility of finding a global minimum. Therefore the linear
MHE is transformed to a QP, where compared to utilizing a
nonlinear programming solver, the complexity of the problem
will decrease significantly. The following reformulation can
be used to efficiently implement the method in computing
hardware such as embedded micro-controllers, using the
existing software tools for solving constrained QP [13], [14]

1
LMHE :  min 52(,3 Hp X+ FLX + & (5a)
k

s.t. X € X, (5b)

where X = XN, H;, € RPNV 7 € R"N and &, € R
can be obtained as follows
X, =[3F &f, a%, ... &F, &F]",
Hi(1,1) =P + A QA + CF R, Cy,
He(r+1,r+1)=
Quir—1+ Al QuirAtsr + Ol Ry Cryr,
Hi(N,N) =Qu—1 + C}} RiCh,
Hi(g,q+1) = — Al g1 Quig,
Hi(g+1,9) = — Qrig-14114-1,
Fr(1) =2A7 Qiby — 2C] Ry — di) — 2Pisi,
Fi(r +1) =241, Qi biy,—
208 Rigr (Yrgr — digr) = 2Qugr—1bigr—1,
Fr(N) = =20} Rie(yr. — di) — 2Qk_1bj_1,

k—1 k
Ex =llsilld, + D Nbilld, + > Iy — dif
i=l i=l

forallr=1,2,...,N—2and ¢ =1,2,..., N —1. It should
be noted that H, is a block matrix and H(r,c) € R™*™ is
the sub-matrix associated with the (rn — n + 1) to rnth
row and (cn —n + 1) to en'! column of the matrix Hy.
Furthermore, 7 (j) € R™ denotes j** block of the length n
of the vector Fj for 1 < j < N.

2
R;

IV. DoUBLE MHE

We propose a cascaded linear and linearized MHE, that we
shall call double MHE (DMHE), summarized in Fig. 1. In
the first stage, the linear MHE formulation in (4) utilizes the



system model in (2). As it has been previously mentioned,
this model is nominally and globally equivalent to the nonlin-
ear dynamics, hence in the absence of disturbances provides
a global minimum to the nonlinear optimization problem
of MHE. Let us refer to this problem as the convexified
MHE (CMHE). Since in reality, disturbances influence the
system dynamics, the result of CMHE might be different
from the global minimum, therefore the second stage of
DMHE will utilize the result of CMHE to improve the quality
of estimation. This stage (LMHE) makes use of the linearized
model (3), considering the linearization trajectory provided
by CMHE. This stage will also be initialized by the CMHE
estimates, so the possibility of obtaining a global minimum
shall increase. The details of this estimation method is given
in Algorithm 1.

Subontimal Linearization of
CMHE UOOPUIAL ] 4pe nonlinear

estimates

model
) iLinearized model
Measurements More accurate
o LMHE estimates

Fig. 1. Schematic overview of the proposed double MHE

Algorithm 1 Implementation of DMHE
Initialization: §
Input: (y;)7_. (u;)}-,
1: Update the LTV model (2)
2: Update the parameters in (5):
di — h(i‘,) — Cia_:i
3: Solve (5) with the updated parameters and obtain Zy,
4: Update the linearized model (3)
5: Update the parameters in (5):
6: Solve (5) with the updated parameters and update zy,
Output: &y,

To illustrate the method, let us assume that the MHE
problem is non-convex with one suboptimal solution and one
global minimum as shown in Fig. 2. The solution of CMHE
is approximately = = 0.8, which is in the neighborhood of
the global minimum; x = 1. Utilizing the solution of CMHE
for linearization makes the DMHE method to converge to the
global solution as the arrows in Fig. 2 demonstrate the effect
of the two stage estimation approach in DMHE.

V. NOMINAL STABILITY ANALYSIS

Under nominal conditions—without considering the input
and output disturbances—the first stage is globally equivalent
with the nonlinear optimization problem. Since the linear

cost value

0.4 -0.2 0 0.2 0.4 0.6 0.8 1 12

Fig. 2. Comparison of convexified and non-convex MHE cost functions;
black and red arrows now represent the first and second stages of the DMHE,
which gets an improved solution from its initial guess.

MHE is transformed to a QP, it is globally convergent. In
the second stage the main difference is due to the terms b;
and d; in (4), which depend on the higher order terms, Qy
and Ry. In this case, stability analysis would be possible
for the MHE that employs the linear time-varying model, if
T — xj in the first stage.

In this paper, we are not analyzing the stability of this
cascade configuration. Readers are encouraged to see [12]
for a detailed stability analysis of a cascade design of
two uniformly globally asymptotically stable Kalman filters,
followed by the analogy that was proposed in [15].

VI. NUMERICAL EXAMPLE
Consider the following scalar nonlinear system

Tp1 = — 20Tz} + 10Tsay + ap, + T,
Yk =Tk + Vg,

(6a)
(6b)

where the sampling time 7; = 0.01 s, and the additive
measurement noise is assumed to be uniformly distributed
with a variance of 0.1. Compared to a normally distributed
disturbance, a uniform noise has a non-zero mean, and is
considered as a biased output disturbance. This bias in the
disturbance deteriorate the validity of the transformed model
(2). This issue can be observed in the biased estimates of
the CMHE. To overcome this, the DMHE configuration
can provide better estimates by linearizing the nonlinear
dynamics about the biased solution and result in a smaller
estimation error; see Fig. 3(a).

The LTV model that will be utilized in CMHE is as
follows

Te4+1 =
(=207 (yx — vg)* + 10T (yx — vi) + Vg, + Tyuy,
= (=20T,y; + 10T, yy, + D)y, + Toup, + by,

where vy is selected to have three constant values during
each second, wy, as the new input disturbance summarizes
the model transformation effect on disturbances. Since vy, is
assumed to be uniformly distributed noise with mean value
of 0.05 and its transformation in the dynamics is expressed
by wy, it might lead to biased estimation for the CMHE. To



improve the quality of estimation, the second stage employs
the linearized model that is expressed by

Tp1 =(—20T,Z5 + 10T, 7% + Tp)+
(*GOTsi’k + 2072, + 1)(Ik — .’Ek) + Tsuy.

For both optimization problems the horizon is N = 10.
The tuning parameters (see the optimization problem in (4))
for the first stage are chosen as @Q = 1072, R = 1 and
P = 0.01. The second stage uses the following parameters
for its tuning: Q = 107%, R = 107° and P = 0.1. Note
the difference in selecting () for CMHE and LMHE. Even
though the nonlinear and linearized dynamics are assumed
to have no input disturbance, the associated tuning variable
can not be zero. This tuning parameter is responsible for
incorporating the state update in the optimization problem.
The biased measurement is not only effective in the mea-
surement error part of the CMHE cost function, it has some
influence on the state update part as well. Hence R is
chosen smaller for LMHE than for the one in CMHE to
overcome the negative influence of the measurement bias in
the cost function of LMHE problem. The NMHE problem
uses the same tuning parameter as in LMHE, since the
stochastic model of both linearized and nonlinear model is
similar. It should be declared that the linear and linearized
MHE problems were solved using the “quadprog” MATLAB
function, while the nonlinear MHE problem was solved by
“fmincon” MATLAB function, and all the simulations were
executed on an Ubuntu 16.04 desktop computer (Intel i7, 2.3
GHz, 16 GB RAM).

The main issue with a typical NMHE utilizing its own
estimates for linearization and initialization is the negative
effect of a poor initial guess as demonstrated in Fig. 3(b).
Note that since the initialization (£ = —1) is slightly
different from the true value (xg = 0), the estimated state
for the NMHE converged to the sub-optimal solution in the
beginning of the test; c.f. Fig. 2, where the local minimum
is located at around 0. On the other hand, it is illustrated
that if the initialization is correct, all the methods have the
same chance of getting to the correct estimates; see Fig.
3(a). Although the results of CMHE is biased because of the
assumed colored measurement noise, the DMHE approach
is able to bring the solution to the correct value. The
interesting observation here is that the DMHE method, no
matter how the initialization is selected, can converge to a
small neighborhood of the global minimum. See Table I for
a comparison study on the estimation performance defined
as the sum of the absolute value of the estimation error
and the execution time. Furthermore, the timing analysis
demonstrates the advantage of our method compared to uti-
lizing a nonlinear solver. In these simulations, the following
constraint have been considered to improve the estimation
performance

1<3;,<2, i=1,....k,

where this choice of constraint is derived from our knowl-
edge of the steady-state value of this stable system.

TABLE I
PERFORMANCE COMPARISON FOR THE NUMERICAL EXAMPLE

estimation | estimation error | estimation error | execution
method with true Zo with wrong Z¢ time (s)
NMHE 9.02 107.58 1.3
CMHE 28.49 31.25 0.009
DMHE 9.33 11.59 0.02

L5t P——————

—true
measurement,
CMHE

——DMHE

——NMHE

0 05 1 15 2 25 3
time (sec)

-1 L I

(a) State estimation with true inital guess

true 8
measurement,

\ CMHE

-0.5 ‘ —— DMIHE 1
—— NMHE
. ‘ ‘ : ‘ ‘
0 05 1 15 2 25 3

time '(scc)

(b) State estimation with wrong inital guess

Fig. 3. Comparison of different linear MHE methods.

VII. CONCLUSION

A cascade configuration of two linear MHE problems has
been proposed. In the first stage, a nominally globally equiv-
alent LTV model has been employed that is not optimally
designed for systems with input and output disturbances.
Although the first stage MHE problem becomes convex, its
solution might be different from the global minimum due to
the effect of disturbances that are sub-optimally accounted
for. Even though global convergency is not guaranteed in the
presence of disturbances, the second stage utilizes the result
of the first stage as linearization trajectory to improve its
solution. The stability analysis of the cascaded linear MHEs
are proposed as a future work. A numerical example pro-
vides some illustrations on the improved estimation results
obtained by the double MHE method compared to nonlinear
MHE. Not only is the increased performance appealing, but
the reduced computational complexity compared to the non-
linear MHE is interesting for implementation on embedded
hardware.



[1]
[2]
[3]

[4]

[5]

[6

=

[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

A. H. Jazwinski, Stochastic processes and filtering theory. Courier
Corporation, 2007.

A. Gelb, Applied optimal estimation. MIT press, 1974.

E. A. Wan and R. Van Der Merwe, “The unscented kalman filter
for nonlinear estimation,” in Adaptive Systems for Signal Processing,
Communications, and Control Symposium, 2000, pp. 153-158.

S. C. Patwardhan, S. Narasimhan, P. Jagadeesan, B. Gopaluni, and
S. L. Shah, “Nonlinear bayesian state estimation: A review of recent
developments,” Control Engineering Practice, vol. 20, no. 10, pp. 933—
953, 2012.

E. L. Haseltine and J. B. Rawlings, “Critical evaluation of extended
Kalman filtering and moving-horizon estimation,” Industrial & engi-
neering chemistry research, vol. 44, no. 8, pp. 2451-2460, 2005.

M. Abdollahpouri, G. Takdcs, and B. Rohal’-Ilkiv, “Real-time moving
horizon estimation for a vibrating active cantilever,” Mechanical
Systems and Signal Processing, vol. 86, pp. 1-15, 2017.

D. Simon, Optimal State Estimation: Kalman, Hs,, and Nonlinear
Approaches. Wiley—Interscience, 2006.

C. V. Rao, J. B. Rawlings, and D. Q. Mayne, “Constrained state
estimation for nonlinear discrete-time systems: Stability and moving
horizon approximations,” IEEE Transactions on Automatic Control,
vol. 48, pp. 246-258, 2003.

F. Allgower, T. A. Badgwell, J. S. Qin, J. B. Rawlings, and S. J.
Wright, “Nonlinear predictive control and moving horizon estimation-
an introductory overview,” in Advances in control. Springer, 1999,
pp- 391-449.

D. G. Robertson, J. H. Lee, and J. B. Rawlings, “A moving horizon-
based approach for least-squares estimation,” AIChE Journal, vol. 42,
no. 8, pp. 2209-2224, 1996.

T. A. Johansen and T. I. Fossen, “Nonlinear filtering with eXogenous
Kalman filter and double Kalman filter,” in European Control Confer-
ence, 2016, pp. 1722-1727.

M. Abdollahpouri, M. Haring, T. A. Johansen, G. Takécs, and
B. Rohal’-Ilkiv, “Nonlinear state and parameter estimation using
discrete-time double Kalman filter,” in The 20th World Congress of
the IFAC, vol. 50, no. 1, 2017, pp. 11632 — 11638.

H. J. Ferreau, H. G. Bock, and M. Diehl, “An online active set strategy
to overcome the limitations of explicit MPC,” International Journal
of Robust and Nonlinear Control, vol. 18, no. 8, pp. 816-830, 2008.
D. K. M. Kufoalor, B. Binder, H. J. Ferreau, L. Imsland, T. A.
Johansen, and M. Diehl, “Automatic deployment of industrial embed-
ded model predictive control using qpOASES,” in European Control
Conference. 1EEE, 2015, pp. 2601-2608.

T. A. Johansen and T. I. Fossen, “The eXogenous Kalman filter
(XKF),” International Journal of Control, pp. 1-7, 2016.



