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Energy-Optimal Coordination of Autonomous Vehicles at Intersections

Robert Hult, Mario Zanon, Sébastien Gros and Paolo Falcone

Abstract— The problem of coordinating automated vehicles
at intersections is naturally posed within the optimal control
framework, using objectives such as minimization of energy
consumption. In this paper we extend previous work to include
relevant nonlinearities in the vehicle models and propose a cost
function that directly captures both energy consumption and
travel time. The problem is a so-called Economic MPC (EMPC)
problem, which entails both numerical and theoretical chal-
lenges. To address these issues, we propose to use a previously
presented procedure to tune a MPC with a quadratic objective
to approximate the EMPC. We evaluate the performance of
both linear and nonlinear approximating MPC controllers in
simulation. In particular, we demonstrate that a standard linear
MPC can be tuned to so that the losses with respect to the
EMPC is below 1%.

I. INTRODUCTION

The introduction of cooperative, automated vehicles, en-
ables new solutions for many traffic problems. For instance,
at intersections, traffic lights and stop signs could be removed
and the vehicles could rely on coordination algorithms to
avoid collisions. Beyond increased safety, it is commonly
argued that both energy efficiency and infrastructure utiliza-
tion could be improved by such schemes.

Several works have presented schemes that utilize heuris-
tics to solve this problem. For instance, [2] and [8] both
propose schemes where an Intersection Manager allows or
denies access to the intersection based on a predefined set
of rules. Commonly, such heuristic schemes can guarantee
safety, but have difficulties in claiming optimality and are
usually hard to tune as their performance is implicitly defined
by the specific rules.

Optimal control formulations, on the other hand, allow
explicit performance objectives that are possible to tune to
get a desired behavior. While it is commonly stated that
minimization of energy usage and/or intersection throughput
is the control objective, these criteria are commonly not
explicitly included in the objective function [1], [4], [17].
Instead, for more convenient problem formulations, other
quantities are optimized and it is commonly argued that
this indirectly leads to the desired results. For instance,
an objective function that penalizes the weighted sum of
deviations from a desired speed and use of control effort is
utilized in [1] and [6], where it is argued that this captures
a trade-off between energy minimization and throughput.
Another example is [17], where an objective is proposed that
minimizes accelerations, which the authors argues minimizes
engine transients and, therefore, fuel consumption.
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Fig. 1: Schematic illustration of the scenarios considered in this
paper. The arrows shows the fixed paths of the vehicles, and the
red square illustrates the conflict zone where collisions can occur.

In this paper we utilize the problem formulation of
[4], [6], [15], which we extend to include more realistic,
nonlinear dynamics and an objective function that directly
captures energy-usage and travel time delay. Due to the
objective, the problem falls within the category of so-called
Economic Model Predictive Control (EMPC), which entails
both theoretical and numerical challenges. To address these
challenges we apply the technique proposed in [13], where
it is shown that under some conditions on local stability, a
MPC with a positive definite quadratic cost can be designed
which approximates the control law of the EMPC up to first
order. In particular, we investigate two different formulations
for the approximating positive definite MPC. In the first
formulation, the nonlinear dynamics and constraints of the
EMPC formulation are kept, and in the second linearizions of
the dynamics and constraints are used. We demonstrate the
differences between the EMPC and the two approximating
controllers in simulation and compare them to a manually
tuned NMPC with a quadratic tracking objective similar to
that used in [6].

II. MODELING

We consider scenarios where Na electrical vehicles ap-
proach an intersection such that a collision might occur if
no corrective action is taken. In this section, we model the
scenario and state the optimal coordination problem.

A. Intersection modeling and Collision avoidance

We assume that all vehicles move along predefined and
fixed paths and consider without loss of generality only
simple intersections such as that shown in Fig. 1. Side
collisions can only occur within the conflict zone (CZ),
illustrated in Fig. 1, and collision avoidance is ensured if
no more than one vehicle is inside the CZ at any given time.



We denote the index set I[a,b] = {a, a + 1, . . . , b − 1, b},
for integers a, b > a, and let pi(t) denote the position of the
center of vehicle i ∈ I[1,Na] along its path. Furthermore, we
let pin

i and pout
i denote the beginning and end of the CZ on

the path of vehicle i, as illustrated in Fig. 1, and let Li be
the vehicle length. We also let tini and tout

i be the times at
which vehicle i enters and exits the CZ respectively, which
we define through the implicit relationships

pi(t
in
i ) = pin

i − Li/2 and pi(t
out
i ) = pout

i + Li/2. (1)

The side collision avoidance condition can thereafter be
expressed as

tout
i ≤ tinj , (2)

when vehicles i and j are on different lanes and i crosses
the CZ before j.

B. Vehicle Dynamics and Constraints

Since all vehicles are assumed to move along fixed paths,
we consider only the longitudinal vehicle dynamics

ṗi(t) = vi(t), (3a)

v̇i(t) =
1

mi
(Fd,i(t)− Fb,i(t)− Fa,i(t)− Fr,i(t)) , (3b)

where mi is the vehicle mass, Fd,i is the force resulting from
the electric motor torque, Fb,i is the retarding force from the
friction brakes, Fa,i is the aerodynamic drag and Fr,i the
rolling resistance. In particular,

Fa,i(t) =
1

2
ρAiCd,iv

2
i (t), Fr,i(t) = migCr,i, (4)

where ρ is the air density, g the gravitational accelera-
tion, Ai the projected frontal area of the vehicle, Cd,i the
aerodynamic drag coefficient and Cr,i the rolling resistance
coefficient [3].

For simplicity, we assume that the transmission losses are
negligible and that the propulsive force is proportional to the
engine torque Tm,i(t) through

Fd,i(t) =
Mf,iMi

rw,i
Tm,i(t), (5)

where rw,i is the wheel radius, Mf,i the final gear ratio and
Mi the transmission gear ratio, both constant.

As is common in modern electrical vehicles, we assume
that the vehicles are equipped with AC traction motors. For
a given motor speed ωm,i(t), the motor is subject to the
following limitations

0 ≤ Tm,i(t) ≤ min(Tmax
m,i , P

max
i /ωm,i(t)), (6a)

0 ≤ ωm,i(t) ≤ ωmax
m,i , (6b)

where Tmax
i the maximum torque, Pmax is the maximum

power that can be supplied continuously, and ωmax
m is the

maximum motor speed [3]. Note that the motor speed relates
to the vehicle speed through vi(t) = rw

MfM
ωm,i(t).

While AC traction motors have internal dynamics, they
are much faster than the dynamics of the vehicle, and are
neglected for simplicity. We also neglect the dynamics of the

friction brake system which similarly is much faster than the
vehicle itself.

Consequently, the inputs of the electric vehicle are ui(t) =
(Tm,i(t), Fb,i(t)), and its states are xi(t) = (pi(t), vi(t)).

C. Optimal Control formulation
We formulate the coordination problem as an optimal

control problem over a finite time-horizon tf . In particular,
we assume piece-wise constant inputs and discretize the
dynamics (3) using numerical integration and multiple shoot-
ing with N equally sized shooting intervals. The optimal
intersection coordination problem can thereby be stated as
the following nonlinear program (NLP):

min
W,T

Na∑
i=1

Ji(wi) (7a)

s.t. ∀i ∈ I[1,Na] :

xi(0) = x̂i,0, (7b)
xi,k+1 = F (xi,k, ui,k,∆t), k ∈ I[0,N−1], (7c)
g(xi,k, ui,k) ≥ 0, k ∈ I[0,N−1], (7d)

pdi (t
in
i , wi) = pin

i − Li/2, (7e)

pdi (t
out
i , wi) = pout

i + Li/2, (7f)

tout
i ≤ tinj , (i, j) ∈ S, (7g)

where the control objective is on the form

Ji(wi) = Vf,i(xi,N ) +

N−1∑
i=0

`i(xi,k, ui,k), (8)

T = (tin1 , t
out
1 , . . . , tinNa

, tout
Na

), W = (wi, . . . , wNa
), wi =

(xi,0, ui,0, . . . , xi,N−1, ui,N−1, xi,N ), and x̂i,0 = (p̂i,0, v̂i,0)
is the initial state of vehicle i. The function F (xi,k, ui,k,∆t)
denotes the integration of (3) over t ∈ [tk, tk+tf/N ], starting
from xi,k with input ui(t) = ui,k, whereas gi(xi,k, ui,k) ≥ 0
lumps together the motor constraints (6) and a bound on
the friction brake force Fb,i. The function pdi (t, wi) is a
continuous time representation of the position, defined as
pdi (t, wi) = [1, 0]F (xi,k, ui,k, δt), δt = t − k∆t and k =
bt/∆tc. Finally, the set S encodes the crossing order as
the set of pair-wise precedence orders for access to the CZ,
which, for simplicity, is assumed given.

Closed-loop coordination is obtained through the iterative
solution of the NLP (7) in a MPC fashion: Problem (7) is
solved every ∆t and for all i the first control of the optimal
solution, u∗i,0 is applied to the vehicle.

Remark 1: As discussed in, e.g. [5], there are several prac-
tical issues relating to the solution of (7) in an on-line setting.
These include what information the vehicles need to share,
how wireless communication deficiencies should be handled,
where computation takes place and what role, if any, road-
side infrastructure plays in the process. Some of these issues
are discussed in [6], [15] and [16]. In this paper, however, we
do not consider such details in order to focus on the problem
formulation. We therefore assume that a central coordinator
is present in which all computations are performed without
delay, and that communication between the vehicles and
coordinator is both lossless and instantaneous.



III. OPTIMAL CONTROL OBJECTIVE

We consider two performance objectives: minimization
of energy usage and minimization of travel-time. The two
objectives are competing, as shorter travel-time requires
higher average velocities and thereby higher average energy
consumption. Simultaneous optimization of both therefore
requires choices on trade-offs to be made by the control
designer. In this section, we present and motivate one such
choice, written on the form of (8).

A. Selecting `i(xi,k, ui,k)

Dropping the vehicle index for brevity, the total consumed
energy for a vehicle in the coordination problem is

E(x(t), u(t)) =

∫ tf

0

P (x(t), u(t))dt, (9)

where P (x(t), u(t)) is the power supplied to the motor,
defined as

P (x(t), u(t)) =
ωm(t)Tm(t)

η(ωm(t), Tm(t))
. (10)

Here, η(·) ∈ [0, 1] is a continuously differentiable func-
tion that describe the efficiency of the electric motor. Us-
ing numerical integration, (9) is discretized and written as∑N−1
k=0 `E(xk, uk), where

`E(xk, uk) =

∫ (k+1)∆t

k∆t

P (x(t), u(t))dt. (11)

The energy-optimal solution to the coordination problem
is to simply turn off the electric motor, whereby the vehicles
would be decelerated to stand-still by the resistive forces.
The main competing objective in the intersection problem is
to induce as small travel delay as possible, i.e., to maximize
the average velocity, which can be formulated using the stage
cost

`v(xk, uk) =
1

∆t

∫ (k+1)∆t

k∆t

v(t)dt. (12)

A natural stage cost for (8) is obtained by scalarization of
the multi-objective problem as

`E,vα (xk, uk) = `E(xk, uk)− α`v(xk, uk), (13)

where α > 0 is a trade-off parameter. Introducing the steady-
state optimization problem,

min
x,u

`E,vα (x, u) s.t. v = Fv(v, u), g(x, u) ≥ 0, (14)

where Fv(v, u) is the integration of (3b), we note that the
value of α decides the optimal steady-state velocity vs.

Selection of α: For tuning purposes, it is easier to choose
vs than α. To this end, we introduce the average-velocity
constrained steady state problem

min
x,u

`E(x, u)

s.t. v = Fv(v, u), g(x, u) ≥ 0, `v(x, u) = vr,
(15)

where vr is a specified average velocity. Denoting the optimal
Lagrange multiplier of the constraint `v(x, u) − vr = 0 as
νr, we note that the solution of (15) is a local solution to
(14) when α = νr. That is, when α = νr, we impose the
specified steady-state velocity vs = vr.

B. Selecting Vf,i(xi,N )

We note that the gradient of `E,vα (x, u) can be non-zero
at the steady state (xs, uu). As shown in [11], when such
objective functions are used in MPC, asymptotic stabilization
to the steady state can be ensured by introducing a linear
penalty term in the terminal cost Vf (xN ). In particular,
denoting the optimal Lagrange multiplier of the constraint
vs−Fv(vs, us) = 0 in (14) as λs, this is in our case ensured
through the terminal penalty term λsvN .

Finally, to account for the finite horizon, we introduce a
quadratic terminal cost penalty so that

Vf (xN ) =
1

2
(vN − vs)

2P + λsvN , (16)

where we detail the selection of P in Remark 2 of Section IV.
With this objective function, the coordination problem is a

so-called Economic MPC (EMPC) problem. In the next sec-
tion, we detail the application of a recently developed method
for design of tracking MPC controllers which approximate
the EMPC.

IV. EMPC AND LOCALLY EQUIVALENT TRACKING MPC

Standard MPC schemes, also referred to as tracking MPC
(TMPC), rely on positive definite (typically quadratic) func-
tions `(·), Vf (·) which penalize deviations from a given
reference. EMPC on the other hand, directly optimizes more
generic criteria, with `(·), Vf (·) possibly indefinite.

While EMPC is expected to deliver better performance
than TMPC in terms of a specific performance criteria,
severe challenges arise regarding both the deployability of
efficient numerical algorithms and its stability guarantees. In
order to overcome these difficulties a procedure is proposed
in [13] with which a TMPC can be tuned to approximate the
EMPC control-law to first order, provided that the EMPC is
stabilizing.

Next, we first briefly sketch how a quadratic tracking
objective can be designed such that the Tracking MPC
control law is a first-order approximation of the economic
MPC control law and then discuss the method’s application
to the coordination problem.

A. Locally Equivalent Tracking MPC

For a discrete-time dynamical system f(x, u), constrained
by h(x, u) ≥ 0 and with stage cost `(x, u), we define the
steady-state optimization problem as

min
x,u

`(x, u) s.t. x− f(x, u) = 0, h(x, u) ≥ 0, (17)

with primal solution xs, us, dual solution λs, µs, and La-
grange function L(x, u, λ, µ) = `(x, u)−λ>(x− f(x, u))−
µ>h(x, u). Moreover, we define

As := ∇xf(xs, us), Bs := ∇uf(xs, us),

Gs := ∇(x,u)h(xs, us), H := ∇2
(x,u)L(xs, us, λs, µs).

In order to compute the quadratic term of the tracking
cost, one needs to solve the following semi-definite program
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(SDP) [13]:

min
Π,Γ,β,ζ

γβ − ζ + ρ‖Γ‖ (18a)

s.t. ζI � H +H(Π) +G>s,AΓGs,A︸ ︷︷ ︸
H̃

� βI, (18b)

where γ and ρ are tuning parameters, Gs,A is obtained from
Gs by selecting the rows corresponding to the strictly active
inequality constraints and

H(Π) =

[
A>s ΠAs −Π A>s ΠBs

B>s ΠAs B>s ΠBs

]
. (19)

If only linear inequality constraints are active1 at the optimal
steady state, the stage cost is given by

`Q(x, u) =
1

2

[
x− xs

u− us

]>
H̃

[
x− xs

u− us

]
+∇`(x, u)>

[
x− xs

u− us

]
,

with H̃ as in (18b). By solving (18), curvature is thus added
to H such that the resulting matrix H̃ is positive definite,
whereby `Q(x, u) is convex. The quadratic stage cost can
then be used both in tracking nonlinear MPC (TNMPC) and
in tracking linear MPC (TLMPC). The feedback control law
of both schemes will have the property of being a first-order
approximation of the EMPC feedback control law. For more
details on this topic, we refer the reader to [13], [12].

B. Application to the Intersection Coordination Problem

The intersection coordination problem (7) consists of a
collection of sub-systems that are coupled while p < pin,
but decoupled when p > pout. In particular, when active, the
coupling constraints force the vehicles to change velocity.
Unless no coupling constraints are active, or p > 0 for all
vehicles, there is therefore no notion of a steady state solution
to (7). Instead, we consider the optimal control problem for
one vehicle :

min
wi

Ji(wi) s.t. (7b), (7c), (7d), (20)

for which (14) is the corresponding steady state problem.
The EMPC based on (20) can now be approximated

using the procedure of [13] based on (14). JQi (wi) =

V Qf,i(xi,N )+
∑N−1
k=0 `Q(xi,k, ui,k) The first order equivalence

1Note that the case of active nonlinear inequality constraints can be easily
handled in this formalism, but is omitted for brevity.

to the resulting tuned TNMPC and TLMPC controllers is
illustrated Figure 2.

The couplings in the coordination problem can be seen
as perturbations to the individual vehicles, forcing them
to deviate from their desired steady state. We therefore
propose to use the sum of the quadratic approximations of the
vehicles in (7a) to approximate the coordination EMPC. We
are interested in examining both the TNMPC and TLMPC
case. The latter is particularly important, as it allows the
application of the efficient distributed algorithms presented
in [6], [15] and [7] to be used.

Remark 2: In the EMPC case, we choose the quadratic
penalty weight P as the cost-to-go associated with the LQR
computed for (As, Bs, H), where (As, Bs, H) are obtained
from (14) and the position is eliminated from the state vector.
For the TNMPC and TLMPC, we instead use the terminal
penalty V Qf (xN ) = 1

2 (vN−vs)
2P̃ , where P̃ is the cost-to-go

associated with the LQR computed for (As, Bs, H̃).

V. NUMERICAL RESULTS

In this section, we present simulation results where we
compare the performance of the EMPC based on (7) to the
tuned TNMPC and TLMPC. We also provide a comparison
with an MPC that utilize a “standard” tracking objective
similar to that of e.g. [6], [14]:

`q(x, u) =
1

2

(
(v − vs)

2Qv + (Tm − Tm,s)2RTm

+(Fb − Fb,s)2RFb

)
, (21)

which we denote the Standard MPC (SMPC). For simplic-
ity, we let the weights be RFb

= (1/Fmax
b )2, RTm

=
(1/Tmax)2 and Qv = (1/vr)2.

Vehicle Parameters: We consider scenarios with homo-
geneous vehicles, where the parameters of (3) are chosen in
the range of values for a passenger vehicle, as summarized in
Table I. Furthermore, we have ρ = 1.225, g = 9.81, pin = 0,
pout = 10.7.

Parameter L m A rw MfM Cd Crr

Value 4.8 1700 2.3 0.32 7.9 0.35 0.015

TABLE I: Vehicle parameters. L,m,A, rw are given in SI-units,
and MfM , Cd and Crr are unitless.

We use the approximate electric motor efficiency map
η(Tm, ωm) of [9], where η(Tm, ωm) = Tmωm

Tmωm+Ploss(Tm,ωm) ,
with Ploss(Tm, ωm) = c0 + c1ωm + c2ωmTm + c3ω

2
m, and

coefficients ci obtained from a fit to empirical data. However,
to better capture the performance of a passenger vehicle
traction motor, η(Tm, ωm) is scaled so that Pmax = 80
kW, Tmax = 280 Nm and ωmax

m = 10000 rpm. Finally,
the maximum friction brake force is Fmax

b = 10 kN.
We note that the choice of η(Tm, ωm) is non-restrictive,

and the formalism is capable of using other representations
as well.



Simulation: We apply the different controllers to a
simulation of the vehicles using the nonlinear dynamics (3),
which we integrate using Explicit Runge-Kutta-4 integrators
(ERK4) from the ACADO toolkit [10]. For the EMPC,
TNMPC and SMPC, which rely nonlinear prediction mod-
els, we use ERK4 integrators also inside the optimization
problem (7). Finally, we set ∆t = 0.1, N = 100.

A. Simulation Results

We consider an example scenario where 3 vehicles are
starting 100 m before the intersection at v̂0,i = vr = 70
km/h, i.e. all vehicles will reach the intersection simultane-
ously if no action is taken. The closed-loop state trajectories
are given in Fig. 3, while a plot of the corresponding
motor torque and speed is presented in Fig. 4. As is seen
in the figures, the TNMPC and TLMPC produce a result
which is very similar to the EMPC, while the SMPC differs
significantly. In particular, the EMPC, TNMPC and TLMPC
only utilize the friction brakes to avoid collisions, and do
so during a very short time. The SMPC, on the other hand,
uses the friction brakes both to avoid collisions and to reach
vr, and applies it over a longer period of time. Instead, the
first three controllers only accelerates the first and second
vehicle and lets the last vehicle reduce its speed using the air-
drag and rolling resistance alone. While initially more energy
thereby is injected into the system than in the SMPC case,
less energy is wasted by not using the friction brakes and less
external energy needs to be supplied after the intersection.
This behavior is illustrated in Fig. 5, which shows the
development of the closed loop systems cumulative cost
Jcl(K) =

∑K
k=0

∑3
i=1 `

E,vr

i (xk, uk)
It is clear that while the EMPC incurs a higher momentary

cost in the beginning of the simulation compared to the
SMPC, the former outperforms the latter in the long run.
After 60 seconds of simulation, the difference between the
EMPC and the two tuned tracking controllers is less than
1%, while the difference to the SMPC is close to 20%.

Limitations of the approximating controllers: While the
scenario reported in Fig. 3 shows that both the TNMPC
and TLMPC perform similarly to the EMPC, this is not
necessarily the case in scenarios where the vehicles are
operated far from the steady state. As an example, consider
the motor torque-speed plot in Fig. 6, which is taken from
a scenario where three vehicles are initialized at 70 km/h
50 meters from the intersection. To avoid collision, all ve-
hicles are forced to perform extreme maneuvers and deviate
significantly from the steady state. However, the TLMPC
fails to utilize the full control authority, and saturates the
input at the linearized torque constraint (6) for the first two
vehicles. Moreover, for the last vehicle, both the TLMPC
and the TNMPC differs more significantly from the EMPC,
which is likely due to a poor approximation of the objective
function in that region of the Tm-ωm-space.

However, in a practical setting, the coordination controller
would be applied when the vehicles are still far from
the intersection, close to steady state conditions. In such
cases, only small changes in velocity are required to avoid
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plots, the colors differentiates between vehicles and the line-styles
between the controllers. In the three lower plots, the solid black
lines are the solution to the steady state problem (14).

collisions, and the problem is likely avoided during normal
operations.

Limitations of the chosen objective : While the stage
cost (13) encodes a trade-off between energy consump-
tion and traffic delay in an intuitive manner it has some
drawbacks. Consider for instance the situation illustrated in
Fig. 7 where the EMPC is used from a velocity significantly
lower than vr. In this case, the controller applies high
levels of motor torque to reduce the difference which cause
initial accelerations of above 3.5 m/s2. This would cause
both passenger discomfort and unnecessary mechanical wear.
Inclusion of additional objectives, e.g., comfort criteria, to
the problem is therefore desirable.
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VI. CONCLUSION

In this paper, we have extended earlier work on intersec-
tion coordination to include more accurate, nonlinear vehicle
models and an economic objective function. We have detailed
the application of a method for automatic tuning of both
linear and nonlinear TMPC to approximate the EMPC, and
demonstrated their performance through simulation.

We have showed that the approximating TMPC controllers
provide a good alternative to EMPC for the intersection
coordination problem and does not significantly degrade
performance. The exception is for initial configurations that
force some vehicles to deviate too far from their economic
steady state. We stress that the performance of the TLMPC
is particularly important, as it allows previous results on
linear MPC based intersection coordination to be applied
while retaining good economic performance. In particular,
coordination based on linear MPC has been validated on real
vehicles [16], implying the practical relevance of the TLMPC
approximation. In future work, we intend to formulate an
objective function that includes additional criteria, e.g., pas-
senger comfort, and offers more control of the transient
behavior of the vehicles.
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