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Abstract— In a state estimator, the presence of malicious or
simply corrupt sensor data or bad data is detected by the high
value of normalized measurement residuals that exceeds the
threshold value, determined by the χ2 distribution. However,
high normalized residuals can also be caused by another type
of anomaly, namely gross modeling or topology error. In this
paper we propose a method to distinguish between these two
sources of anomalies - 1) malicious sensor data and 2) modeling
error. The anomaly detector will start with assuming a case of
malicious data and suspect some of the individual measure-
ments corresponding to the highest normalized residuals to be
‘malicious’, unless proved otherwise. Then, choosing a change
of basis, the state space is transformed and decomposed into
‘observable’ and ‘unobservable’ parts with respect to these
‘suspicious’ measurements. We argue that, while the anomaly
due to malicious data can only affect the ‘observable’ part
of the states, there exists no such restriction for anomalies
due to modeling error. Numerical results illustrate how the
proposed anomaly diagnosis based on Kalman decomposition
can successfully distinguish between the two types of anomalies.

I. INTRODUCTION

With the high frequency synchronized measurements from
the Phasor Measurement Units (PMUs), the real-time and
fast changing dynamic states of an interconnected power
system can be estimated using Kalman filtering based tech-
niques [1]–[4]. Starting from a known operating condition,
the (noisy) dynamic states at each time-step are estimated by
optimally combining the dynamical model-based predicted
state-information with the real-time measurement data [5].
Therefore the presence of bad measurement data results in
highly inaccurate state information; subsequently affecting
the control and operating decisions. Such bad data are
detected by inspecting the normalized measurement residual
and performing the χ2 hypothesis tests [6]–[8]. However,
these bad data detectors can be falsely triggered if there are
major configuration changes due to topology error, signifi-
cant parameter estimation error or unanticipated large load
change etc [6], [9]. It is therefore crucial to distinguish
between the underlying causes of anomaly: i.e., the presence
of malicious measurement data (scenario-1) or significant
modeling error (scenario-2).

*The material is based upon the work performed by the author at Texas
Tech University, under the partial support of National Science Foundation
Grant No. DGE-1438921.

In the power systems literature, detection of modeling
error for special cases has been addressed [10]–[13]. How-
ever in this paper a generic method to differentiate be-
tween the sources of anomalies, namely bad measurement
data and modeling error, is presented, based on Kalman
decomposition techniques. Topology identification problem
has been separately addressed extensively in the literature in
[14], [15]. Separately topology error detection using static
state estimation has been addressed in [6], [9], [11], [12],
[16]–[18]. Distinguishing the source of anomaly have been
addressed and solved for static state estimation in [12] using
Lagrangian multiplier. In [10], the authors detected topology
error as a cyber-attack for the dynamic state estimation.

However, distinguishing the source of anomaly for the
dynamical state estimation of power system has been under-
studied. The rest of the paper is organized as below. Section
II describes the dynamic state estimation process and the bad
data detection method using χ2-tests on the measurement
residuals. Section III describes the problem formulation and
Section IV describes the proposed methodology. The algo-
rithm is presented in a concise form in Section V . Section VI
presents the simulation results, while the conclusions are
drawn in Section VII.

II. DYNAMIC STATE ESTIMATION AND BAD DATA
DETECTOR

The power systems is a complex nonlinear dynamical
network with multiple time-scales. Typically, under the fast
time-scales of operation, e.g. transient dynamics, the power
systems can be modeled as a set of nonlinear differential
equations. Details on developing such models can be found
in [2], [4], [19], [20]. In this and the following two sections,
the problem and the proposed solution would be presented
in a generic set-up, applicable for any (linear) dynamical
systems. Henceforth, noting that the presented methodology
is generic and not specific to power systems, we have omitted
the modeling details of power system dynamics for brevity.

Let us consider a dynamical system described by the
following set of nonlinear state equations,

x(k + 1) = g{x(k)}}+w(k), (1)

where, x ∈ Rn is the state vector, g : Rn 7→ Rn is
nonlinear function describing the dynamics and w ∈ Rn
is the zero-mean process noise vector with covariance Q.
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The observer or the measurements can be described by the
following (nonlinear) equations,

z(k + 1) = h{x(k + 1)}+ v(k + 1), (2)

where z ∈ Rm is the measurement vector and h : Rn 7→
Rm is the nonlinear measurement function. Let us assume,
without a loss of generality1, that x = 0 is a stable equilib-
rium point of the system, such that, under normal operating
conditions, the states are all close to the origin. Therefore,
under the assumption of (close to) normal operations, the
system model can be simplified as a linear time-invariant
dynamical system as follows,

x(k + 1) = Ax(k) +w(k), (3a)
z(k + 1) = Hx(k + 1) + v(k + 1), (3b)

where A = ∂g
∂x |x=0 ∈ Rn×n is the system Jacobian matrix,

and H = ∂h
∂x |x=0 ∈ Rm×n is the measurement Jacobian

matrix.
To estimate the states of this system, the estimator is

initialized first by solving a set of algebraic power-flow
equations. Then the following Kalman filtering equations are
used:

Initialization :

x̂(0|0) = E{x(0)}, (4a)

P(0|0) = E{x(0)−x̂(0|0)}{x(0)−x̂(0|0)}T (4b)
Prediction steps :

x̂(k + 1|k) = Ax̂(k|k), (4c)

P(k + 1|k) = AP(k|k)AT +Q, (4d)
Correction steps :

z̃(k + 1) = z(k + 1)−Hx̂(k + 1|k), (4e)

S(k + 1) = HP(k + 1|k)HT +R, (4f)

K(k + 1) = P(k + 1|k)HTS−1(k + 1), (4g)
x̂(k + 1|k + 1) = x̂(k + 1|k) +K(k + 1)z̃(k + 1), (4h)
P(k + 1|k + 1) = (I−K(k + 1)H)P(k + 1|k), (4i)

where, the variables are explained below,
x̂: estimated state,
z̃: measurement residual,
S: covariance of measurement residual,
P: the covariance of the estimation error, and
K: the optimal Kalman gain.

Typically, the authenticity of a measurement data is de-
tected by computing the following expression,

c(k + 1) = z̃T (k + 1)S−1(k + 1)z̃(k + 1), (5)

c(k + 1) is a random variable with a χ2 distribution with
degrees of freedom (mi ≤ m) equal to the number of
independent measurements. If we choose a confidence value
of p, then the threshold THχ may simply be found using
(7). The value of THχ could be determined by ensuring

1The equilibrium can be always moved to the origin with an appropriate
shifting of the state variables.

that under normal conditions (no attack) the value of the
normalized measurement residuals (c) is less than THχ with
certain high probability (referred to as the confidence level).
We define the probability of the normalized measurement
residual being less than the threshold as,

F (THχ|mi) := Pr{c ≤ THχ |mi}

=

∫ THχ

o

t
mi−2

2 exp (−t/2)
2
mi
2 γ(mi/2)

dt , (6)

where γ(·) is the Gamma function. Note that F (·) is an
increasing function of the threshold value. The threshold
value is chosen such that F (THχ|mi) ≥ p . Given a (suffi-
ciently high) confidence value of p ∈ (0, 1), the minimum
required value of the threshold THχ may be found2 using
the following equation [21],

THχ = F−1(p|mi) := {x : F (x|mi) = p} . (7)

Definition 1: Suppose the measurement data z(k + 1) is
manipulated by a malicious agent and a new value z

′
(k+1) is

placed in an attempt to mislead the estimation. The malicious
measurement data is modeled by,

z
′
(k + 1) = z(k + 1) + a(k + 1), (8)

where, a(k + 1) ∈ Rm is the vector of values added to the
original measurement.
Then, the changed equations of the estimator at the (k+1)-th
time instant will be,

z̃
′
(k + 1) = z

′
(k + 1)−Hx̂(k + 1|k), (9)

= z̃(k + 1) + a(k + 1)

Therefore, the expression for malicious data detector (or,
the normalized measurement residual) is:

c
′
(k + 1) = z̃

′T (k + 1)S−1(k + 1)z̃
′
(k + 1)

= c(k + 1) + aT (k + 1)S−1(k + 1)a(k + 1)

+ 2aT (k + 1)S−1(k + 1)z̃(k + 1) (10)

Occurrence of malicious measurement data is successfully
detected if c

′
(k + 1) > THχ.

III. PROBLEM FORMULATION

While presence of bad measurement data would result in a
large c

′
(k+1), it can also be caused by modeling error, e.g.

when the assumed values of A and H deviate largely from
those of the real system. This could be caused by various
reasons. Some of the reasons of this gross error are,
• topology error: suppose, there is a sudden and unan-

ticipated change in topology of which the topology
processor is not yet updated. This will affect both A
and H matrices.

• change of operating conditions: change in operating
condition will move the initial condition away from the
origin (assumed to the stable operating point). This will

2MATLAB command ‘chi2inv’ is used.



eventually affect the system parameters A and H. If
the state estimator is unaware of this updated operating
point, then the computed Jacobians A and H would not
represent the true system.

• some machine or line parameters, such as damping
coefficients of generators, line impedance might change.
We should remember, however, that small inaccuracies
and parameter uncertainties are already taken care of
and modeled as an additive Gaussian process noise
w(k + 1).

Prediction steps :

x̂′(k + 1|k) = A′x̂(k|k), (11a)

P′(k + 1|k) = A′P(k|k)A′T +Q, (11b)
Correction steps :

z̃′(k + 1) = z(k + 1)−H′x̂′(k + 1|k), (11c)

S′(k + 1) = H′P′(k + 1|k)H′ −1 +R, (11d)

K′(k + 1) = P′(k + 1|k)H′TS′−1(k + 1), (11e)
x̂′(k + 1|k + 1) = x̂′(k + 1|k) +K′(k + 1)z̃′(k + 1),

(11f)
P′(k + 1|k + 1) = (I−K′(k + 1)H′)P′(k + 1|k). (11g)

Now the malicious data indicator,

c′(k + 1) = z̃′T (k + 1){S′(k + 1)}−1z̃′(k + 1), (12)

where, the prime notation (′) represents the corrupted vari-
ables after one time step after the modeling error. Therefore,
every occasion when c′(k + 1) exceeds the threshold value
due to such modeling errors, false alarms will be raised.
These false alarms are harmful as these will prompt the
system operators to act in certain ways that could be un-
desired and therefore, should be avoided. In this section, the
underlying cause of c′(k + 1) exceeding the threshold THχ

is detected.
Example 1: In order to illustrate the anomalies due to bad

data and modeling error, an arbitrary tenth order system is
simulated. First, malicious data is injected in measurements-
3 and 8 during time instants 50-150. From Fig. 1, it can be
observed that the residuals corresponding to these measure-
ments cross the detection threshold during the attack instants
(Scenario-1). The attack vectors injected here have a standard
deviation 5 and 10 times larger than their respective noise
variance. Next, in Fig. 2 the simulation is repeated again.
However, instead of any attack injection, a modeling error is
simulated: topology is not updated due to a fault occurring
after time instant 150. The residuals corresponding to some
measurements misleadingly exceed the detection threshold
(Scenario-2). Therefore, simply by looking at the normalized
residuals, it is not possible to detect the anomaly.
In the following sections, a method will be introduced to
distinguish between such anomalies.

IV. PROPOSED METHODOLOGY

By inspecting the normalized residuals for all the available
measurements at time k, denoted by z(k), suspicious mea-

Fig. 1. Large residuals due to malicious data.

re
s
id

u
a
l 
o
f 

e
a
c
h
 m

e
a
s
u

re
m

e
n
t

Fig. 2. Large residuals due to topology error.

surements (zs ⊂ z) are identified. Let us assume that only a
small subset of the measurements have high residuals such
that the observability matrix with respect to the suspicious
measurements (zs(k) ∈ Rms ) is rank deficient3. Associated
with zs, there exists an unobservable sub-space, denoted by
N (Os) , and an observable sub-space, denoted by N (O⊥s ) .
Therefore, an assumption for the observability matrix shown
below is made,

Assumption 1: Observability matrix for zs, i.e.,
O (A,Hs) is rank deficient.

rank


Hs

HsA
HsA

2

. . .
HsA

n−1

 = n1 < n (13a)

Using a suitable transformation matrix T , we can obtain
a canonical form for such a system wherein the transformed
state-space is partitioned into the observable and unobserv-
able sub-spaces relative to the ‘suspicious measurements’
[22], [23]. The linearized dynamics of the noisy power
systems in the transformed space can be expressed as

X (k + 1) = AX (k) +W(k) (14)

3We assume that the chances of a large number of measurements being
attacked/corrupt concurrently are thin.



with measurements

z(k) = HX (k) + V(k) , (15)

where

X (k)T = [(X so )T (X su)T ] (16)

is the transformed state vector decomposed into the observ-
able (X s0 ) and unobservable (X su ) parts with respect to zs,
while the transformed system matrix

A =

[
Ao 0
A21 Au

]
(17)

is also partitioned appropriately. We can use this transformed
system description to distinguish between the two aforemen-
tioned scenarios. Note that the following holds,

Proposition 1: A change in zs will not affect X̂ su .
Proof: From the geometric interpretation of observ-

ablity [22],

X̂ su ∈ N (O(A,Hs))
T . (18)

Since, the states X su lies in the null space of observablity
matrix with respect to zs, a deviation in zs will not affect
their estimation X̂ su .

Therefore, from Proposition 1, it follows that, in case of
scenario-1, only the estimation of the observable states X̂ so
are affected, manifested as a large deviation from the model
based prediction AoX̂ so (k+1|k), while the estimation of the
unobservable states should remain unaffected.

Let us define a metric d(k + 1).
Definition 2: The metric d(k + 1) is the L2-norm of the

error between the a-posteriori and a-priori estimation of the
unobservable states X̂ su at time instant (k + 1). Therefore,
from (20b), it follows:

d(k + 1) =

‖X̂ su(k + 1|k + 1)−A21X̂ so (k + 1|k)−AuX̂ su(k + 1|k)‖2.
(19)

Therefore, for scenario-1, d(k+1) will be less. Similarly,
in case of scenario-2, both the observable and unobserbable
states will be affected resulting into a larger d(k + 1). Fig.
3 shows, how the state estimations are affected for different
scenarios. The affected variables are denoted in red.

The following transform matrix T will transform our state
space model into observable and unobservable subsystems.

X (k) = T X (k) (20a)[
X so (k + 1)
X su(k + 1)

]
= A

[
X so (k)
X su(k)

]
+ T w(k). (20b)

Similarly, the measurement equation is:

zs(k) = HsX (k) + T vs(k) , (21a)
Hs = [Hs,o 0] (21b)

(a) Scenario-1: malicious measurements
(zs)

(b) Scenario-2: wrong model (H, A).

Fig. 3. Different scenarios of anomalies in estimation of system states.

One of the ways T could be formed is [22], [23]:

T =



t1
t2
...

tn1

r1
r2
...

rn−n1


(22a)

where, first n1 rows are formed using n1 independent
columns from the observability matrix given by (13). Other
n−n1 rows are chosen arbitrarily so that T is non-singular.
The parameters at the transformed state space can be found
to be,

A = TAT −1, (23a)

Hs = HsT −1, (23b)

Q = TQT −1. (23c)

Now the system parameters corresponding to the observable
subsystem:

Ao = A(1 : n1; 1 : n1) (24a)
Hs,o = Hs(1 : ms; 1 : n1) (24b)

Next, we transform the estimated state vector:

X̂ = T x̂ =

 X̂ so
. . . . . .

X̂ su

 (25)

Now the transformed states unobservable to zS(k + 1) are
X̂ su(k + 1|k + 1), these estimated states are used to detect
modeling error scenario using the following algorithm.

V. ALGORITHM

For each time step (k + 1) when c′(k + 1) > THχ:
1) Identify: suspicious measurements zs, by
∀i, | zi(k+1)−Hix̂(k+1|k)

Si,i(k+1) | > THr.
2) Construct O(A, zs)



3) If: rank(O(A, zs)) = n1 < n

a) Construct: T ∈ Rn×n by choosing n1 rows
from O(A, zs) and arbitrarily choosing n − n1
columns such that T is full rank.

b) Compute: X̂ (k + 1|k), X̂ (k + 1|k + 1),A.
c) Partition: the transformed estimated states and

system parameter and obtain X̂u(k + 1|k +
1), X̂u(k + 1|k),A21,Au, X̂o(k + 1|k).

d) Compute: d(k + 1) = ||X̂u(k + 1|k + 1) −
A21X̂o(k + 1|k)−AuX̂u(k + 1|k)||2

e) Determine: the the threshold THd for d(k + 1)
is determined.

f) If: d(k+1) > THd, detect modeling error as the
cause of anomaly (scenario-1).

g) else: detect malicious data (scenario-2).

4) else:

a) If: ms > Ncritical, modeling error detected
(scenario-1).

b) else: Undecided.

5) end

In the above algorithm, there are four thresholds that has
been used. Here, the description and the selection of each of
these thresholds are presented.

1) THχ : The threshold for initial bad data detection’s
χ2-test. This threshold is detected using the inverse
cumulative χ2 distribution corresponding to chosen
confidence value p.

2) THr : Threshold for individual normalized measure-
ment residuals ri ∀i ∈ {1, 2, . . . ,m}.

3) THd : This is the threshold value of the state squared
sum of error between filtered and predicted estimation
of unobservable states. A threshold can be chosen
choosing proper confidence value corresponding to an
inverse cumulative probability distribution.

4) Ncritical : If most of the the measurements show large
residuals, it could be more likely due to large modeling
error, as it is unlikely that most of the meters will
be attacked at the same time. This critical number
of measurements Ncritical depends on the particular
power system network and should be designed by
the systems experts of the particular network. For our
simulation, we assumed Ncritical =

⌈
m
2

⌉
.

VI. RESULTS

Fig. 4. IEEE-9 bus test system.

In this section IEEE-9 bus system is simulated. This is
fourth order system, having three generators. An L-L-L-G
fault is applied at 5.1s-5.13s between the lines 5 and 7. PMU
measurements are placed at the buses 1-8 getting voltage
magnitude and phase angles. Then the simulation is repeated
in three different scenarios:
• MODELING ERROR (SCENARIO 2): Fault is applied but

the model is not updated based on the new topology.
For this case, the normalized measurement residual and
a threshold is plotted in Fig. 5. It can be observed
that, after the fault is applied, the measurement residual,
corresponding to the measurement-10 (m10) exceeds the
chosen threshold.
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Fig. 5. Normalized residuals corresponding to each measurements.

• MALICIOUS DATA (SCENARIO 1) : Fault is applied,
model is updated based on the new topology and
malicious data is injected into measurement-10.

• NORMAL CONDITION: Fault is applied and model is
updated based on the new topology and no attack is
injected.

A transformation matrix is identified to decompose the
systems states into observable and unobservable parts, with
respect to the measurement-10. Then, d(k + 1) is computed
for the above three scenarios and plotted in Fig. 6 (for all the
scenarios). Clearly, the modeling error scenario is identified
as d(k+1) exceeds the threshold THd during and after faults
is applied.
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Fig. 6. Comparison of d(k + 1) for malicious data, modeling error and
normal condition.

Please note that while the threshold THr in Fig. 5 is
for a normalized quantity, in Fig. 6 , the threshold THd is
not normalized, which changes with the change in operating
condition.

VII. CONCLUSION

The aim of the algorithm presented in this paper is to
distinguish between the cause of the triggering of the bad-
data detector: 1) Scenario-1: presence of malicious data and
2) Scenario-2: significant modeling error. This is important
to diagnose the cause of the anomaly to further reduce
the false-alarms and also to improve the bad data detector
performance. This algorithm is applicable to any generic
linear dynamical system.
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