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Abstract— Methods known as Lipschitz Interpolation or
Nonlinear Set Membership regression have become established
tools for nonparametric system-identification and data-based
control. They utilise presupposed Lipschitz properties to com-
pute inferences over unobserved function values. Unfortunately,
it relies on the a priori knowledge of a Lipschitz constant
of the underlying target function which serves as a hyper-
parameter. We propose a closed-form estimator of the Lipschitz
constant that is robust to bounded observational noise in the
data. The merger of Lipschitz Interpolation with the new hyper-
parameter estimator gives a new nonparametric machine learn-
ing method for which we derive sample complexity bounds and
online learning convergence guarantees. Furthermore, we apply
our learning method to model-reference adaptive control. We
provide convergence guarantees on the closed-loop dynamics
and compare the performance of our approach to recently
proposed alternative learning-based controllers in a simulated
flight manoeuvre control scenario.

I. INTRODUCTION

Among supervised learning methods, nonparametric re-
gression techniques have attracted much attention due to
their great flexibility to learn rich function classes. Among
many others, popular approaches include kernel methods
such as Gaussian Processes (GPs) [18], the NW-estimator
[17], [24], local methods such as LOESS regression [11]
as well as Lipschitz Interpolation (LI) [23], [25]. In spite
a wealth of classic as well as recent work that has shed
light on the theoretical and practical properties of these
methods, a common limitation remains: typically all results
rest on the assumption of the knowledge of a suitable hyper-
parameter that encodes a priori knowledge about the under-
lying learning target. While for some methods, especially
for many of the kernel methods with certain choices of
kernels, asymptotic consistency guarantees can be given for
general classes of target functions, irrespective of the chosen
hyper-parameter, in practice, the choice of hyper-parameter
markedly impacts the predictive performance of the regres-
sion method for finite data sets. In Lipschitz Interpolation
(LI) or Nonlinear Set Membership (NSM) methods [23],
[14], [25], the hyper-parameter is a Lipschitz constant of the
predictor. If set too low, the class of learnable target functions
is too restrictive. If on the other hand the parameter is set
too high, the resulting predictor will tend to overfit to noise
in the data and might yield poor generalisation performance.
Therefore, a common solution is to resort to hyper-parameter
optimisation [18], [5]. While often working well in practice,
these approaches tend to be too computationally expensive
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to work with large data and to support online learning and
adaptive control. Moreover, to the best of our knowledge, no
theoretical insights into the learning-theoretic properties of
the inferences with the hyper-parameter optimisers in place
exist to date.

For Lipschitz Interpolation (LI), this paper addresses this
gap. To this end, we propose a closed-form expression
to estimate the Lipschitz constant from the data that is a
modification of Strongin’s estimator [22]. It has the benefit
to support computationally tractable online updates but also
offers robustness to (bounded) observational noise. We then
propose to utilise the estimates in the LI rule to make
predictions of function values at unobserved inputs. This
combination of Lipschitz constant estimator and LI yields a
new nonparametric regression method which we refer to as
Lazily Adaptive Constant Kinky Inference (LACKI). For our
LACKI method, we provide sample complexity bounds on
the worst-case prediction error showing that our method can
learn any Lipschitz continuous function (with any arbitrary
and a priori unknown Lipschitz constant). Since Lipschitz
functions are dense in the space of continuous functions,
this implies that our method is a universal approximator.
To illustrate some of the benefits and shortcomings of our
approach, we compare LACKI with a selection of established
regression methods on a set of benchmark problems and test
it in learning-based tracking control where it outperforms
competing approaches.

II. LIPSCHITZ INTERPOLATION WITH ADAPTED
LIPSCHITZ CONSTANT ESTIMATES

Setting. Let X be an input space endowed with (pseudo-)
metric d : X 2 → R≥0 and let Y be an output (vector) space
endowed with a translation-invariant pseudo-metric dY :
Y2 → R≥0. Let Lip(L) = {φ : X → Y| dY(φ(x), φ(x′)) ≤
L d(x, x′),∀x, x′ ∈ X} denote the set of Lipschitz continu-
ous functions with Lipschitz constant L. The best Lipschitz
constant of a function f is the smallest number L∗ such that
f ∈ Lip(L∗). A function is Lipschitz continuous if it has a
finite Lipschitz constant.

Let f : X → Y be a target function we desire to
learn in a supervised fashion. To this end, we assume that,
at time step n, we have access to a sample or data set
Dn := {

(
si, f̃i

)
| i = 1, . . . , Nn} containing Nn ∈ N

(possibly corrupted) sample values f̃i ∈ Y of target function
f at sample input si ∈ X . The sampled function values
are allowed to have observational error given by an error
function e : X → Rm≥0 which may model stochastic noise or
systematic error. That is, we assume dY(f̃i, f(si)) ≤ e(si).



For convenience, we may also write Dn = (Gn,Yn) where
Gn = {si|i = 1, ..., Nn} ⊂ X is the collection (or grid)
of sample inputs and Yn = {f̃i|i = 1, ..., Nn} ⊂ Y is the
pertaining sequence of observed function values. It is our
aim to learn target function f in the sense that we utilise
the available data Dn to infer predictions f̂n(x) of f(x)
at unobserved query inputs x /∈ Gn. In our context, the
evaluation of f̂n is what we refer to as (inductive) inference
or prediction and f̂n is referred to as the predictor.

Learning rule. We will now rehearse a simplified version
of Kinky Inference (KI) [6] – a class of nonparametric
learning rules that encompasses a host of other methods such
as NSM methods [14] and standard Lipschitz Interpolation
[23], [3], [25]. As a special case, we will then define our
proposed method that incorporates an adaptive estimator of
the Lipschitz constant of the target.

Definition II.1 (Kinky inference (KI) rule (simplified) ).
Given access to a sample set Dn and an input space pseudo-
metric d̃(·, ·; θ(n)) : X 2 → R parameterised by θ(n), we
define the KI predictor by f̂n

(
·; θ(n),Dn

)
: X → Y to

perform inference over function values as per:

f̂n
(
x; θ(n),Dn

)
:=

1

2
un(x; θ(n)

)
+

1

2
ln(x; θ(n)

)
. (1)

Here, un
(
·; θ(n)

)
, ln
(
·; θ(n)

)
: X → Rm are defined

by un
(
x; θ(n)

)
:= mini=1,...,Nn f̃i + d̃(x, si; θ(n)) and

ln
(
x; θ(n)

)
:= maxi=1,...,Nn f̃i− d̃(x, si; θ(n)), respectively.

The computational effort for making a prediction is in
O(NnM) where M is the effort for evaluating the pseudo-
metric. However, it is possible to apply (generalised) nearest-
neighbour techniques to reduce this effort to expected loga-
rithmic growth in the number of sample points [3], [6].

A special case arises for the choice of d̃(x, y; θ(n)) =
L(n) ‖x− y‖ which is referred to as Lipschitz Interpolation
[3] or as Nonlinear Set Interpolation [14]. Here the parameter
θ(n) = L(n) is the supposed Lipschitz constant of the target.
And, it is easy to show that the predictor f̂n(·;L(n),Dn)
is Lipschitz continuous with Lipschitz constant L(n) [6].
Typically, this constant is assumed to be either known a priori
or estimated from the data, e.g. [22], [14], [5]. Unfortu-
nately, little is understood about the effects of the previously
proposed parameter estimation techniques on the predictor’s
performance and about the impact of observational noise.

We will now define our Lazily Adapted Kinky Inference
(LACKI) learning rule that will allow us to provide learning
guarantees.

For notational convenience, for two sets S, S′ ⊂ X of
inputs we define U(S, S′) := {(s, s′) ∈ S×S′| d(s, s′) > 0}
and let Un := U(Gn, Gn) be the set of all pairs grid inputs
deemed disparate under the pseudo-metric d.

Definition II.2 (LACKI rule). The Lazily Adapted Lipschitz
Constant Kinky Inference (LACKI) rule computes a KI
predictor f̂n as per Defn. 1, but where d̃(x, x′;L(n)) =

L(n) d(x, x′) and where we set

L(n) := `(Dn;λ) := max
{

0, max
(s,s′)∈Un

dY(f̃(s), f̃(s′))− λ
d(s, s′)

}
.

(2)

Note, λ ≥ 0 is a design parameter. When we set λ = 2ē
(where ē ∈ R≥0 is the lowest upper bound on the level of
observational noise, i.e. dY(0, e(x)) ≤ ē,∀x), it is easy to
show that L(n) is bounded. Being a Lipschitz constant of
the predictor, boundedness of L(n) can cause the predictor
to smooth out observational noise. And, similar to other non-
parametric regressions methods this noise hyper-parameter
does impact the generalisation method’s performance (for an
illustration, cf. Fig. 1, LACKI vs LACKI2). And, as we make
no distributional assumptions about the observational noise
(in particular it could be systematic error), our convergence
guarantees we will derive below will depend on it.

Next, consider an online learning situation where the
available data grows incrementally such that Gn+1 = Gn ∪
{sn+1},∀n. We can define an incremental update rule recur-
sively as follows:

L(n+ 1) :=max
{
L(n), max

(s,s′)∈U(Gn,{sn+1})

dY
(
f̃(s), f̃(s′)

)
− λ

d(s, s′)

}
,

(3)

for n ∈ N and where L(0) := 0. The effort of computing
L(n+1) in time step n+1 based on the newly arrived sample
point and the previous Lipschitz constant estimate L(n) is
in O

(
M Nn

)
.

III. SAMPLE COMPLEXITY BOUNDS AND PROBABILISTIC
CONSISTENCY

For real-valued functions on compact domains, we will
now establish that our LACKI method can be utilised to learn
any Lipschitz continuous function in the following sense:

Theorem III.1. Let X = [0, 1]d be the domain of target
function f ∈ Lip(L∗). Assume the input data Gn =
{s1, . . . , sn} contains n data sample inputs which are drawn
independently at random from a uniform distribution over
X . For simplicity, assume there are no observational errors,
i.e. ē = 0, and, that d(x, x′) = ‖x− x′‖∞ ,∀x, x′ ∈ X .
The worst-case error of our LACKI predictor vanishes in
probability.

That is, ∀ε > 0∀δ ∈ (0, 1)∃N ∈ N∀n ≥ N :

Pr[sup
x∈X

dY
(
f̂n(x), f(x)

)
> ε] ≤ δ.

In particular, for all δ ∈ (0, 1) we have

Pr[sup
x∈X

dY
(
f̂n(x), f(x)

)
> ε] ≤ δ,

1) for any ε ≥ 2L∗, provided that n ≥ 1;
2) for any ε < 2L∗, provided that n ≥ N :=⌈

log(δ 2−kd)
log(1−2−kd)

⌉
with k =

⌈
log(ε−12L∗)

log 2

⌉
.

Proof. Refer to the long version of this paper [19].

While for simplicity, absence of observational errors was
assumed, it is easy to generalise the statement to the case
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Fig. 1. The predictors of several regression methods for a target function f : x 7→ |cos(2πx)| + x. The Nn = 500 observations (light blue dots) in
the sample were perturbed by uniform noise drawn i.i.d. from the interval [−.5, .5]. The target function is plotted in dark blue and the predictions of the
trained models are plotted in magenta. From left to right: LACKI: Our LACKI method with correctly set noise parameter ē. LACKI2: LACKI with falsely
set noise parameter ē = 0. GP: Mean of a Gaussian process regressior with manually tweaked kernel hyper-parameter falsely assuming no observational
noise. GP2: automatically optimised kernel hyper-parameter assuming correct noise variance causing to model over-smoothing. Lin. Mod.: LMS regression
of a linear model.

where ē > 0. In that case, if LACKI is utilised with
parameter choice λ = 2ē + q (for any q ≥ 0) then the
worst-case prediction error vanishes in probability up to
2ē + q

2 . That is, ∀ε > 0∀δ ∈ (0, 1)∃N ∈ N∀n ≥ N :

Pr[supx∈X dY
(
f̂n(x), f(x)

)
> ε+ 2ē + q

2 ] ≤ δ.

A. Guarantees for online learning
Above, we considered the worst-case asymptotics for the

case where the data becomes dense in the domain with
high probability. Here the error was evaluated on the entire
input domain under an i.i.d. uniform input distribution. In
online learning and control however, imposing such dis-
tributional assumptions is typically unrealistic. Therefore,
we will now consider an online learning setting where we
incrementally get to observe samples along the trajectory of
inputs

(
xn

)
n∈N

and are interested in the long-term one-step-
lookahead prediction errors on this trajectory irrespective
of distributional assumptions. That is, we are interested
in the evolution of prediction errors dY

(
f̂n(xn), f(xn)

)
where the predictor f̂n(·) is based on Dn = Dn−1 ∪
{
(
xn−1, f̃(xn−1)

)
},∀n > 1.

We will show that this error trajectory vanishes (up
to observational errors), provided that the input sequence(
xn

)
n∈N

is bounded.
In preparation of these considerations, we will establish

the following facts:

Lemma III.2. Assume we are given a trajectory
(
xn

)
n∈N

of inputs with xn ∈ X where input space X can be endowed
with a shift-invariant measure. Furthermore, assume the
sequence is bounded, i.e. dX (xn, 0) ≤ β for some β ∈ R+

and all n ∈ N. Finally assume the inputs of the available
data coincide with the complete history of past inputs, i.e.
Gn = {xi|i ∈ N, i < n}. Then we have:

dist(Gn, xn) = min{ dX (g, xn)| g ∈ Gn}
n→∞−→ 0.

Proof. The intuition behind the following proof is that if the
distances were not to converge, there was an infinite number
of disjoint balls around the input points that summed up to
infinite volume. This however, would be a contradiction to
the presupposed boundedness of the sequence. We formalise
this intuition as follows: We can rephrase the desired con-
vergence statement as

∀ε > 0∃n ∈ N∀m ≥ n : dist(xm, Gm) ≤ ε. (4)

For contradiction, assume that

∃ε > 0∀n ∈ N∃m(n) ≥ n : dist(xm(n), Gm(n)) > ε. (5)

Hold such an ε > 0 fixed and choose any n ∈ N. By
definition of Gm(n) = {xi|i < m(n)} we have:

∀i < m(n) : dX (xm(n), xi) > ε. (6)

Let Cn :=
⋃
i<nB ε

2

(
xi
)

be the union of all ε
2 -balls

around each point in Gn and define Ī =
⋃
n∈N Cn.

By definition, each xn is contained in Ī . Since sequence
(xn)n∈N is bounded, Ī has a finite volume relative to some
positive, shift-invariant measure µ. I.e. µ(Ī) < ∞ (e.g.
choose the Lebesgue measure for µ). Furthermore, µ(Cn) ≤∑
i<n µ(Bi) ≤ µ(Ī) < ∞ where Bi := B ε

2

(
xi
)
. Owing

to the assumed shift-invariance, we can assign the same
measure M each ball, i.e. M := µ(B1) = µ(Bn)∀n ∈ N.
Thus, µ(Cn) ≤ nM . Define q :=

⌈
µ(Ī)
M

⌉
∈ N. This is an

upper bound on the number of disjoint balls of measure M
that can be contained in Ī . Intuitively, since this number is
finite, there cannot be an infinite number of non-intersecting
balls around the elements of the sequence (xn)n∈N. More
formally our argument proceeds as follows: Choose n >
q + 1. Statement (6) yields:

∀i ∈ {1, ..., n}∃p(i) ≥ i∀j ≤ p(i) : dX (xp(i), xj) > ε. (7)



Define a permutation π such that π(p(1)) ≤ . . . ≤ π(p(n)).
With Statement (7) it follows that
dX (xπ(p(i)), xπ(p(j))) > ε , ∀i, j = 1, ..., n, i < j. Thus, we
conclude the disjointness conditions Bπ(p(i)) ∩ Bπ(p(j)) =
∅,∀i, j = 1, ..., n, i 6= j. Hence, µ(Ī) ≥ µ(Cπ(p(n))) ≥
µ(Cπ(p(1))) +

∑n
i=1 µ(Bπ(p(i)))

= µ(Cπ(p(1))) + nM > µ(Cπ(p(1))) + (q + 1)M ≥
µ(Cπ(p(1)))+µ(Ī), where the last inequality follows from the
fact that Mq = M

⌈
µ(Ī)
M

⌉
≥ µ(Ī). Since µ(Cπ(p(1))) ≥ 0,

we have concluded the false statement µ(Ī) > µ(Ī).

Theorem III.3. Assume that, for some q ≥ 0, we chose
λ = 2ē + q in our LACKI prediction rule. And, assume that
the target f is Hölder continuous up to some error level Ēh.
That is, f = φ+ψ with φ ∈ H(L∗, p) and a function ψ such
that supx dY

(
0, ψ(x)

)
≤ Ēh ∈ R.

Assume we are given a trajectory
(
xn

)
n∈N

of inputs that

is bounded, i.e. where d(xn, 0) ≤ β for some β ∈ R+ and all
n ∈ N. Furthermore, assume Dn+1 = Dn ∪ {

(
xn, f̃(xn)

)
}

and thus, Gn = {xi|i ∈ N, i < n}. Then the prediction
error on the sequence vanishes up to the level of sample-
consistency and Hölder continuity in the following sense:

dY
(
f̂n(xn), f(xn)

) n→∞−→ [0,
q

2
+ 2ē + 2Ēh].

In particular, in case the observations are error-free (f̃ = f )
and assuming the target is Hölder continuous then, when
choosing λ = 0, the prediction error is guaranteed to vanish.
That is,

dY
(
f̂n(xn), f(xn)

) n→∞−→ 0.

Proof. Let ξn ∈ argming∈Gn d(xn, g) denote the nearest
neighbour of xn in Gn = {x1, ..., xn−1}.

Since sequence (xn) is bounded, Lem. III.2 is applicable
and hence: (i) limn→∞ d(xn, ξn) = 0.

In [4], Lem. 2.7, it was shown that
∥∥∥f(sq)− f̂n(sq)

∥∥∥
∞
≤

λ
2 + ‖e(sq)‖∞ ≤

λ
2 + ē. Therefore, if we set λ = 2ē + q

then dY
(
f̂n(ξn), f(ξn)

)
≤ 2ē + q

2 . Hence, appealing to the
triangle inequality, we see that (ii) dY

(
f̂n(xn), f(ξn)

)
≤

dY
(
f̂n(xn), f̂n(ξn)

)
+ 2ē + q

2 .
Moreover we note that the predictors f̂n have Hölder

constants L(n) and that the L(n) are bounded from above
by some L̄ ∈ R. Thus, (iii) ∃L̄ ∈ R∀n ∈ N : f̂n ∈ H(L̄, p).

In conclusion, 0 ≤ dY
(
f̂n(xn), f(xn)

)
≤

dY
(
f̂n(xn), f(ξn)

)
+ dY

(
f(ξn), f(xn)

) (ii)

≤
dY
(
f̂n(xn), f̂n(ξn)

)
+ 2ē + q

2 + dY
(
f(ξn), f(xn)

)
≤

dY
(
f̂n(xn), f̂n(ξn)

)
+ 2ē + q

2 + dY
(
φ(ξn), φ(xn)

)
+ 2Ēh

(iii)

≤ (L̄ + L∗) d(xn, ξn)p + 2ē + q
2 + 2Ēh

n→∞−→
2ē + q

2 + 2Ēh.

IV. APPLICATION TO MODEL-REFERENCE ADAPTIVE
CONTROL

A. Model reference adaptive control

Before proceeding with the application scenario, we will
commence with (i) outlining model reference adaptive con-
trol (MRAC) [1] as considered in [9] and (ii) describe the
deployment of kinky inference to this framework. We will
now rehearse the description of MRAC for second-order
systems following [9].

Assume m ∈ N to be the dimensionality of a configuration
of the system in question and define d = 2m to be the
dimensionality of the pertaining state space X .

Let x = [x1;x2] ∈ X denote the state of the plant to be
controlled. Given the control-affine system

ẋ1 = x2, ẋ2 = a(x) + b(x)u(x) (8)

it is desired to find a control law u(x) such that the closed-
loop dynamics exhibit a desired reference behaviour:
ξ̇1 = ξ2, ξ̇2 = fr(ξ, r) where r is a reference command,

fr some desired response and t 7→ ξ(t) is the reference
trajectory.

If a priori a and b are believed to coincide with â0, b̂0
respectively, the inversion control u = b̂−1

0 (−â0 + u′) is
applied. This reduces the closed-loop dynamics to ẋ1 =
x2, ẋ2 = u′ + ã(x, u) where ã(x, u) captures the modelling
error of the dynamics:

ã(x, u) = a(x)− â0(x) +
(
b(x)− b̂0(x)

)
u. (9)

Let Id ∈ Rd×d denote the identity matrix. If b is perfectly
known, then b − b̂−1

0 = 0 and the model error can be
written as ã(x) = a(x) − â0(x). In particular, ã has lost
its dependence on the control input.

In this situation [9], [8] propose to set the pseudo control
as follows: u′(x) := νr + νpd− νad where νr = fr(ξ, r) is a
feed-forward reference term, νad is a yet to be defined output
of a learning module adaptive element and νpd = [K1K2]e
is a feedback error term designed to decrease the tracking
error e(t) = ξ(t) − x(t) by defining K1,K2 ∈ Rm×m as
described in what is to follow.

Inserting these components, we see that the resulting error
dynamics are:

ė = ξ̇−[x2; νr+νpd+ã(x)] = Me+B
(
νad(x)−ã(x)

)
(10)

where M =

(
Om Im
−K1 −K2

)
and B =

(
Om
Im

)
. If the

feedback gain matrices K1,K2 parametrising νpd are chosen
such that M is stable then the error dynamics converge to
zero as desired, provided the learning error Eλ vanishes:
Eλ(x(t)) = ‖νad(x(t))− a(x(t))‖ t→∞−→ 0.

It is assumed that the adaptive element is the output of
a learning algorithm that is tasked to learn ã online. This
is done by continuously feeding it training examples of the
form

(
x(ti), ã(x(ti)) + εi

)
where εi is observational noise.

Intuitively, assuming the learning algorithm is suitable
to learn target ã (i.e. ã is close to some element in the
hypothesis space [15] of the learner) and that the controller



manages to keep the visited state space bounded, the learning
error (as a function of time t) should vanish.

Substituting different learning algorithms yields different
adaptive controllers. RBFN-MRAC [13] utilises radial basis
function neural networks for this purpose whereas GP-MRAC
employs Gaussian process learning [18] to learn ã [9], [8].

In what is to follow, we utilise our LACKI method as
the adaptive element. Following the nomenclature of the
previous methods we name the resulting adaptive controller
LACKI-MRAC.

As mentioned above, the guarantee that the learning error
vanishes over time can be translated into a guarantee of
vanishing tracking error. For a discrete time version of the
MRAC setting, we can therefore appeal to Thm. III.3 to
establish conditions under which LACKI-MRAC is guaran-
teed to eventually achieve tracking success. In particular, in
the long version of this paper [4], we derive the following
following guarantee:

Corollary IV.1. In the special case of error-free observa-
tions of a Hölder continuous target function and assuming
bounded prediction errors, choosing a parameter λ = 0
implies that the tracking error vanishes, i.e. :

‖en‖∞
n→∞−→ 0.

Furthermore, the control action sequence
(
u(xn)

)
k∈N

converges, provided the reference trajectory
(
ξn

)
n∈N

is
bounded.

Note, the assumption of bounded prediction error can be
achieved if either state space is bounded or we allow for
unbounded control output which allows the linear control
part to effectively bound the reachable set of states of the
closed-loop dynamics.

B. Learning-based tracking control of an F-4 fighter jet
under wing rock

As pointed out in [10], modern fighter aircraft designs
are susceptible to lightly damped oscillations in roll known
as “wing rock”. Commonly occurring during landing [20],
removing wing rock from the dynamics is crucial for pre-
cision control of such aircraft. Precision tracking control
in the presence of wing rock is a nonlinear problem of
practical importance and has served as a test bed for a
number nonlinear adaptive control methods [9], [16], [10].

For comparison, we replicated the experiments of Chowd-
hary et. al. [9], [8].1 Using a realistic model of the roll
dynamics of an F-4 fighter jet, the authors examined the
task of using a model-reference adaptive controller (MRAC)
to perform a roll manoeuvre under uncertain wing rock.
Within a time span between t0 and tf , the task was to
control the aircraft’s ailerons on order to cause the aircraft’s
state trajectory x : [t0, tf ] → R2 to closely follow a roll
manoeuvre prescribed by the reference trajectory ξ(·). Here

1We are grateful to the authors for kindly providing their code.

the first component of the state and reference was the roll
angle and the second was the angular velocity.

Since wing rock can destabilise the dynamics, the authors
proposed to utilise a Gaussian process approach to learn a
model of the wing rock dynamics online and demonstrated
this could significantly improve tracking performance over
competing methods. They compared their Gaussian process
based approach, called GP-MRAC, to the more established
adaptive model-reference control approach based on RBF
neural networks [21], [13], referred to as RBFN-MRAC. As
the controller was meant to adapt to the uncertain wing rock
dynamics online during runtime, computational real time
constraints necessitated to fix the kernel hyper-parameters
of the GP. Furthermore, they also proposed to limit the
GP to a fixed budget of training examples which would be
incrementally updated online.

Replacing the GP by our LACKI learner, we readily
obtain an analogous learning-based controller which we call
LACKI-MRAC. For baseline comparison, we also examined
the performance of a simple PD-controller.

We created 555 randomised test runs of the wing rock
tracking problems and tested each control algorithm on each
one of them. The initial state x(t0) was drawn uniformly at
random from [0, 7] × [0, 7], the initial kernel length scales
were drawn uniformly at random from [0.05, 2], and used
both for RBF-MRAC and GP-MRAC. For LACKI, we chose
λ = 0. The parameter weights W of the system dynamics
(cf. [9]) were multiplied by a constant drawn uniformly at
random from the interval [0, 2]. To allow for better predictive
performance of GP-MRAC, we set the maximal budget to
200 training examples (twice as large as in the experiments of
[9]). The feedback gains of the linear pseudo controller were
chosen to be K1 = K2 = 1 (see [9] for more explanations).
As a baseline comparison, we also tested the performance of
a simple PD− controller with just these feedback gains.

The performance of all controllers across these randomised
trials is depicted in Fig. 2. Each data point of each boxplot
represent a performance measurement for one particular trial.

For each method, the figures show the boxplots of the
following recorded quantities:

• log-XERR: cummulative angular position error (log-
deg), i.e. log(

∫ tf
t0
‖ξ1(t)− x1(t)‖ dt ).

• log-XDOTERR: cummulative roll rate error (log-
deg/sec.), i.e. log(

∫ tf
t0
‖ξ2(t)− x2(t)‖ dt ).

• log-PREDERR: log-prediction error, i.e.
log(

∫ tf
t0

∥∥∥ f̂n(x(t))− f(x(t))
∥∥∥ dt ) where f is a vector

field affected by the wing rock.
• log-CMD: cummulative control magnitude (log-scale),

i.e. log(
∫ tf
t0
‖u(t)‖ dt ).

• log-max. RT (predictions): the log of the maximal run
time (within time span [t0, tf ]) each method took to
generate a prediction νad within the time span.

• log-max. RT (learning): the log of the maximal run
time (within time span [t0, tf ]) it took each method to
incorporate a new training example of the drift ã.

Discussion: All three adaptive methods outperformed the
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Fig. 2. Performance of the different online controllers over a range of 555
trials with randomised parameter settings and initial conditions. 1: RBFN-
MRAC, 2: GP-MRAC, 3:LACKI-MRAC, 4: PD-Controller. LACKI-MRAC
outperforms all other methods with respect to all performance measures,
except for prediction run time (where the parametric learner RBFN-MRAC
performs best).

simple PD− controller in terms of tracking error. With
regard to prediction run time, RBFN-MRAC outperformed
both GP-MRAC and LACKI-MRAC. This is hardly surpris-
ing. After all, RBFN-MRAC is a parametric method with
constant prediction time. By contrast, both non-parametric
methods will have prediction times growing with the number
of training examples. That is, it would be the case if GP-
MRAC were given an infinite training size budget. Indeed
one might argue whether GP-MRAC, if operated with a
finite budget, actually is a parametric approximation where
the parameter consists of the hyper-parameters along with
the fixed-size training data matrix. When comparing the
(maximum) prediction and learning run times one should
also bear in mind that GP-MRAC predicted with up to 200
examples in the training data set. By contrast, fast enough
to process large online data, LACKI-MRAC undiscerningly
had incorporated all 10001 training points by the end of each
trial. Across the remaining metrics, LACKI-MRAC markedly
outperformed all other methods.

V. CONCLUSIONS

We have introduced Lazily Adapted Constant Kinky In-
ference (LACKI) as an approach to nonparametric ma-
chine learning. Our method was built on the framework of
Kinky Inference which is a generalisation of well-known
approaches such as LI and NSM methods that have be-
come popular in numerical mathematics and learning-based
control. Our approach inherits the numerical simplicity of
these methods but does not require a priori knowledge of
a Lipschitz constant of the underlying target function. Of
course, this is of great practical interest since it endows
LACKI with substantially improved black-box learning ca-
pabilities. In contrast to competing NSM approaches based
on Lipschitz constant estimation [14], [5], LACKI is fast
enough to support online learning and, we can still give

theoretical guarantees on the learning performance showing
that LACKI can learn any continuous function. Being a
nonparametric regression method that is simple but can learn
rich function classes, LACKI hits a sweet spot between
robustness and efficiency on the one hand and high learning
capacity on the other. Furthermore, even with the hyper-
parameter estimator in place, it is fast enough to be utilised
in an online learning setting. This is in contrast to other
methods, for instance in Gaussian process regression, that
rely on hyper-parameter optimisation but which are burden
with intensive computation. In turn, this allows LACKI to
be utilised in model-reference adaptive control where we can
convert our learning guarantees into guarantees on tracking
success.

Our theoretical guarantees assume the observational errors
to be bounded by some ē ∈ R≥0 and that the hyper-parameter
λ is set to at least two times ē. While knowledge of such
a bound is a common assumption in learning-based control
[7], [2], in practice, this might be seen as a limiting factor:
that is, the errors may either be unbounded, or bounded ē
might be unknown a priori. Ongoing work investigates how
to estimate the ē parameter from the data: In the presence of
bounded i.i.d., additive, stochastic noise this can be done by
using POKI-LC [5] on a small patch of the input space to
obtain a local estimate of the Lipschitz constant. The noise
bound is then computed as a function of the worst-case error
of the POKI-LC predictor on a test sample.
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