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Abstract— A switched multiple model iterative learning con-
trol framework is developed which guarantees robust stability
and performance bounds under the assumption that the true
plant belongs to a plant uncertainty set that is specified by
the designer. In addition, the framework automatically adapts
the reference trajectory according to the action of an existing
internal control loop that is assumed to be embedded in the
plant structure. The framework is inspired by the needs of
stroke rehabilitation where assistive technology must support
the remaining, weak volitional effort of the patient. Exploit-
ing the multiple model based switching between models and
reference trajectories, the framework is also able to potentially
eliminate the need for identification and tuning and hence meet
the demanding needs of clinical application.

I. INTRODUCTION

Iterative learning control (ILC) is an approach formulated
for systems that track the same output trajectory over multi-
ple attempts, termed trials. Numerous algorithms have been
proposed that update the control input in the reset interval
between trials, with the aim of sequentially reducing the
tracking error. A rich theoretical framework has emerged,
together with a wide range of application fields. In particular,
ILC has been successfully used by many groups to assist
lower limb motion [19], [16], [2], [1]. ILC was first applied
to upper limb stroke rehabilitation in [11], where it controlled
the functional electrical stimulation (FES) applied to arti-
ficially activate patients’ muscles. The movement accuracy
produced by ILC led to statistically significant results in a
clinical trial. ILC has since been used in further clinical
trials to assist more complex movements involving the arm,
wrist and hand [11], [15], [14], again producing statistically
significant improvements in function.

While ILC can accurately assist completion of a prede-
fined motion trajectory, the framework has not been able to
respond to the voluntary effort contribution of each stroke
participant. Not only does this cause the tracking accuracy to
degrade, but any mismatch between voluntary intention and
assisted movement also reduces the rehabilitation effective-
ness [6]. Clinical application also restricts the time available
for model identification and controller tuning, necessitating
greater robust performance over a wide uncertainty space.

This paper addresses both issues by developing the first
ILC framework to automatically adapt the reference trajec-
tory in response to the residual capability of user, while
simultaneously ensuring convergence to the intended task.
This means that it can achieve high accuracy tracking of
the motion that the participant is themselves attempting
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and thereby maximizes clinical outcomes. The framework
is built on the estimation based multiple model switched
adaptive control developed in [3], [4] and further extended
for ILC in [8] to become estimation based multiple model
ILC (EMMILC). These use a bank of Kalman filters to
assess the performance of a set of candidate plant models,
and the controller corresponding to the most suitable plant
model is then switched into closed-loop. Given sufficient
candidate models, the framework is able to guarantee robust
performance. This feature is highly attractive within stroke
rehabilitation since it theoretically removes the need for time-
consuming model identification and control tuning.

II. PROBLEM FORMULATION

Many models have been proposed for human motor con-
trol, usually splitting the action of the central nervous system
(CNS) into path planning and subsequent tracking stages.
Approaches can be divided into those that attempt to simulate
the internal feedback/feedforward mechanisms present in
the CNS, and those that try only to model the resulting
kinematic motion at the task level. The latter typically pose
reaching tasks as optimization problems, involving, e.g.,
the minimization of jerk [5], torque change [20], variance
[10], interaction torques or a combination [17]. These forms
can be represented by first defining a motion ‘kernel’ r̃
that captures the essential features of the known task. This
comprises a sequence of p desired joint positions/velocities
that must occur at isolated, potentially unknown, time points
or intervals in a finite duration. Hence r̃ ∈ Ro1 × · · · ×Rop .
This is translated to an ideal movement of o joints specified
over a sufficiently long sampling interval [0, T ], T ∈ N, by
operator B̃ : Ro1 × · · · × Rop 7→ lo2[0, T ]. CNS feedforward
and feedback action can be modelled by operators K̃fb :
lo2[0, T ] 7→ lm2 [0, T ], K̃ff : lo2[0, T ] 7→ lm2 [0, T ] respectively
which produce electrical nerve signal ṽ that is transmitted
to the musculoskeletal system represented by operator F̃ :
lm2 [0, T ] → lo2[0, T ]. In this paper FES is assumed to be
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Fig. 1. a) ‘along the trial’ model of stimulated arm with volitional effort
and applied assistance, b) equivalent system with controller C̃.

the rehabilitative technology employed, however mechanical
support may alternatively be used. Accordingly, applied



FES to assist the m muscles involved in the movement is
represented by additive signal ũ, as shown in Fig. 1a). These
combine in a static manner [13] which may be assumed to
be linear [12]. These forms can be expressed as the general
structure of Fig. 1b) by setting H̃ = K̃ffD̃, G̃ = (I +
F̃ K̃fb)−1F̃ . It follows that G̃ can be expressed by the causal
linear time-invariant (LTI) state-space system (AG, BG, CG)
and H̃ is a non-casual along the trial mapping.

Due to stroke impairment, K̃fb, K̃ff are difficult to identify.
It must therefore be assumed that system P̃ : ỹ = G̃(H̃r̃ +
ũ) is unknown but belongs to a specified uncertainty set
Ũ . The objective is to control ũ such that the closed-loop
system is stable, and the output matches the intention of
the CNS, i.e. the output achieves ỹ = B̃r̃, where B̃r̃ is
the reference trajectory. Since motion kernel r̃ contains the
positions/velocities that capture the task, it is assumed to be
known. In general B̃ is not known, however a set of feasible
B̃ operators can be reliably generated, e.g. by applying the
minimum jerk computation of [5] to a suitable set of times
at which each joint position/velocity is reasonably achieved.
For simplicity it is assumed that o = m and G̃ is invertible.

A. Equivalent System Representation

We now reformulate the system in order to apply the
EMMILC framework of [8]. First denote ũ1,1 = ũ, ỹ1,1 = ỹ
and replace r̃ by ũ1,2. Then augment the plant and controller
with additional outputs, ỹ1,2, ũ2,2 respectively, and introduce
external disturbances on all signals. Due to the repeated
nature of the task, we can then express all signals as single
samples in a ‘lifted’ space by defining repetition index
superscript k ∈ N+ and ui,j(k) = ũki,j , yi,j(k) = ỹki,j ,
r(k) = r̃. The corresponding operators

G : lm2 [0, T ]× N 7→ lo2[0, T ]× N
: w 7→ y1,1 : y1,1(k) = G̃w(k) (1)

H : Ro1 × · · · × Rop × N 7→ lm2 [0, T ]× N
: u1,2 7→ v : v(k) = H̃u1,2(k) (2)

are the lifted representations of along-the-trial dynamics G̃
and H̃ . These definitions mean system Fig. 1b) can be
equivalently represented as in Fig. 2, where ū0 = (0, r)> ∈
Ue, ȳ0 = (0, r)> ∈ Ye, ui = (ui,1, ui,2)> ∈ Ue, yi =
(yi,1, yi,2)> ∈ Ye, i ∈ {0, 1, 2} in which the lifted spaces

U := lm2 [0, T ]× Ro1 × · · · × Rop × N,
Y := lo2[0, T ]× Ro1 × · · · × Rop × N, (3)

with wi := (ui, yi)
> ∈ U × Y , and lifted plant operator

P : Ue 7→ Ye :u1 7→ y1:

(
y1,1

y1,2

)
=

(
G GH
0 0

)(
u1,1

u1,2

)
∈ P

(4)

where P is the set of all LTI operators of appropriate
dimension. The distance between system models will be
measured using the well-established gap metric, δ(P̃ , P̃1),
P̃ , P̃1 ∈ Ũ , introduced in [9]. Note that it can be shown that
unlifted and lifted gaps are equal, i.e. δ(P̃ , P̃1) = δ(P, P1)
[7].
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Fig. 2. Augmented lifted ILC system fitting within EMMILC framework.

III. CONTROLLER FORMULATION

In this section it is assumed that plant model P = Pi, with
components Hi, Gi, is known. We must design controller
Cj ∈ C, with components Nj , Lj , Bj , to stabilise the system
and satisfy tracking requirement y1,1 = Bjr. Here C is the
set of all LTI operators of consistent dimension.

Proposition 1: Let H̃i be given and G̃i have state space
form (AG, BG, CG). The along-the-trial ILC objective

min
u1,1(k) ∈
lm2 [0, T ]

{
‖B̃ir̃ − y1,1(k)‖2Q + ‖u1,1(k)− u1,1(k − 1)‖2

}
(5)

is solved in the absence of disturbances by the control input

ũ2,1(k, t) =ũ2,1(k − 1, t) + Φ(t)
(
x̂(k, t)− x̂(k − 1, t)

)
−B>Gξ(k, t) (6)

with Φ(t) = (I+B>GK(t)BG)−1B>GK(t)AG, estimated state

x̂(k, t+ 1) =AGx̂(k, t) +BG
(
(H̃ir̃)(t)− ũ2,1(k, t)

)
+O

(
CGx̂(k, t) + ỹ2,1(k, t)

)
, (7)

with observer matrix O, and the feedforward term

ξ(k, t) =
(
I +K(t)BGB

>
G

)−1 {
A>Gξ(k, t+ 1)+

C>GQ
(
(B̃ir̃)(t+ 1) + ỹ2,1(k − 1, t+ 1)

)}
(8)

with ξ(k, T ) = 0 and K(t) defined by

K(t) =A>GK(t+ 1)
(
I +BGB

>
GK(t+ 1)

)−1
AG + C>GQCG,

K(T ) = 0 (9)
Proof: Embeds H̃i, B̃i within the structure of [18].

To apply the multiple model switching framework it is
necessary to express (6) - (9) in the lifted form as follows.
Define the lifted integrator block which embeds ILC action

M : lm2 [0, T ]× N 7→ lm2 [0, T ]× N : z 7→ x
: x(k + 1) = x(k) + z(k) (10)

and Nj : a 7→ b : a(k) = Ñjb(k), Bj : a 7→ b : a(k) =
B̃jb(k), Lj : a 7→ b : a(k) = L̃jb(k).

Proposition 2: Control action (6) - (9) is realised by

Ñj = Ξj , B̃j = B̃i, Lj =
(
ΞjG̃i − I

)(
I + G̃∗iQG̃i

)−1
G̃∗iQ
(11)



where

Ξj =


0 · · · · · · 0

Φ(1)O 0 · · · 0...
...

. . .
...

ΦAT−1
x̂ (T − 1)O ΦAT−2

x̂ (T − 2)O · · · 0

 ,

G̃i =


0 · · · · · · 0

CGBG 0 · · · 0...
...

. . .
...

CGA
T−1
G BG CGA

T−2
G BG · · · 0

 (12)

with Ax̂(t) =AG−BGΦ(t)+OCG= (I+BGB
>
GK(t))

−1
AG

+OCG. The tracking error monotonically converges as

‖B̃ir̃ − y1,1(k + 1)‖ ≤
(
I + σ(G̃iG̃

∗
iQ)

)−1‖B̃ir̃ − y1,1(k)‖

with limk→∞ y1,1(k) = B̃ir̃. The control action converges
to the ideal input w̄Pi

2 := (−(G̃−1
i B̃i − H̃i)r̃, 0,−B̃ir̃, r̃)>.

Proof: Involves extensive manipulations to give I +

Z̃i,iL̃i = I + G̃iG̃
∗
iQ where Z̃i,j =

(
I − G̃iÑj

)−1
G̃i.

The next result establishes stability bounds with distur-
bance and model mismatch. We consider a plant Pi (com-
prising Gi, Hi) that is switched into closed loop with an
arbitrary controller Cj (comprising Nj , Lj , Bj).

Proposition 3: 1) (Linear growth of [Pi, Cj ]): Let P = Pi
and C = Cj be given by (11) with the signal connections
of Fig. 2. Let l1, l2, l3, l4 ∈ N, l1 < l2 ≤ l3 < l4 and
I1 = [l1, l2), I2 = [l2, l3), I3 = [l3, l4). Then the control
signal w2 is bounded with respect to the ideal solution for
plant Pi of w̄Pi

2 =
(
− (G̃−1

i B̃j − H̃i)r̃, 0,−B̃j r̃, r̃
)>

by

‖w2|I3‖w̄Pi
2
≤∥∥∥∥∥∥∥

 ‖I + L̃jZ̃i,j‖|I2|+1

...
‖I + L̃jZ̃i,j‖|I2|+|I3|


∥∥∥∥∥∥∥‖I−ÑjG̃i‖‖(I−ÑjG̃i)−1‖

︸ ︷︷ ︸
α(Pi,Cj ,|I2|,|I3|)

‖w2|I1‖w̄Pi
2

+∥∥∥∥∥∥∥∥


(Λ̄
|I2|+1
i,j + X̄

|I2|+1
i,j ) X̄

|I2|
i,j · · · X̄1

i,jΓ̄i,j
...

...
...

...
. . . . . .

(Λ̄
|I2|+|I3|
i,j + X̄

|I2|+|I3|
i,j )X̄

|I2|+|I3|−1
i,j · · · · · · · · · X̄1

i,jΓ̄i,j


∥∥∥∥∥∥∥∥︸ ︷︷ ︸

β(Pi,Cj ,|I2|,|I3|)
· ‖w0|I1∪I2∪I3‖ (13)

where Λ̄qi,j = −(I − ÑjG̃i)−1(I + L̃jZi,j)
qÑjĀi,j , X̄

q
i,j =

(I − ÑjG̃i)−1(I + L̃jZi,j)
q−1L̃j(I − G̃iÑj)−1Āi,j , Γ̄i,j =

(I − ÑjG̃i)−1ÑjĀi,j . Here Āi,j = (−G̃i,−G̃iH̃i, I, B̃j).
2) (Stability of [Pi, Ci]): Let x ∈ N, then

α(Pi, Ci, a, x)→ 0 as a→∞ (14)

and α is monotonic in a.
Proof: Follows after extensive manipulations and the

identity ‖‖x‖, ‖y‖‖ = ‖(x, y)‖, x, y ∈ l2.

Stablising controller design procedure

Ψ : P → C (15)

Estimator
X :We → map(N,map(P,R+))

: w2 7→ [k → (i 7→ ri[k])] (16)

Minimising operator

M̂ : (map(N,map(P,R+)))→ map(N,P∗)
:
[
k 7→ (i 7→ ri[k])

]
7→
[
k 7→ qf (k)

]
(17)

qf (k) := argmin
i∈G

ri[k], ∀k ∈ N (18)

Delay transition operator

D : map(N,P∗)→ map(N,P∗)
: [k 7→ qf (k)] 7→ [k 7→ q(k)] (19)

q(k) :=

{
qf (k) if k − ks(k) ≥ ∆(q(ks(k)))
q(ks(k)) else

(20)

∆ : P → N (21)

ks(k) := max{i ∈ N | 0 ≤ i ≤ k, q(i) 6= q(i− 1)} (22)

Overall switching operator

S :We → map(N,P∗) : w2 7→ q (23)

S = D̂M̂(X,G) (24)

Controller C : Ye → Ue : y2 7→ u2 (25)

u2(k) = Ψ(q(k))(y2 − Tks(k)−1y2)(k) (26)

TABLE I
EQUATIONS SPECIFYING THE EMMILC ALGORITHM.

IV. EMMILC TRACKING STRUCTURE

EMMILC was introduced in [8] and comprises the switch-
ing algorithm illustrated in Fig. 3. The corresponding struc-
tural requirements are shown in Table I. The control design
procedure Ψ assigns a stabilising controller Ci ∈ C to
each plant Pi ∈ P , such that [Pi, Ci] is gain stable. The
powerset of P is denoted P∗ and G ⊂ P is a constant
set of candidate plant models thought to represent the true
plant. For each Pi ∈ G we implement an estimator X which
uses observations w2 to generate a residual ri[k] at sample
k. These are fed to the minimization operator M̂ , which
returns the index, qf , of the plant with minimal residual. The
purpose of operator D is to delay the free switching signal
qf long enough to prevent instability effects caused by rapid
switching, and so ensure overall convergence of the closed-
loop signals. For this purpose we associate with every plant
a minimum delay ∆(i) which must elapse before another is
permitted. The signal q then determines the atomic controller
choice Ψ(q(k)) corresponding to the selected plant. Together
these components comprise the switching operator S shown
in Fig. 3, where P∗ denotes the true plant.

A. Estimation Problem

Estimator X is selected as the biased infinite horizon
operator, defined for each Pi as

ri[k]=X(w2)(k)(Pi) = inf{‖v‖, v ∈ N [0,k]
i (w2)} (27)
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where the set of weakly consistent disturbance signals for
plant Pi and observation w2 = (u2, y2)> with bias w̄0 =
(ū0, ȳ0)> over trials k = a, · · · , b is

N [a,b]
i,w̄0

(w2) :=
{
v ∈ W|[a,b] | ∃(u0, y0)> ∈ We s.t.

Rb−a,bPi
(
u0 + ū0 − u2

)
= Rb−a,b

(
y0 + ȳ0 − y2

)
,

v = (Rb−a,bu0,Rb−a,by0)
}

(28)

where the restriction operator Rσ,tv := (v(t−σ), · · · , v(t)).
This is computed as follows.

Theorem 1: Residual (27) is given by

ri[k] =

k∑
b=0

∥∥∥∥∥∥∥∥∥




I 0
0 I

G̃i G̃iH̃i

0 0




I 0
0 I

G̃i G̃iH̃i

0 0


†

−


I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I




·


0
0

G̃i
(
u2,1(b)− H̃ir̃

)
− y2,1(b)

r̃ − y2,2(b)


∥∥∥∥∥∥∥∥ (29)

Proof: Since the plant dynamics along each pass are
independent of the previous pass, we can write

N [0,k]
i,w̄0

(w2) = N [0,0]
i,w̄0

(w2)×N [1,1]
i,w̄0

(w2)× · · · × N [k,k]
i,w̄0

(w2).

This means residual (27) can be obtained recursively as

ri[k] =

k∑
b=0

ii[b] with ii[b] := inf{‖v‖ ∈ N [b,b]
i (w2)}

Within (28), the restriction becomes R0,bv = v(b), and since
Pi is a static mapping

R0,bPi
(
u0 + ū0 − u2

)
= P̃i

(
u0(b) + ū0(b)− u2(b)

)
so that

N [b,b]
i (w2) :=

{
v ∈ W|[b,b] | ∃(u0, y0)> ∈ We s.t.

P̃i
(
u0(b) + ū0(b)− u2(b)

)
= y0(b) + ȳ0(b)− y2(b),

v = (u0(b), y0(b))
}
. (30)

Since

y0(b) = P̃i
(
u0(b) + ū0(b)− u2(b)

)
− ȳ0(b) + y2(b) (31)

we obtain ii,w̄0
[b] =

inf
u0(b) ∈
lm2 [0, T ]

{∥∥∥∥( u0(b)
P̃i
(
u0(b) + ū0(b)− u2(b)

)
− ȳ0(b) + y2(b)

)∥∥∥∥}

whose solution yields (29).
Computational load of (29) is high and grows with increasing
k. However, with suitable choice of weighting, the residual
can be computed by a Kalman filter designed for the along-
the-trial system G̃i, and driven by input H̃ir̃ − u2,1(b).

Theorem 2: Residual (29) can be efficiently computed by

ri[k] =

k∑
b=0

[
T∑
t=0

‖ỹ2,1(b, t) + CGx̂(b, t)‖2[CGΣ(t)C>G+I]−1

] 1
2

.

(32)

where the Kalman filter is implemented on trial b by

x̂(b, t+ 1/2) = x̂(t)− Σ(t)C>G [CGΣ(t)C>G + I]−1

· [ỹ2,1(b, t) + CGx̂(t)]

Σ(t+ 1/2) = Σ(t)− Σ(t)C>G [CGΣ(t)C>G + I]−1CGΣ(t)

x̂(b, t+ 1) = AGx̂(t+ 1/2) +BG
(
(H̃ir̃)(t)− ũ2,1(b, t)

)
Σ(t+ 1) = AGΣ(t+ 1/2)A>G +BGB

>
G (33)

with x̂(b, 0) = 0, Σ(0) = 0.
Proof: Follows from the deterministic interpretation of

the Kalman Filter, see e.g. [21].

V. NOMINAL STABILITY AND GAIN BOUNDS

The gain bounds that follow depend on the size and
geometry of a ‘cover’ of the plant uncertainty set U , rather
than on the plant uncertainty set itself. This enables the
bounds to avoid scaling with the number of candidate mod-
els, unlike most multiple model frameworks. The notion of
the cover is as follows. Let A ⊂ P be a plant set and let
ν := map(P,R+) be given. Now define for P ∈ P

Bδ(P, ν(p̂)):={P} ∪
{
P1 ∈ P | δ(P, P1) < ν(P )

}
∩ U,

to be the set of plants that reside within a neighbourhood
of radius ν(P ), as measured by gap δ, around P . For an
appropriate choice of (A, ν), the union of the corresponding
neighbourhoods in U then leads to a cover for U , so that

Definition 1: (A, ν) is a cover for uncertainty set U if
U ⊂

{
∪P∈A Bδ(P, ν(P )))

}
.

We next give gain bounds for the interconnection of the
controller with ‘true’ plant P∗, with components G∗, H∗.

Theorem 3: Let control design Ψ be such that given Pi,
and Ci = Ψ(Pi) is defined by (11). Let P∗ ∈ U where U is
an LTI uncertainty set of appropriate dimensions we seek to
control. Suppose (A, ν) is a finite cover for U . Let G ⊂ P be
a suitable sampling of U specifying the available candidate
plant set. Suppose

∃ P ∈ G, δ(P, P∗) < ε χν(A, ν) (34)



for ε > 0. If
π(U,H, ν, ε, P∗) > 0, (35)

then the control scheme defined by (16)-(26) with estimator
(32)-(33) and delay ∆ satisfying supP∈U α(Pi,Ψ(Pi),∆−
1, 1) < 0.5 achieves the bound

‖Tkw2‖w̄P∗
2
≤ γ̂(U,A, ν, ε, P∗)‖w0‖ (36)

where Tk is the truncation operator, the ideal control in-
put for the true plant is w̄P∗2 (k) =

(
− (G̃−1

P∗
B̃q(k) −

H̃P∗)r̃, 0,−B̃q(k)r̃, r̃
)>

and χν , π, γ̂ are defined in Table II.
Proof: Generalises the EMMILC proof [8] to include

multiple permissible reference trajectories for each candidate
plant, resulting in a time-varying w̄P∗2 that is explicitly
extracted from the observed data via the estimator bank.
This theorem establishes that EMMILC can provide robust
convergence to the ideal tracking solution for the true plant.
This solution, B̃q(k), is selected by the estimator bank to
correspond to the patient’s voluntary intention. Theorem 3
provides transparent selection of G: (35) gives a maximum
value of ρ = εχν(A, ν), which is used in (34) to specify a
maximum distance between the models in G. This distance is
measured by the gap metric in either lifted or unlifted plant
space. Hence G is designed by constructing a covering of U
by neighbourhoods of radius ρ with centre Pi ∈ G.

VI. SIMULATION EXAMPLE

The control scheme is now applied to the upper limb stroke
rehabilitation platform of [11], in which elbow extension is
assisted via FES applied to the triceps. The task is a single
‘point-to-point’ movement of a single joint, hence m = o =
1, p = 1, o1 = 1 with r̃ = 2 rads. The maximum sample
number T is fixed at 400 in all tests, with padding applied for
attempts finishing earlier. The candidate plants Pi comprise:
• B̃i: the minimum jerk solution for Ti samples, [5].
• K̃ff,i, K̃fb,i: proportional gain, ki for simplicity.
• F̃i: critically damped muscle dynamics Fi(s) =
ω2
i /(s

2 + 2ζiωis+ ω2
i ), as shown to accurately capture

muscle dynamics [6]. The sampling period is 0.01 s.
Together these yield Gi, Hi via (1), (2), and are therefore
each candidate Pi is parametrised by the set {Ti, ki, ωi, ζi}.

We define the true plant P∗ analogously, with ζ∗ = 1,
ω∗ = 5, k∗ = 0.5, T∗ = 320 on trials 1 to 14, and then
subsequently with ζ∗ = 0.7, ω∗ = 8, k∗ = 0.3, T∗ = 200.
This represents a rapid onset of fatigue, associated with
faster dynamics and weaker voluntary effort. The candidate
plant set G is designed via Theorem 3 and comprises all
combinations of the following elements:

ζi = {0.4, 0.7, 1.0, 1.3, 1.6}, ωi = {2, 5, 8, 11},
ki = {1, 2, 3, 4, 5, 6, 7, 8}, Ti = {220, 260, 300, 340, 380}

The true plant response is shown in Fig. 4 and illustrates the
level of voluntary input.

The control design Ci = Ψ(Pi) is defined by (11) with
Q = 10. The results are shown in Fig. 5 and Fig. 6. These
confirm that the EMMILC framework is able to accurately

Controller bounds with nominal plant

αOP (U) = 4 sup
P1∈U

α2(P1,Ψ(P1),∆(P1)− σ, σ)

βOP (U) = 4 sup
∆(P1)≤x≤2∆(p̂1)

P1∈U

β2(P1,Ψ(P1), x− σ, σ)

αOS(U) = 4 sup
∆(P1)≤x≤2∆(p̂1)

P1∈U

α2(P1,Ψ(P1), 0, x− σ)

βOS(U) = 4 sup
∆(P1)≤x≤2∆(p̂1)

P1∈U

β2(P1,Ψ(P1), 0, x− σ)

γ3(U) = (1 + α
1/2
OS (U))

(
αOP (U)

1− αOP (U)

)1/2

+ α
1/2
OS (U) (37)

γ4(U) = (1 + α
1/2
OS (U))

(
βOP (U)

1− αOP (U)

)1/2

+ β
1/2
OS (U) (38)

Controller bounds with real plant

γ1(P, P∗) = 1 + sup
∆(P )≤x≤2∆(P )

α(P∗,Ψ(P ), 0, x)

γ2(P, P∗) = sup
∆(P )≤x≤2∆(P )

β(P∗,Ψ(P ), 0, x),

γ̄i(Q1, Q2) = sup
P1∈Q1

sup
P2∈Q2

γi(P1, P2), i = 1, 2

Gain bound
γ̂(U,A, ν, ε, P∗) =(∑

P∈A
γ2(P, P∗)+

γ4(U)η(H, ν, ε, P∗)

π(U,H, ν, ε, p̂∗)

)
φ(U,A, ν, ε, P∗) (39)

where
π(U,A, ν, ε, P∗) = 1− 21/2εχν(A, v)(1 + γ̄2

1(A,U))γ4(U)

η(A, ν, ε, P∗) = 21/2(1 + εχν(A, ν)γ̄2(A,P∗)(1 + γ̄1(A,P∗)))

φ(U,A, ν, ε, P∗) =

(
1 + γ3(U)

π(U,A, ν, ε, P∗)

)|A| ∏
P∈A

γ1(P, P∗)

χν(H, ν) = 2 sup
P∈A

ν(P ) where ν : P → R+ (40)

TABLE II
FUNCTIONS SPECIFYING THE EMMILC GAIN BOUND.

assist voluntary effort while adapting to the plant dynamics,
the level of voluntary effort, and the required task.

VII. CONCLUSION
A multiple model ILC framework has been developed

which is capable of assisting human motor control. This is
the first approach to combine ILC and models of human
motor control, and is motivated by the need of stroke reha-
bilitation to precisely assist patient’s voluntary completion
of functional tasks. A key feature of the framework is its
potential to remove the need for model identification and
controller tuning. Future work will focus on applying the
framework to stroke patients within clinical feasibility trials.
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