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Abstract— We establish average consensus on graphs with
dynamic topologies prescribed by evolutionary games among
strategic agents. Each agent possesses a private reward function
and dynamically decides whether to create new links and/or
whether to delete existing ones in a selfish and decentralized
fashion, as indicated by a certain randomized mechanism. This
model incurs a time-varying and state-dependent graph topol-
ogy for which traditional consensus analysis is not applicable.
We prove asymptotic average consensus almost surely and in
mean square for any initial condition and graph topology. In
addition, we establish exponential convergence in expectation.
Our results are validated via simulation studies on random
networks.

Index Terms— Consensus, Evolutionary Games, Evolutionary
Graphs, Distributed Algorithms, Randomized Algorithms.

I. INTRODUCTION

Evolutionary game theory has been established as a mod-
eling tool for interactions between populations of strate-
gic entities. In specific, evolutionary games describe the
population dynamics resulting from pairwise interactions. It
has found numerous applications in various areas of multi-
agent systems such as in wireless networks [1], [2], swarm
robotics [3], and dynamic routing protocols [4].

Evolutionary graphs arise as an application of evolutionary
game theory in modeling dynamic graph topologies. In such
context, a population is organized as a network (graph)
with the nodes (vertices) representing atoms (agents) and
links (edges) representing interactions among them. This is
captured by a weighted graph with time-varying edge set
determined by an evolutionary game. We will present a spe-
cific randomized decentralized mechanism for determining
the graph topology based on the individual fitness functions
of the agents. In our setting, each node maintains a local
variable and computes its fitness function using its own value
along with the values from its neighbors (both active and
inactive, cf. Sec. III). Subsequently, it dynamically readjusts
its neighbor set by randomly adding or deleting links with
probabilities dictated by the resulting change of its fitness
function.

Consensus is a canonical example of in-network coordi-
nation in multi-agent systems. Each agent maintains a local
value and the goal is for the entire network to reach agree-
ment to a common value in a distributed fashion, i.e., via
local exchanges of messages between neighboring (adjacent)
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agents. An archetypal problem is average consensus, where
the goal is for each agent to asymptotically compute the
average of all nodal values; cf. [5], [6], [7], [8], for a
largely non-exhaustive list of references. This theme has
proven a prevalent design tool for distributed multi-agent
optimization [9], [10], signal processing [11], numerical
analysis [12], and estimation [13], [14].

In this paper, we seek to bridge the gap between evolu-
tionary game theory and distributed optimization by studying
average consensus over evolutionary graphs. In our setting,
each agent has a local variable that represents its ‘strategy’:
the strategies evolve following a consensus protocol over
a time-varying graph capturing inter-agent cooperations. At
each time instant, agents dynamically select the agents with
which they cooperate (from a candidate set) based on their
utility (i.e., fitness) that depends on their own strategy and
the strategies of neighboring agents they intend to coop-
erate with. Specifically, agents create or drop links (i.e.,
cooperations) when they deem it beneficial for them, and
they do so via a randomized decentralized mechanism, in
a selfish manner. Examples enlist social networks [15] and
coordination of robot swarms [3].

We consider the problem of average consensus over
networks of time-varying topology captured by a Markov
Decision Process (MDP). Unlike prior work on the sub-
ject [8], [10], the topology depends on the agents’ values,
which renders previous analysis techniques inapplicable in
our case. We proceed to establish average consensus a.s.
(almost surely) and in m.s. (mean square) sense, using
stochastic Lyapunov techniques. Additionally, we prove that
the convergence is exponential in expectation, and provide a
lower bound on the expected convergence rate. Finally, our
method was empirically assessed via numerical simulations.

The remainder of the paper is organized as follows:
Sec. II exposes preliminaries on graph theory, consensus
and evolutionary graph theory. In Sec. III, we present the
problem formulation. The convergence analysis is presented
in Sec. IV. Sec. V illustrates simulation results, while Sec. VI
concludes the paper and discusses future research directions.

II. PRELIMINARIES

In this section, we recap essential background on graph
theory, consensus protocols and evolutionary games. In the
remainder of the paper, we use boldface for vectors and
capital letters for matrices. Vectors are meant as column
vectors, and we use 0,1 to denote the vectors with all entries
equal to zero, one, respectively, and I to denote the identity
matrix (with the dimension made clear from the context
in all cases). Last, we use the terms ‘agent’, ‘vertex’ and
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‘node’ interchangeably, and the same holds true for ‘edge’
and ‘link,’ in what follows.

A. Graph theory

Consider the case of n interacting agents which aim to
achieve consensus over a quantity of interest, for instance
compute the average of their values. Such problem is an in-
stance of computing on graphs, where each agent is modeled
as a vertex of the graph and edges are drawn only between
interacting nodes: we assume that two nodes can interact with
each other (for instance, exchange private information) if and
only if they are connected, i.e., there is an edge between them
in the graph.

Formally, let a graph be denoted by G = (V, E), where
V is the non-empty set of vertices (nodes) and E is the set
of edges. In this paper, we restrict attention to undirected
graphs, that is to say the edge set E consists of unordered
pairs: (i, j) ∈ E implies that agents i, j can interact in a
symmetric fashion, i.e., cooperate1. We further assume that
the graph does not contain self-loops (i.e., (i, i) /∈ E for all
i ∈ V); this is without any loss in generality, since edges
capture inter-agent interactions in our framework. We set
n := |V|,m = |E|, to denote the number of nodes, edges
respectively. We say that the graph G is connected if there
is a path between any two nodes i, j ∈ V; otherwise, we say
that the graph is disconnected.

The adjacency matrix A ∈ Rn×n of the graph captures
connections between the nodes: for any two nodes i, j ∈ V ,
aij is defined as:

aij =

{
1, if (i, j) ∈ E ,
0, otherwise.

The definition can be extended to weighted graphs, in which
case aij can take an arbitrary value if (i, j) ∈ E . For an
undirected graph, aij = aji, for all i, j ∈ V , i.e., A is
symmetric. Besides, A has a zero-diagonal (aii = 0 for all i),
since G is assumed to have no self-loops. The neighborhood
of a node i contains all nodes that the node has a connection
with, and is denoted by Ni := {j : aij 6= 0}. The degree
of node i is defined as the number of its neighbors, i.e.,
di := |Ni| =

∑
j∈V aij . Let D be the diagonal degree-

matrix (i.e., its (i, i)−th entry equals di, and off-diagonal
entries are zero). We define := D − A, the Laplacian of
the graph. Clearly, ∈ Rn×n is symmetric. Additionally, it
can be shown that is positive semidefinite [16]. It is well-
known [16] that rank = n − k, where k is the number of
connected components of the graph. In particular, a graph is
connected if and only if rank = n−1. By its very definition,
the Laplacian has a zero eigenvalue with corresponding
eigenvector the all-one vector 1. In fact, the multiplicity
of the zero eigenvalue equals the number of connected
components of the graph. The second smallest eigenvalue
of the Laplacian is called the Fiedler value or algebraic

1The extension of our methods to directed graphs that model asymmetric
interactions (e.g., asymmetric reward functions) will be the focal point of
future work.

connectivity of the graph, and is denoted as λ2(G) := λ2().
It is positive if and only if the graph is connected.

B. Consensus

Each agent i ∈ V maintains a local scalar value xi. We call
the state of the network the vector x obtained by stacking
all nodal values {xi}i∈V . We use xi,t to denote the value of
node i at time t, and, correspondingly, xt for the network
state at time t.

A widely studied method which describes the evolution of
xi is linear consensus [5], [8]. The dynamics for xi can be
written (up to a multiplicative constant) as

ẋi,t =
∑
j∈Ni

ai,j(xj,t − xi,t),

which can further be written compactly in matrix form:

ẋt = −xt.

For an undirected and connected graph, the network reaches
average consensus, i.e.,

xt −→
t→∞

Ave(x0)1,

where Ave(x0) := 1
n1
>x0 is the average of the values at the

initial time 0 [8]. Besides, the convergence rate is exponential
with rate lower-bounded by the Fiedler value [8].

In this paper, we will study consensus over time-varying
graphs as abstracted by a time-varying Laplacian t, dictated
by agents’ randomized decisions; that is to say, t = (xt, Et−)
is a random matrix that depends on both the state at time
t and the topology ‘right before’ time t; consequently, the
analysis in existing literature [5], [6], [7], [8], [10] does not
directly carry through.

C. Evolutionary graphs

An evolutionary graph is a graph whose topology is
specified by an evolutionary game [17], [18] of a single
population with finite number of players, n, placed on a
graph G. The interactions of players are captured by the
edge set of G. Each player i has a set of actions si ∈ Si
and receives a certain pay-off according to its utility (or
fitness) function which is a mapping from the joint action
space S := S1×S2×. . . Sn to the real numbers, fi : S → R.

The evolution of graph topology follows a stochastic pro-
cess administered through pairwise interactions. In particular,
two players (that are allowed to interact) are randomly
selected and a “copy” of the player with the higher fitness,
takes the place of the player with the lower one. As a result,
the strategy of the player with the smaller fitness is replaced
by the strategy of the player with the higher one.

III. PROBLEM FORMULATION

In a cyberphysical system, such as a wireless sensor
network [19], [20], it is common that agents may opt to
dynamically create new links with other agents or drop
existing ones during the coordination process; this behavior
results in time-varying graphs. In order to properly describe



this process, it is necessary to formulate a dynamic graph,
whose structure depends on time, topology and network state.

In what follows, we define a dynamic graph as a graph
with fixed predetermined vertex set V of agents, in which the
edge set E varies over time, in a state-dependent randomized
fashion. In particular, the edge set E = E(xt, t, ω) ⊆ V × V
is a state-/time-dependent random set in a probability space
(Ω,F ,P) (where Ω is the sample space, F is the σ−algebra
on Ω, and P is the probability measure); correspondingly,
we define the adjacency matrix A = A(xt, t, ω) and the
Laplacian matrix = (xt, t, ω). In this paper, we focus on
time-varying graphs with topology at time t depending on
both the state at time t and the topology ‘right before’ time
t, i.e., = (xt, Et− , ω). We use the shorthand notation Et,At, t
and Gt = (V, Et) to emphasize the type-varying aspect.

For each node i ∈ V , we denote by Ni the set of all
feasible neighbors, i.e., the set of all nodes that node i
can potentially create a connection with. Since we focus
on undirected graphs, we assume that j ∈ Ni implies that
i ∈ Nj . At each time t, for any given node i ∈ V , we
denote the set of active neighbors, i.e., the set of nodes with
which i is connected, using N (1)

i,t ⊆ Ni. Furthermore, we let
N (2)
i,t := Ni \ N (1)

i,t , the set of inactive neighbors, i.e., the
set of nodes that i is not connected with, but may decide
to connect with based on the evolutionary game. The degree
of a node i at time t,

∣∣∣N (1)
i,t

∣∣∣, is the total number of active
neighbors of node i at time t. For the subsequent treatment,
we make the assumption that the graph obtained by taking
the union of all feasible neighbor sets is connected:

Assumption 1: The graph G′ = (V, E ′), with E ′ :=
∪i∈V ∪j∈Ni {(i, j)} is connected.
This condition is necessary for consensus to be achieved: oth-
erwise, the graph will be disconnected at each time regardless
of the agents’ decisions, with no possible exchange of
information across its connected components, which implies
that consensus is infeasible. We will establish the sufficiency
of the condition for the dynamic topology instructed by the
evolutionary game we propose.

Let xt =
{
x1,t, . . . , xn,t

}
denote the coordination levels

of the agents, where we will restrict attention (without any
loss in generality) to the case that 0 ≤ xi,t ≤ 1,∀i ∈
V, t ≥ 0. For instance, the evolution of the coordination
levels may be considered as a resource allocation process, in
which agents decide to share a percentage of a resource they
own with their neighbors. Similarly, in an opinion dynamics
setup, the coordination levels may reflect the beliefs of the
agents, e.g., the information state of vehicles in a robot team.

The agents adjust their coordination levels based on inter-
actions with their neighbors, according also to their tendency
to create a link with other agents or drop an existing one. The
evolution of an agent’s coordination level may be described
by the following dynamic consensus protocol:

ẋi,t =
∑
j∈N (1)

i,t−
χmij,t(xj,t − xi,t)

+
∑
k∈N (2)

i,t−
χcik,t(xk,t − xi,t),

(1)

where χmij,t, χ
c
ik,t are 0−1 variables that respectively indicate

whether to: a) maintain an existing link (i.e., a link that
is active ‘right before’ time t, equivalently (i, j) with j ∈
N (1)
i,t− ), if χmij,t = 1 (χmij,t = 0 means that the link is

dropped); and b) create a new link (i, k) with k ∈ N (2)
i,t− ,

if χcik,t = 1. Clearly, we set χmji,t ≡ χmij,t, χ
c
ki,t ≡ χcik,t.

The decisions are Bernoulli random variables with respective
‘success’ probabilities (the probability of the value 1) given
by 0 ≤ wmij,t ≤ 1, and 0 ≤ wcik,t ≤ 1.

In this paper, the decision rules are state-dependent and
time-invariant, i.e., χmij,t, χ

c
ik,t are independent Bernoulli

random variables with success probabilities that depend
on the coordination levels of the two neighbors: wmij,t =
wmij,t(xi,t, xj,t), wcik,t = wcik,t(xi,t, xk,t), cf. (6), (7) for their
exact definition.

The following remark underlines the inapplicability of
previous analysis [8] in our setting.

Remark 1: The graph corresponding to the Laplacian ma-
trix t may be disconnected.

Indeed, since decisions are probabilistic, there is a positive
probability that the resulting graph is disconnected (even the
event of an empty edge set has positive probability) at each
given time instant.

We may stack the decisions {χmij,t, χcij,t} into a cor-
responding Laplacian matrix = (xt, Et− , ω) ≡ t with
entries {lij}i,j∈V (dropping time dependency for notational
simplicity) defined by:

lij = lji := −
(

1{j∈N (1)
i }

χmij + 1{j∈N (2)
i }

χcij

)
,

lii := −
∑
j 6=i lij ,

where 1{·} is the 0−1 indicator function (1 if the event holds
and 0 else). We proceed to write the update rule in matrix
form as follows:

ẋt = −txt. (2)

We call this the state evolution equation; note that, by its
very definition, it constitutes a continuous Markov Decision
Process (MDP).

The following proposition shows that all coordination
levels are guaranteed to remain in the interval [0, 1] if they
are initialized in [0, 1], i.e., it establishes that the set [0, 1]n

is forward invariant.
Proposition 1: Suppose x0 ∈ [0, 1]n. Then, under state

evolution (2), xt ∈ [0, 1]n for all t > 0, i.e., [0, 1]n is
forward-invariant.

Proof: The proof considers two cases: the first case
considers a nodal value reaching the upper bound (1), and
the second the lower bound (0).

Case 1: Assume that for some t ≥ 0, there exists i ∈ V
with xi,t = 1 and that xs ∈ [0, 1]n for all s ≤ t. Then, given
that xj,t ∈ [0, 1] for all j 6= i it follows that

ẋi =
∑

j∈V\{i}

−lij(xj,t − 1) ≤ 0,

because xj,t ≤ 1 and −lij ≥ 0. Therefore xi can never
exceed the value 1.



Case 2: Assume that for some t ≥ 0, there exists i ∈ V
with xi,t = 0 and that xs ∈ [0, 1]n for all s ≤ t. Since
xj,t ∈ [0, 1] for all j 6= i it follows that

ẋi =
∑

j∈V\{i}

−lijxj,t ≥ 0,

therefore xi can never go below 0.
Remark 2: The forthcoming analysis applies irrespec-

tively of the assumption that the values xt ∈ [0, 1]n, i.e., for
arbitrary initial conditions x0. This assumption is adopted
solely for the sake of interpretability in the context of
evolutionary games.

A. Evolutionary game

In this section, we provide a rule for selecting the weights
(i.e., probabilities) wmij,t, w

c
ij,t based on a particular evolu-

tionary game. We use Continuous Actions Iterative Pris-
oner’s Dilemma (CAIPD) [21] to define the fitness function
of a given node and illustrate how the weights are selected.

In CAIPD, there are n agents that choose their coordina-
tion levels given their neighbors’ decisions. Each agent i has
to pay a fee that is related to its coordination level and gains a
reward related to the coordination levels of its neighbors: the
higher the coordination level of agent i and the coordination
levels of its neighbors are, the higher the cost and reward
are, respectively.

Formally, the reward of agent i when it sets its coordina-
tion level to xi is defined using the following fitness function
(where we drop dependency from time t henceforth, since
the definition of fitness in CAIPD is time-independent):

fi(x) = b
∑

j∈N (1)
i

xj − c
∣∣∣N (1)

i

∣∣∣xi, (3)

where b > c > 0 are constants (i.e., we assume that the gain–
per unit of coordination–from cooperating with another agent
b is higher than the per-unit loss c).

The change in the fitness function of agent i when it
creates or drops a link, denoted by f̃ cij (for j ∈ N (2)

i ) and
f̃dij (for j ∈ N (1)

i ) respectively, is determined by:

f̃ cij(x) = b
∑

k∈N (1)
i ∪{j}

xk − c
(∣∣∣N (1)

i

∣∣∣+ 1

)
xi

−

b ∑
k∈N (1)

i

xk − c
∣∣∣N (1)

i

∣∣∣xi


= bxj − cxi, (4)

f̃dij(x) = b
∑

k∈N (1)
i \{j}

xk − c
(∣∣∣N (1)

i

∣∣∣− 1

)
xi

−

b ∑
k∈N (1)

i

xk − c
∣∣∣N (1)

i

∣∣∣xi


= cxi − bxj . (5)

In the evolutionary game, a link may be created/dropped
if both agents desire to coordinate or not based on the
corresponding increment (or decrement) of their individual
fitness functions. Essentially, if both agents benefit from
maintaining/creating a link, the corresponding probability
must be higher than the case where only one node benefits
or when the fitness of both agents is decreased. In [22] a
sigmoid function was used to determine the weights wmij,t
and wcij,t. In our formulation, the weights correspond to the
probabilities that agent i maintains (one minus the probabil-
ity that it drops) or creates link (i, j), respectively. Following
a similar approach, the weights are selected as (where we
once again drop time dependency since the weight-rule is
state-dependent but time-invariant):

wmij = 1
2 −

1
2 tanh

(
f̃dij(x) + f̃dji(x)

)
= 1

2 −
1
2 tanh

(
(c− b)(xi + xj)

)
,

(6)

wcij = 1
2 + 1

2 tanh
(
f̃ cij(x) + f̃ cji(x)

)
= 1

2 + 1
2 tanh

(
(b− c)(xi + xj)

)
.

(7)

Note that, by definition, the two values are equal and
lower-bounded by 1

2 (in light of the fact that xt ∈ [0, 1]n, for
all t ≥ 0; cf. Proposition 1). We define the weighted Lapla-
cian matrix W with entries (again dropping time dependency
for notational simplicity) given by:

wij = wji := −
(

1{j∈N (1)
i }

wmij + 1{j∈N (2)
i }

wcij

)
, (8)

wii := −
∑
j 6=i wij ,

IV. CONVERGENCE ANALYSIS

Formally, for t > 0, t is an Ft− -measurable random
matrix where the σ−algebra Ft− is defined by Ft− :=
σ(∪s<tσ(Es),xt) = σ(∪s<tσ(s),xt); σ(·) denotes the com-
pletion (i.e., adding all subsets of sets of zero measure [23])
of the σ−algebra generated by its argument (a random
variable). Simply said, Ft− is a formal way of describing
the available information pertaining to the topology ‘right
before’ time t, along with the value xt and it induces a
filtration [23], i.e., Fs− ⊆ Ft− for s ≤ t. In the sequel,
we use the notation Et[·] := E[·|Ft− ]; we assume the initial
state x0 and topology E0 are deterministic and known.

It follows that
Wt = Et[t]. (9)

Note that (2) is a ‘stochastic differential equation2’ which
is equivalent to the integral equation:

xt = x0 −
∫ t

0
sxsds. (10)

The following lemma characterizes the evolution of the
mean:

x̄t := E[xt].

2We use this term in brackets as the differential equation is driven by the
random Laplacian matrix and not a Brownian motion [23].



Lemma 1 (Evolution of the mean): Under state evolu-
tion (2), the mean value follows the differential equation:

˙̄xt = −E[Wtxt]. (11)
Proof: Taking expectation in (10) yields

x̄t = x̄0 − E[

∫ t

0
sxsds]

= x̄0 −
∫ t

0

E[sxs]ds

= x̄0 −
∫ t

0

E[Es[sxs]]ds

= x̄0 −
∫ t

0

E[Wsxs]ds

The first equality uses the definition of x̄t. The second
one invokes Fubini’s theorem [24] (since xt ∈ [0, 1]n and
is a finite dimensional matrix with bounded entries). The
third equality uses the towering property of expectation [23].
The fourth uses the fact that xs is Fs−−measurable along
with (9).

The next theorem establishes the convergence of our
scheme:

Theorem 1 (Average consensus): Under Assumption 1
and state evolution (2) the system reaches average consensus:

lim
t→∞

xt = Ave(x0)1 a.s. and in m.s.,

for any x0 ∈ [0, 1]n, where Ave(x0) := 1
n1
>x0 is the

average of the initial nodal values. Furthermore, the m.s.
convergence is exponential in expectation, with the expected
rate lower-bounded by λ2(G′) > 0.

Proof: Since is symmetric and 1 = 0, pre-
multiplying (10) by 1> gives 1>xt = 1>x0 for all t ≥ 0,
i.e., the sum (and therefore the average) of entries is constant
over time. We define the disagreement vector et := xt −
Ave(x0)1: it follows that et ⊥ 1, i.e., 1>et = 0 for all t ≥
0. Consider the Lyapunov function V (e) = 1

2‖e‖
2
2 = 1

2e
>e.

Under (2) it follows that:

V̇ (et) = −e>t tet,

where we have used the chain rule and the property that
t1 = 0. Note that the drift satisfies −e>t tet ≤ 0 since t is
positive semidefinite. Using the exact same line of analysis
as in Lemma 1 we get:

E[V (et)] = V (e0)−
∫ t

0

E[e>s Wses]ds,

or more generally:

Es[V (et)] = V (es)−
∫ t

s

Es[e>τ Wτeτ ]dτ,

Therefore V (et) is a bounded (cf. Proposition 1)
(Ω,Ft− ,P)−supermartingale, and therefore converges a.s.
by the supermartingale convergence theorem [23]. Denote
the limit by e∞(ω); we will establish that e∞ = 0 a.s. Note
that W(x) is a (state-dependent) weighted Laplacian on the
graph G′ = (V, E ′) which is connected (cf. Assumption 1),

therefore λ2(G′) > 0. Furthermore, the edge weights are
positive and bounded away from zero uniformly over x; to
see this note that (6), (7) and the fact that x ∈ [0, 1]n imply
that

min(wmij , w
c
ij) ≥

1

2
.

This also shows that λ2(W) ≥ 1
2λ2(G′) > 0. Since et ⊥ 1

for all t ≥ 0, and by the definition of V (·), we have:

E[V (et)] ≤ V (e0)− λ2(G′)
∫ t

0

E[V (es)]ds,

consequently

E[V (et)] ≤ V (e0)e−λ2(G′)t,

i.e.,
lim
t→∞

E[V (et)] = 0.

This establishes m.s. convergence to 0, with expected
exponential convergence with rate lower-bounded by λ2(G′);
a.s.-convergence follows by the supermartingale convergence
theorem and Fatou’s lemma [24].

Corollary 1 (Convergence in expectation): Under
Assumption 1 and state evolution (2):

lim
t→∞

E[xt] = Ave(x0)1.

Proof: By Jensen’s inequality, ‖E[et]‖22 ≤ E[‖et‖22],
therefore

lim
t→∞

E[et] = 0,

and the result follows by the definition of et.

V. EXPERIMENTS

In this section, we present simulation studies that attest
our convergence results. We have employed the small world
network model [25], i.e., a Bernoulli random graph in which
any two agents are allowed to interact with a fixed probability
p1; this process generates the neighborhood sets {Ni} and
therefore the graph G′ = (V, E ′), cf. Assumption 1. We
took the network size n = 1000 in our experiments and
set p1 = 0.2; we repeated the experiment until a connected
graph G′ was obtained as required by Assumption 1. For
initialization, we chose x0 uniformly distributed on [0, 1]n

and selected the active neighbor sets N (1)
i as follows: for

each i, neighbors in Ni were selected to be active with
probability p2 (independently from one another); we took
p2 = 0.2. Last, we set b = 5, c = 4 in (6), (7).

For numerical simulation of the state evolution we have
performed uniform discretization of (2) with a step-size ∆,
i.e., we set t = ∆k where k is the discrete iterate counter
and run:

xk+1 = xk −∆kxk.

We chose the step-size ∆ = 1
n which guarantees that the

spectral radius of (I−∆k) is less than or equal to 1 (since the
eigenvalues of the Laplacian are upper bounded by n [16]).

Figure 1 depicts the evolution of the coordination levels
(for a single small world network and initialization of x0): it
is evident that all coordination levels converge to the average



Fig. 1. Time evolution of coordination levels of 1000 agents.

Fig. 2. Normalized disagreement vector norm over time.

value. Figure 2 illustrates a logarithmic plot of the evolution
of the normalized norm of the disagreement vector ‖et‖2

‖e0‖2 ,
referred to as relative error, averaged over 1000 experiments
(random topologies G′ and initializations of x0); it is evident
that the convergence is exponential, in full alliance with
Theorem 1.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed and analyzed average consensus on evo-
lutionary graphs. Linear consensus iterations are performed
on a dynamic graph, where the topology is determined by
an evolutionary game in which agents can randomly create
new links or drop existing ones in a selfish manner based
on their fitness function. We have established a.s. and m.s.
average consensus with expected exponential rate regardless
of the initial topology and agents’ values.

Our future work will focus on devising distributed methods
for multi-agent optimization over evolutionary graphs, as
well as on extending the analysis to directed graphs and
discrete-time iterations.
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