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Abstract— The extensive use of frequency-domain tools for
analyzing and controlling linear systems have become indis-
pensable for the control systems engineer. However, due to the
increased performance demands on today’s industrial systems,
the effects of certain nonlinearities can no longer be neglected
in control applications, and the use of these tools becomes
problematic. In the current literature, however, frequency-
domain methods exist where the underlying linear dynamics
of a nonlinear system can be captured in an identification
experiment; in this manner, the nonlinear system is replaced
by a linear model with a noise source where a best linear
approximation of the nonlinear system is obtained with an
associated frequency-dependent uncertainty. This allows the
use of robust control algorithms to ensure performance for
the underlying linear system. In this paper, a data-driven H∞
robust control strategy is presented which implements a convex
optimization algorithm to ensure the performance and closed-
loop stability of a linear system that is subject to nonlinear
distortions. A case study is presented to illustrate how the
proposed method can be used to design controllers for this
class of systems.

I. INTRODUCTION

Frequency-domain techniques (such as the Bode, Nyquist,
and Nichols plot) for analyzing and controlling linear sys-
tems have become indispensable tools for the control systems
engineer. To a certain degree, the effects of nonlineari-
ties could be ignored because they did not impair system
performance. However, due to the increased performance
demands on today’s industrial systems, the effects of certain
nonlinearities can impact the behavior of these systems.
For many of today’s systems, the effects of nonlinearities
can no longer be neglected (see [1] and [2]). Due to the
extensive use of frequency-domain techniques for linear
systems within the control systems community, and given the
need for analyzing the effects of nonlinear systems, it is thus
natural to extend the frequency-domain analysis and control
schemes for linear systems where nonlinear distortions can
occur. A comparative study of frequency-domain methods
for nonlinear systems has recently been addressed in [3].

In addition to the problem of nonlinear effects in control
systems, the problem of unmodelled dynamics in parameteric
models is also prevalent in today’s industry. Systems are
usually approximated with low-order models in order to
reduce the complexity of a control design strategy. However,
this approximation can lead to stability and performance
degradations since these low-order models are subject to
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model uncertainty. The data-driven control strategy mitigates
the problems with model-based controller designs since
the data-driven scheme avoids the problem of unmodeled
dynamics associated with low-order parameteric models. A
survey on the differences between the model-based control
and data-driven control schemes has been addressed in [4]
and [5].

Data-driven methods for controlling systems with non-
linearities is a field which continues to spark the interests
of many researchers. The authors in [6] present a model-
free approach to design controllers that guarantee stability
for a class of nonlinear discrete-time systems; in [7], this
method is extended to the multiple-input-multiple-output
(MIMO) nonlinear systems. A virtual reference feedback
tuning (VRFT) method is proposed in [8] to design con-
trollers for nonlinear plant models using a direct “one-shot”
data-driven method. The authors in [9] build on the iterative
learning control data-driven algorithm to design controllers
for a class of nonlinear autoregressive exogenous models. A
method for designing controllers in a data-driven setting for
constrained linear systems is presented in [10]. The work
in [11] extends on the concept of the VRFT method and
implements a data-driven scheme to design linear parameter-
varying (LPV) model-reference controllers.

Robust controller design methods belonging to the H∞
control framework for linear systems minimizes the H∞
norm of a weighted closed-loop sensitivity function. The
objective of this paper is to combine the ideas presented
in [12] and [13] and develop a data-driven controller design
methodology that guarantees H∞ performance and closed-
loop stability for linear systems that are subject to nonlinear
distortions. In [13], the frequency response function (FRF) of
a nonlinear system is modeled as a best-linear-approximation
(BLA) with an associated frequency dependent uncertainty.
By performing a set of identification experiments on the
nonlinear system, the dynamics of the underlying linear
system are guaranteed to lie in the set of these uncertainties.
In [12], a H∞ controller design scheme was formulated in
which robust performance was obtained for a linear plant
model that was subjected to frequency dependent uncertain-
ties. Thus by considering the BLA of the nonlinear system
as the nominal model, and by designing a controller which
accounts for the frequency dependent uncertainties obtained
from an identification experiment of the nonlinear system,
the closed-loop stability and performance is be guaranteed
for the underlying linear system.

This paper is organized as follows: In Section II, the class
of controllers and nonlinearities are defined. Section III will
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Fig. 1. Discrete-time controller structure.

address the control objectives and the conditions required
for obtaining H∞ performance and closed-loop stability for
the underlying linear model of a nonlinear system. A data-
driven frequency-domain approach is implemented where the
FRF measurement of a nonlinear system is modeled as a best
linear approximation with an associated frequency dependent
uncertainty. Section IV will demonstrate the effectiveness of
the proposed method by designing fixed-structure controllers
that ensure robust stability for the underlying linear system of
a common motor control application. Finally the concluding
remarks are given in Section V.

Notation: In order to avoid the risk of any confusion,
the notation for the symbols employed in this paper will
be defined here. R and R+ define the sets of all real
numbers and real numbers greater than zero, respectively.
<{·} denotes the real part of the argument. (·)? denotes
the complex conjugate of the argument. The variables s
and z are the complex frequency variables used to represent
continuous-time and discrete-time systems, respectively.

II. PRELIMINARIES

A. Class of Nonlinearities

The class of nonlinearities discussed in this work are now
addressed with the following definition:

Definition 1. Class N of nonlinear systems. N is the set
of nonlinear systems for which the following properties hold
[13]:
• The influence of the initial conditions vanishes asymp-

totically.
• The steady state response to a periodic input is a peri-

odic signal with the same period as the input. Nonlin-
earities such as bifurcation, chaos, and sub harmonics
are excluded; however, strongly nonlinear phenomena
such as saturation and discontinuities are permitted.

• Only a point wise approximation of the output is ob-
tained.

The nonlinear systems described by N include a class of
nonlinearities known as the so called Wiener systems [14]. A
nonlinear system which abides by the above definition will
be denoted as GN (·) (i.e., GN (·) ∈ N ).

B. Class of Controllers

A fixed-order one-degree-of-freedom polynomial control
structure is considered. The general structure of this control
system is shown in Fig. 1. The functions R(z−1, ρ) and

Nonlinear System

Linear System +
U(e−jω)

U(e−jω) Y(e−jω)

YL(e
−jω)

YS(e
−jω)

Y(e−jω)

Fig. 2. Representation of a nonlinear system by a linear system for a
certain class of inputs.

S(z−1, ρ) each represent linearly parameterized polynomials
in z−1, i.e.,

R(z−1) = r0 + r1z
−1 + · · ·+ rnr

z−nr (1)

S(z−1) = 1 + s1z
−1 + · · ·+ sns

z−ns (2)

where ri and si are the controller parameters and {nr, ns}
are the orders of the polynomials R and S, respectively. The
vector of controller parameters ρ is defined as:

ρ> = [r0, r1, . . . , rnr
, s1, s2, . . . , sns

] (3)

where ρ ∈ Rn with n = nr + ns + 1.

III. ROBUST DESIGN WITH NONLINEAR DISTORTIONS

In this section, a data-driven method is implemented such
that the underlying linear dynamics of a system GN (·)
are captured in the FRF during an experiment (where the
underlying linear system can be fully characterized as a
best-linear-approximation of the measured FRF with an
associated uncertainty). A convex optimization problem can
then be formulated by minimizing the norm of a weighted
sensitivity function to guarantee the closed-loop stability and
performance of the linear system that is subject to nonlinear
distortions.

A. Quantification of Nonlinear Distortions

Suppose that the signals u and y are measurable. Let us
denote the frequency spectrum of the signals u and y as
U(e−jω) and Y(e−jω), respectively. According to [13], for
a certain class of reference signals and nonlinear systems,
the FRF obtained during an experiment with a nonlinear
plant can be described by a linear system plus an error term
YS(e−jω) (see Fig. 2). The class of nonlinear systems that
can be considered with this approach are those in N .

The idea asserted in [13] is to perform multiple experi-
ments with full or random phase multisines as the reference
input. Averaging of the FRFs over the consecutive periods
quantifies the noise level. Averaging of these mean FRFs over
multiple experiments quantifies the level of the stochastic
nonlinear distortions (with the sum of the remaining noise
level).

Definition 2. Random Phase Multisine: u(t) is a random
phase multisine if

u(t) =

K/2−1∑
k=−K/2+1

Ukej2πfskt/K (4)



where Uk = U?−k = |Uk|ejφk , fs is the clock frequency of
the waveform generator, K is the number of samples in the
signal period, and the phases φk are a realization of an
independent distributed random process in [0, 2π) where the
expected value of ejφk is equal to zero.

1) Stable Plant: Let us first consider the case when the
plant model is stable; for a given known input signal, an
open-loop experiment can be performed to obtain the FRF
BLA and the variance. Let us define G[q,p](e−jω) as the FRF
estimate of GN (·) for the p-th period of a q-th experiment
(with P denoting the total number of periods in each
experiment and Q being the total number of experiments):

G[q,p](e−jω) =
Y [q,p](e−jω)

U [q](e−jω)

= G(e−jω) +G
[q]
S (e−jω) + E

[q,p]
G (e−jω)

(5)

where G is the FRF BLA, G[q]
S = Y [q]

S /U [q] (i.e., the
stochastic nonlinear contributions) and E

[q,p]
G are the errors

due to the output noise. The sample mean and the sample
variance of the FRF estimates over P periods are determined
as follows:

G[q](e−jωk) =
1

P

P∑
p=1

G[q,p](e−jωk)

σ2[q]
n (k) =

1

P (P − 1)

P∑
p=1

∣∣∣G[q,p](e−jωk)−G[q](e−jωk)
∣∣∣2
(6)

where σ2[q]
n is the sample noise variance of the sample mean

G[q]. The BLA of the plant G with the associated sample
total variance σ2

G can then be determined with the following
relations [13]:

G(e−jωk) =
1

Q

Q∑
q=1

G[q](e−jωk)

σ2
G(k) =

1

Q(Q− 1)

Q∑
q=1

∣∣∣G[q](e−jωk)−G(e−jωk)
∣∣∣2 (7)

2) Unstable Plant: Let us now consider the case when the
plant model is unstable; in this case, an open-loop experiment
cannot be performed to obtain the FRFs. A stabilizing
controller would first need to be implemented in order to
stabilize the closed-loop system (i.e., all outputs remain
bounded for a bounded reference signal). Now, suppose that
the signal r is measurable where the frequency spectrum of r
is denoted as R(e−jω). Additionally, let us define N(e−jω)
as the FRF BLA between the signals r to y and M(e−jω) as
the FRF BLA between the signals r to u. Since the nonlinear
system is described by a linear system plus an error term
YS(e−jω), then it is evident that the FRF BLA of the plant
model G(e−jω) = N(e−jω)M−1(e−jω). This is known as
a coprime factorization of the FRF G where N and M are
coprime functions which are analytic outside the unit circle
[15].

According to [13], the sample means and total
(co)variances can be determined as follows:

Y(e−jωk) =
1

Q

Q∑
q=1

Y [q](e−jωk)

σ2
Y(k) =

1

Q(Q− 1)

Q∑
q=1

∣∣Y [q](e−jωk)− Y(e−jωk)
∣∣2

σ2
YR(k) =

1

Q(Q− 1)

Q∑
q=1

[
Y [q](e−jωk)− Y(e−jωk)

]
·[

R[q](e−jωk)−R(e−jωk)
]?

σ2
UR(k) =

1

Q(Q− 1)

Q∑
q=1

[
U [q](e−jωk)− U(e−jωk)

]
·[

R[q](e−jωk)−R(e−jωk)
]?
(8)

where the FRFs and variances for the signals u (i.e.,
U(e−jωk) and σ2

U (k)) and r (i.e., R(e−jωk) and σ2
R(k)) are

are computed in the same manner as Y(e−jωk) and σ2
Y(k),

respectively. For notation purposes, the dependency in e−jω

will be omitted, and will only be reiterated when deemed
necessary. Finally, the FRF of the BLA for each coprime
can then be obtained as N = YR−1 and M = UR−1 where
the associated total variance for each coprime is calculated
as follows:

σ2
N =

∣∣N ∣∣2( σ2
Y
|Y|2

+
σ2
R
|R|2

− 2<
{
σ2
YR
YR?

})
σ2
M =

∣∣M ∣∣2( σ2
U
|U|2

+
σ2
R
|R|2

− 2<
{
σ2
UR
UR?

}) (9)

Remark. Note that in [13], the FRF estimate of G (and the
associated uncertainty) can be obtained from the signals u
and y directly. However, the coprime formulation was needed
in this paper in order to apply the proposed controller design
schemes (which are asserted in Section III-B).

Suppose that the uncertainty associated with a given FRF
is described by an additive uncertainty:

N̂(e−jω) = N(e−jω) + |Wn(e−jω)|δnejθn

M̂(e−jω) = M(e−jω) + |Wm(e−jω)|δmejθm
(10)

where |δn| ≤ 1, |δm| ≤ 1; {θn, θm} ∈ [0, 2π]; Wn and Wm

are the uncertainty weighting filters which can be determined
from the covariance of the estimates for a given confidence
interval. Given the frequency spectrums of Y , U and R, the
estimates of the real and the imaginary part of N(e−jω) and
M(e−jω) can be formulated; these estimates are asymptot-
ically uncorrelated and normally distributed [16]. For any
given ω, the additive uncertainty for N̂ can be described in
the complex plane with a disk centered at N having a radius
of |Wn| (when the worst case scenario is considered with
δn = 1). A similar representation can be made with M̂ . The
uncertainty is characterized by the Rayleigh distribution and
can be determined for any probability level. For example, if it
is desired to construct an uncertainty disk such that the true
frequency response lies within the disk with a probability



level of 0.95, then the radius of this disk(s) will be

|Wn(e−jω)| =
√

5.99σ2
N ; |Wm(e−jω)| =

√
5.99σ2

M

(11)

B. Robust Controller Design

In the general H∞ control problem for linear systems,
the objective is to minimize an upper bound γ to find the
controller parameter vector ρ such that

sup
ω∈Ω
|Wl(e

−jω)Sl(e−jω,ρ)| < γ (12)

where Ω := [−π/Ts, π/Ts] (with Ts [s] being the sampling
time of the process), γ ∈ R+, Sl is the l-th sensitivity
function of interest, and Wl is the FRF of a stable weighting
filter such that WlSl(ρ) has a bounded infinity norm. In [12],
the linear plant model was represented as G = NM−1 where
N and M were coprimes functions that were both stable and
proper. Therefore, a general construction of the sensitivity
function can be expressed as Sl(ρ) = ∆l(ρ)/ψ(ρ), where
∆l(ρ) is a linear function of R(ρ) or S(ρ) and

ψ(ρ) = NR(ρ) +MS(ρ)

The subscript l ∈ {1, 2, 3, 4} denotes the l-th sensitivity of
interest. As an example, the sensitivity function S1 from r
to r − y is ∆1(ρ)/ψ(ρ) where ∆1(ρ) = MS(ρ). Given
this construction, the condition in (12) can be expressed as
follows:

γ−1|Wl∆l(ρ)| < |ψ(ρ)|, ∀ω ∈ Ω (13)

For any given frequency in Ω, the condition in (13) represents
a circle in the complex plane which does not include the ori-
gin and is centered at ψ(ρ) with a radius of γ−1|Wl∆l(ρ)|.
In [12], it is shown that there exists a complex function
f(e−jω) which can rotate this circle such that it lies on
the right-hand side of the imaginary axis. This geometrical
construction is used to formulate a necessary and sufficient
condition for (12), which is recalled in the following Theo-
rem:

Theorem 1. Given the frequency response function
G(e−jω) = N(e−jω)M−1(e−jω) and the frequency re-
sponse of a weighting filter Wl(e

−jω), then the following
statements are equivalent:

(a) There exists a controller that stabilizes G and

sup
ω∈Ω
|WlSl(ρ)| < γ (14)

(b) There exists a controller such that

<{ψ(ρ)} > γ−1|Wl∆l(ρ)| ∀ω ∈ Ω (15)

Proof : The proof is given in [12]. �
Given the additive uncertainty in (10), a desired perfor-

mance condition ‖WlSl‖∞ < γ can be satisfied for all
models in the uncertain set (10) if ‖WlŜl‖∞ < γ, where
Ŝl = ∆̂l/ψ̂(ρ) and ψ̂(ρ) = N̂R(ρ) +M̂S(ρ). For example,
consider the nominal performance condition ‖W1Ŝ1‖∞ < γ
with ∆̂1(ρ) = M̂S(ρ); as a worst case consideration, δm

and δn can be selected to be equal to one in (10) (which
ensures that the uncertainty in the entire disk is taken into
account). By substituting the expressions in (10) into this
condition, the following constraint can be devised:∣∣W1S(ρ)

[
M + |Wm|ejθm

]∣∣ < γ
∣∣ψ(ρ) + Γ(ρ, θn, θm)

∣∣
∀ω ∈ Ω,∀{θn, θm} ∈ [0, 2π]

(16)

where ψ(ρ) = NR(ρ) +MS(ρ) and

Γ(ρ, θn, θm) = S(ρ)|Wm|ejθm +R(ρ)|Wn|ejθn

For a given {ω, θn, θm}, (16) represents a circle centered at
ψ(ρ) + Γ(ρ, θn, θm) with a radius of

xp(ρ, θm) = γ−1
∣∣W1S(ρ)

[
M + |Wm|ejθm

]∣∣ (17)

that does not include the origin.
Given the results from Theorem 1, a necessary and suffi-

cient condition for (16) can be formulated as follows:

xp(ρ, θm) < <
{
ψ(ρ) + Γ(ρ, θn, θm)

}
∀ω ∈ Ω,∀{θm, θn} ∈ [0, 2π]

(18)

By gridding in ω, θm and θn, (18) then becomes a convex
constraint (with respect to ρ); however, gridding in all of
these variables can be computationally expensive. Therefore,
a sufficient condition for (16) can be devised as follows:

sup
ω∈Ω

|W1S(ρ)|
[
|M |+ |Wm|

]
|ψ(ρ)| − Γs(ρ)

< γ (19)

where Γs(ρ) = |S(ρ)Wm|+ |R(ρ)Wn|. With this condition,
the dependency in θm and θn has been removed, and gridding
in only one variable (i.e., ω) is required. The condition in
(19) can be represented as a disk in the complex plane which
is centered at ψ(ρ) and has radius

xr(ρ) = γ−1|W1S(ρ)|
[
|M |+ |Wm|

]
+ Γs(ρ) (20)

Therefore, a set of convex constraints (with respect to ρ) can
be devised with the following condition:

xr(ρ) < <{ψ(ρ)}, ∀ω ∈ Ω (21)

Note that (19) introduces some conservatism; however, this
conservatism can always be reduced by imposing (18) (at
the price of a larger computation time).

C. Convex Optimization via Semi-Definite Programming

With the constraints developed in the previous section,
an optimization problem can be formulated to guarantee
H∞ performance and closed-loop stability for the underlying
linear system. For nominal performance (i.e., ‖W1Ŝ1‖∞ <
γ), the following optimization problem is considered:

minimize
γ,ρ

γ

subject to: xr(ρ) < <
{
ψ(ρ)

}
∀ω ∈ Ω

(22)

This optimization problem is quasi-convex; to solve such
a problem, a bisection algorithm can be realized where



an iterative approach is implemented in order to obtain
an asymptotically convergent solution for γ. The above
optimization problem also possesses an infinite number of
constraints; thus a semi-definite programming (SDP) algo-
rithm can be implemented where a predefined frequency grid
is used in order to solve a finite number of constraints. This
frequency grid can be predefined in a variety of manners (see
[17], [18]).

IV. CASE STUDY

In this case study, a DC motor with a typical nonlinearity
encountered in practice is considered. The model of the
brushless DC motor is taken from [19]:

G(z) =
0.0143z + 0.0142

(z − 1)(z − 0.9725)
(23)

where the sampling time of the process is given as Ts =
2.048 ms. A typical nonlinearity that is encountered with
motor applications is the dead-zone nonlinearity (see [20],
[21]). This nonlinearity would occur at the input of the plant,
and can be expressed as follows:

u =


0, for − d ≤ un ≤ d
m(un − d), for un > d

m(un + d), for un < −d
(24)

where un is the input to the nonlinearity, m is the slope
of the line, and d ∈]0,∞[ is the value of un at which the
discontinuity occurs.

The objective of this case study will be to demonstrate
the effectiveness of the proposed robust design method by
applying a random-phase multisine signal that excites the
dead-zone nonlinearity; the FRF obtained from this identifi-
cation will then be used to model a BLA with an associated
uncertainty and design a robust controller that minimizes
‖W1Ŝ1‖∞. For simplicity, the values of the nonlinearity are
selected as m = 1 and d = 0.1 for this case study. It will
also be desired to investigate the response of a controller
when the uncertainties in the design are neglected and the
FRF of the coprimes are obtained from a given time-domain
experiment.

For this case study, the closed-loop system is stabilized
when a proportional controller is implemented with a unity-
feedback structure (with the value of the controller equal to
0.15). The closed-loop system was excited with a periodic
random phase multisine (with an amplitude range of ±50);
10 experiments were performed where the system was ex-
cited with 15 periods of this signal where the period length
was 2000 samples and each period contains 500 sinusoids
with random phases.

For comparative purposes, it was desired to compare
the design scheme when the uncertainties of the proposed
method were neglected and the nominal FRF was obtained
directly from the data. The FRF BLAs with the associated
uncertainties for N̂ and M̂ are shown in Fig. 3 and Fig. 4,
respectively. The radii of the uncertainty circles for each
coprime were computed using (11). It can be observed that
at some frequencies, the FRF of the coprimes for a given

Fig. 3. N (dashed-blue line) with the associated uncertainties at each
frequency (black circles). The FRF obtained between r(t) to y(t) for a
given experiment with no uncertainties (dashed-red line).

Fig. 4. M (dashed-blue line) with the associated uncertainties at each
frequency (black circles). The FRF obtained between r(t) to u(t) for a
given experiment with no uncertainties (dashed-red line).

experiment are not included in the uncertainty disks. With
the BLA and the uncertainty for the coprimes, a controller
was computed in order to obtain H∞ performance for the
underlying linear system.

1) Weighting filter selection: The weighting filters Wn

and Wm for the uncertainties in N̂ and M̂ were calculated
using (11). The weighting filter W1 was selected based on
a desired closed-loop reference model. For the underlying
linear system, it is know that S1 + S2 = 1, where S2 is
the complementary sensitivity function (i.e., the closed-loop
transfer function). A simple first-order closed-loop reference
model was selected as the desired complementary function

Sd2 (z) = (1− a)(z − a)−1

where a = e−ωdTs and ωd [rad/s] is the desired bandwidth.
For this case study, the desired bandwidth was selected as
ωd = 100π. Thus W1 was formulated as [1 − Sd2 (z)]−1.
Note that the controller was prefixed with an integrator, and
‖W1Ŝ1‖∞ remains bounded ∀ω.

2) Simulation Results: The problem in (22) was solved
in SDP form with the 500 frequency points obtained from
the random-phase multi-sine experiments and with a 5th

order controller. To invoke integral action, the controller
was prefixed with an integrator. Two design schemes were
considered:
• A design in which the FRF BLA with the associated

frequency dependent uncertainties were considered.
• A design where no uncertainties are considered (i.e.,
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Fig. 5. Step response of the nonlinear system. The desired closed-loop
response (black line); the response with the proposed method (including
uncertainties in design) (blue line); the response with no uncertainties
considered (red line).

|Wn| = |Wm| = 0) and the FRF of the coprimes is
obtained from a given experiment.

The optimal solution to the proposed convex problem was
computed as γ? = 1.252 (using a tolerance of 10−3 for the
bisection algorithm) with an optimization time of 108.2 s.
This optimization time was calculated based on a computer
having the following hardware specifications: Intel-Core i7,
3.4 GHz CPU, 8GB RAM. The optimization algorithms were
run using MATLAB version (R2017a) on a Windows 7 plat-
form (64-bit). The closed-loop step response of the nonlinear
system is shown in Fig. 5; it can be observed that when
the frequency-dependent uncertainties are considered in the
design, good performance and stability is achieved. When
the uncertainties are neglected in the design, the settling
time is significantly larger. This is caused by the modeling
error from the closed-loop experiment (which can be seen in
figures 3 and 4 where the FRF lies outside the uncertainty
disks at various frequency points). Thus with the proposed
method, the performance and stability of the underlying
linear system can be guaranteed by considering the fre-
quency dependent uncertainties obtained from the random-
phase multi-sine identification experiments performed on a
nonlinear system.

V. CONCLUSION

In this paper, a data-driven method has been proposed for
designing fixed-structure controllers for linear systems with
nonlinear distortions. In this method, a robust design was
implemented where the FRF obtained from an identification
experiment of the nonlinear system was modeled as a BLA
with an associated uncertainty (to capture the dynamics
of the underlying linear system). A convex optimization
algorithm was then devised to guarantee H∞ performance
and stability for this underlying linear system. The case study
has confirmed the effectiveness of the proposed method by
designing a a controller for a typical system where the dead-
zone nonlinearity occurs frequently in practice. For future
work, it will be desired to extend the proposed robust control
design methodology for MIMO systems.
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