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Stochastic Model Predictive Control with

Discounted Probabilistic Constraints

Shuhao Yan, Paul Goulart and Mark Cannon

Abstract— This paper considers linear discrete-time systems
with additive disturbances, and designs a Model Predictive
Control (MPC) law to minimise a quadratic cost function
subject to a chance constraint. The chance constraint is de-
fined as a discounted sum of violation probabilities on an
infinite horizon. By penalising violation probabilities close to
the initial time and ignoring violation probabilities in the far
future, this form of constraint enables the feasibility of the
online optimisation to be guaranteed without an assumption of
boundedness of the disturbance. A computationally convenient
MPC optimisation problem is formulated using Chebyshev’s
inequality and we introduce an online constraint-tightening
technique to ensure recursive feasibility based on knowledge of
a suboptimal solution. The closed loop system is guaranteed to
satisfy the chance constraint and a quadratic stability condition.

I. INTRODUCTION

Robust control design methods for systems with unknown

disturbances must take into account the worst case distur-

bance bounds in order to guarantee satisfaction of hard

constraints on system states and control inputs [1], [2],

[3]. However, for problems with stochastic disturbances

and constraints that are allowed to be violated up to a

specified probability, worst-case control strategies can be un-

necessarily conservative. This motivated the development of

stochastic Model Predictive Control (MPC), which addresses

optimal control problems for systems with chance constraints

by making use of information on the distribution of model

uncertainty [4], [5]. Although capable of handling chance

constraints, existing stochastic MPC algorithms that ensure

constraint satisfaction in closed loop operation typically rely

on knowledge of worst case disturbance bounds to obtain

such guarantees [6]. For the algorithms proposed in [7], [8],

[9] for example, which simultaneously ensure closed loop

constraint satisfaction and recursive feasibility of the online

MPC optimisation, the degree of conservativeness increases

as the disturbance bounds become more conservative.

This paper ensures both closed loop satisfaction of chance

constraints and recursive feasibility but does not rely on

disturbance bounds, instead requiring knowledge of only the

first and second moments of the disturbance input. This is

achieved by formulating the chance constraint as the sum

over an infinite horizon of discounted violation probabilities,

and implementing the resulting constraints using Cheby-

shev’s inequality. Control problems involving discounted

costs and constraints are common in financial engineering
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applications (e.g. [10], [11], [12]), and allow system per-

formance in the near future to be prioritised over long-

term behaviour. This shift of emphasis is vital for ensuring

recursive feasibility of chance-constrained control problems

involving possibly unbounded disturbances. We describe an

online constraint-tightening approach that guarantees the

feasibility of the MPC optimisation, and, by considering the

closed loop dynamics of the tightening parameters, we show

that the closed loop system satisfies the discounted chance

constraint as initially specified.

The paper is organised as follows. The control problem is

described and reformulated with a finite prediction horizon

in Section II. Section III proposes an online constraint-

tightening method for guaranteeing recursive feasibility. Sec-

tion IV summarises the proposed MPC algorithm and derives

bounds on closed loop performance. In Section V, the closed

loop behaviour of the tightening parameters is analysed and

constraint satisfaction is proved. Section VI gives a numerical

example illustrating the results obtained and the paper is

concluded in Section VII.

Notation: The Euclidean norm is denoted ‖x‖ and we

define ‖x‖2Q := xTQx. The notation Q < 0 and R ≻ 0
indicates that Q and R are respectively positive semidefinite

and positive definite matrices, and tr(Q) denotes the trace

of Q. The probability of an event A is denoted P(A).
The expectation of x given information available at time

k is denoted Ek [x] and E [x] is equivalent to E0 [x]. The

sequence {x0, . . . , xN−1} is denoted {xi}
N−1

i=0
. We denote

the value of a variable x at time k as xk, and the i-step-

ahead predicted value of x at time k is denoted xi|k .

II. PROBLEM DESCRIPTION

Consider an uncertain linear system with model

xk+1 = Axk +Buk + ωk, (1)

where xk ∈ R
nx , uk ∈ R

nu are the system state and the

control input respectively. The unknown disturbance input

ωk ∈ R
nx is independently and identically distributed with

known first and second moments:

E [ωk] = 0, E
[
ωkω

T
k

]
= W.

Unlike the approaches of [5], [13], which assume the additive

disturbance lies in a compact set, the disturbance ωk is not

assumed to be bounded and its distribution may have infinite

support. It is assumed that the system state is measured

directly and available to the controller at each sample instant.
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The system (1) is subject to the constraint

∞∑

k=0

γk
P
(
‖Cxk‖ ≥ t

)
≤ e, (2)

for a given matrix C ∈ R
nc×nx , positive scalars t, e and

discounting factor γ ∈ (0, 1). This constraint gives a special

feature to the control problem that the probability of future

states violating the condition ‖Cxk‖ < t at time instants

nearer to the initial time are weighted more heavily than

those in the far future. For simplicity we refer to P(‖Cxk‖ ≥
t) as a violation probability.

The aim of this work is to design a controller that

minimises the cost function

E

[
∞∑

k=0

‖xk − xr‖2Q + ‖uk − ur‖2R

]
(3)

and ensures a quadratic stability condition on the closed loop

system while the constraint (2) is satisfied. The weighting

matrices in (3) are assumed to satisfy Q < 0 and R ≻ 0,

and we assume knowledge of reference targets xr and ur for

the state and the control input that satisfy the steady state

conditions

(I −A)xr = Bur, ‖Cxr‖ < t. (4)

Assumption 1: (A,B) is controllable and (A,Q
1

2 ) is ob-

servable.

A. Finite horizon formulation

The problem stated above employs an infinite horizon

and is subject to a constraint defined on infinite horizon.

If the infinite sequence of control inputs {uk}∞k=0
were

considered to be decision variables, then clearly the opti-

misation problem would be infinite dimensional and thus

in principle computationally intractable [6]. However, the

use of an infinite horizon can impart desirable properties,

notably stability [14], [15]. It is therefore beneficial to design

an MPC law using a cost function and constraints that are

defined on a finite horizon in such a way that they are

equivalent to the infinite horizon cost and constraints of

the original problem. The finite horizon cost function for

a prediction horizon of N steps is given by

E

[
N−1∑

i=0

∥∥xi|k − xr
∥∥2
Q
+
∥∥ui|k − ur

∥∥2
R
+ F (xN |k)

]
(5)

where E
[
F (xN |k)

]
is the terminal cost and F (x) ≥ 0 for all

x. The constraint (2) is likewise truncated to a finite horizon:

N−1∑

i=0

γi
P
(∥∥Cxi|k

∥∥ ≥ t
)
+ f(xN |k) ≤ εk. (6)

Here f(xN |k) is a terminal term chosen (as will be spec-

ified in (14) and Lemma 4) to approximate the infinite

sum in (2) so that
∑∞

i=N γi
P(‖Cxi|k‖ ≥ t) ≤ f(xN |k),

and εk is a bound on the lhs of (6) that is achievable

at time k. Although εk may increase or decrease over

time since it is conditioned on the system state at time

k, we show in Section V that (2) is satisfied if ε0 ≤ e
and εk is defined as described in Section III.

Even with the cost and constraints defined as in (5)-(6)

on a finite horizon, the probability distribution of states may

be unknown at each time step and the finite horizon version

of the problem is therefore still intractable in general. Even

if the probability distribution of ωk is known explicitly,

computing (5) and (6) requires the solution of a set of

multivariate convolution integrals, which in principle is still

difficult to manage [5].

B. Constraint handling and open loop optimisation

This section considers how to approximate the finite

horizon constraint (6) using the two-sided Chebyshev in-

equality [16, Section V.7] and gives the explicit form of

the MPC cost function. The cost and constraints are then

combined to construct the MPC optimisation problem that is

repeatedly solved online. We define the sequence of control

inputs predicted at time k as

ui|k = K(xi|k − x̄i|k) +mi|k, i = 0, . . . , N − 1 (7)

uN+i|k = K(xN+i|k − xr) + ur, i = 0, 1, . . . (8)

where mi|k is the i-step-ahead prediction of the nominal

control input given information at time k, that is, Ek

[
ui|k

]
=

mi|k, and x̄i|k is the i-step-ahead prediction of the nominal

state given information at time k, that is, Ek

[
xi|k

]
= x̄i|k .

Assumption 2: Φ := A+BK is strictly stable.

Given the predicted control law (7)-(8), the first two

moments of the predicted state and control input sequences

can be computed. Thus, the predicted nominal state trajectory

is given by x̄0|k = xk and

x̄i|k = Aix̄0|k +

i−1∑

j=0

Ai−1−jBmj|k, i = 1, . . . , N (9)

x̄N+i|k = Φi
(
x̄N |k − xr

)
+ xr , i = 1, 2, . . . (10)

whereas the covariance matrix, Xi|k, of the i-step-ahead

predicted state is given by X0|k = 0 and

Xi|k =

i−1∑

j=0

ΦjW
(
Φj

)T
, i = 1, 2, . . . . (11)

Clearly Xi|k is independent of k, and in the following

development we simplify notation by letting X̂i := Xi|k.

In this paper, we use Chebyshev’s inequality to handle

probabilistic constraints. The advantages of this approach

are that it can cope with arbitrary or unknown disturbance

probability distributions (the only information required being

the first two moments of the predicted state trajectory),

and furthermore it results in quadratic inequalities that are

straightforward to implement. Approximating (6) by direct

application of the two-sided Chebyshev inequality [17], we

obtain

tr(CTCX̂i) +
∥∥Cx̄i|k

∥∥2

t2
≤ βi|k, i = 0, . . . , N − 1 (12)

N−1∑

i=0

γiβi|k + f(x̄N |k) ≤ εk, (13)



where {βi|k}
N−1

i=0
is a sequence of non-negative scalars. The

terminal term f(x̄N |k) in (13) is chosen so that

f(x̄N |k) =
tr(CTCS̃)

t2
+

γN

t2

[∥∥x̄N |k − xr
∥∥2
P̃
+

‖xr‖2CTC

(1− γ)

]

+
2γN(xr)TCTC(I − γΦ)−1(x̄N |k − xr)

t2
(14)

where S̃ ≻ 0, P̃ ≻ 0, and I − γΦ is invertible since γΦ is

strictly stable. The design of S̃, P̃ is discussed in Section V.

In terms of the predicted nominal state trajectory in (9)-

(10), the predicted cost is defined

J(x̄0|k, {mi|k}
N−1

i=0
, εk) :=

∥∥x̄N |k − xr
∥∥2

P

+

N−1∑

i=0

(∥∥x̄i|k − xr
∥∥2
Q
+
∥∥mi|k − ur

∥∥2

R

)
(15)

whenever a sequence {βi|k}
N−1

i=0
exists satisfying (12)-(13)

for the given x̄0|k, {mi|k}
N−1

i=0
and εk. On the other hand, if

x̄0|k, {mi|k}
N−1

i=0
and εk are such that constraints (12)-(13)

are infeasible, we set J(x̄0|k, {mi|k}
N−1

i=0
, εk) := ∞. Note

that ‖x̄N |k − xr‖2P in (15) represents the terminal cost, and

that P ∈ S
nx

++. The choice of P is discussed in Section IV.

To summarise, the MPC optimisation solved at time k is

J∗(xk, εk) := min
{mi|k}

N−1

i=0

J(xk, {mi|k}
N−1

i=0
, εk), (16)

and its solution for any feasible xk and εk is denoted
{
m∗

i|k(xk, εk)
}N−1

i=0
:= argmin

{mi|k}
N−1

i=0

J
(
xk, {mi|k}

N−1

i=0
, εk

)
.

(17)

For simplicity we write this solution as {m∗
i|k}

N−1

i=0
, with the

understanding that this sequence depends on xk and εk. The

corresponding nominal predicted state trajectory is given by

x̄∗
i|k = Aixk +

i−1∑

j=0

Ai−1−jBm∗
j|k, i = 1, . . . , N (18)

x̄∗
N+i|k = Φi(x̄∗

N |k − xr) + xr, i = 1, 2, . . . . (19)

The MPC law at time k is defined by

uk := m∗
0|k, (20)

and the closed loop system dynamics are given by

xk+1 = Axk + Bm∗
0|k(xk, εk) + ωk, (21)

where ωk is the disturbance realisation at time k.

In the remainder of this paper we discuss how to choose

εk, K , P , P̃ and S̃ so as to guarantee quadratic stability and

satisfaction of the constraint (2) under the MPC law (20).

III. RECURSIVE FEASIBILITY

Recursively feasible MPC strategies have the property that

the MPC optimisation problem is guaranteed to be feasible at

every time-step if it is initially feasible. This property can be

ensured by imposing a terminal constraint that requires the

predicted system state to lie in a particular set at the end of

the prediction horizon [6]. For a deterministic MPC problem,

if an optimal solution can be found at current time, then the

tail sequence, namely the optimal control sequence shifted

by one time-step, will be a feasible suboptimal solution at

the next time instant if the terminal constraint is defined in

terms of a suitable invariant set for the predicted system state

[18], [19]. For a robust MPC problem with bounded additive

disturbances, recursive feasibility can likewise be guaranteed

under either open or closed loop optimisation strategies by

imposing a terminal constraint set that is robustly invariant.

However, this approach is not generally applicable to systems

with unbounded additive disturbances, and in general it is not

possible to ensure recursive feasibility in this context while

guaranteeing constraint satisfaction at every time instant.

In this section we propose a method for guaranteeing

recursive feasibility of the MPC optimisation that does not

rely on terminal constraints. Instead recursive feasibility is

ensured, despite the presence of unbounded disturbances, by

allowing the constraint on the discounted sum of probabilities

to be time-varying. For all time-steps k > 0, the approach

uses the optimal sequence computed at time k − 1 to

determine a value of εk that is necessarily feasible at time

k. Using this approach it is possible to choose ε0 so that the

original constraint (2) is satisfied, as we discuss in Section V.

We use the notation S ({m∗
i|k}

N−1

i=0
) to denote a nominal

control sequence derived from a time-shifted version of

{m∗
i|k}

N−1

i=0
, defined by

S

(
{m∗

i|k}
N−1

i=0

)
:= {m∗

i+1|k +KΦiωk}
N−1

i=0
, (22)

with m∗
N |k := K(x̄∗

N |k−xr)+ur. Note that the disturbance

realisation ωk can be computed given the measured state

xk+1 and hence the sequence S ({m∗
i|k}

N−1

i=0
) is available

to the controller at time k + 1.

Lemma 1: The MPC optimisation (16) is recursively fea-

sible if εk is defined at each time k = 1, 2, . . . as

εk := min
{
ε | J

(
xk,S

(
{m∗

i|k−1}
N−1

i=0

)
, ε
)
< ∞

}
.

(23)

Proof: The definition of the MPC predicted cost implies

that, for any given sequence {mi|k}
N−1

i=0
, there necessarily

exists a value of ε such that J(xk, {mi|k}
N−1

i=0
, ε) is finite.

Moreover S ({m∗
i|k−1

}N−1

i=0
) is (with probability 1) well-

defined at time k if the MPC optimisation is feasible at time

k− 1. It follows that the minimum value of ε defining εk in

(23) exists if the MPC optimisation is feasible at time k− 1,

and this establishes recursive feasibility

The sequence S ({m∗
i|k}

N−1

i=0
) can be regarded as the tail

of the minimiser (17) with adjustments. With equations (9)

and (10), the minimisation (23) can be solved to give an

explicit expression for εk for all k > 0 as

εk =

N−1∑

i=0

γi
tr
(
CTCX̂i

)
+
∥∥C

(
x̄∗
i+1|k−1

+Φiωk−1

)∥∥2

t2

+ f
(
x̄∗
N+1|k−1

+ΦNωk−1

)
. (24)

Essentially, the optimisation problem to be solved at each

time step is feasible because the parameter εk is updated

via (24) using knowledge of the disturbance wk−1 obtained

from the measurement of the current state xk. In this respect



the approach is similar to constraint-tightening methods that

have previously been applied in the context of stochastic

MPC (e.g. [7], [8], [9]) in order to ensure recursive feasibility

and constraint satisfaction in closed loop operation. However,

each of these methods requires that the disturbances affecting

the controlled system are bounded, and they become more

conservative as the degree of conservativeness of the as-

sumed disturbance bounds increases. The approach proposed

here avoids this requirement and instead ensures closed loop

constraint satisfaction using the analysis of Section V.

The key to this method lies in the definition of the

sequence S ({m∗
i|k}

N−1

i=0
). If this sequence were optimised

simultaneously with εk, rather than defined by the suboptimal

control sequence (22), then it would be possible to reduce the

MPC cost (16). However this would require more computa-

tional effort than is needed to evaluate (24). For deterministic

MPC problems it can be shown that the cost of using the tail

sequence is no greater than the optimal cost at the current

time with an appropriate terminal weighting matrix [15], but

this property cannot generally be ensured in the presence of

unbounded disturbances. In fact the optimal cost defined by

(16) is not necessarily monotonically non-increasing if εk
is defined by (24), but the proposed approach based on the

adjusted tail sequence (22) ensures a quadratic closed loop

stability bound, as we discuss next.

IV. SMPC ALGORITHM

This section analyses the stability of the MPC law and

shows that the closed loop system satisfies a quadratic

stability condition. We first state the MPC algorithm based

on the optimisation defined in (16).

Algorithm 1: At each time-step k = 0, 1, . . .:

(i). Measure xk, and if k > 0, compute εk using (24).

(ii). Solve the quadratically constrained quadratic program-

ming (QCQP) problem:

minimise
{mi|k, βi|k}

N−1

i=0

N−1∑

i=0

(∥∥x̄i|k − xr
∥∥2

Q
+
∥∥mi|k − ur

∥∥2
R

)

+
∥∥x̄N |k − xr

∥∥2
P

subject to (12), (13), and (9) with x̄0|k = xk.

(iii). Apply the control law uk = m∗
0|k.

Although the MPC optimisation in step (ii) involves a

quadratic constraint as well as linear constraints, it can be

solved efficiently, for example using a second-order conic

program (SOCP) solver, since the objective and the quadratic

constraint are both convex.

Theorem 2: Given initial feasibility at k = 0, the minimi-

sation in step (ii) of Algorithm 1 is feasible for k = 1, 2, . . .
and the closed loop system satisfies the quadratic stability

condition

lim
T→∞

1

T

T−1∑

k=0

E

[
‖xk − xr‖2Q + ‖uk − ur‖2R

]
≤ tr(WP )

(25)

provided K in (7)-(8) and P in (15) are chosen so that

P = ΦTPΦ+KTRK +Q. (26)

Proof: From Lemma 1, the sequence S
(
{m∗

i|k}
N−1

i=0

)

provides a feasible suboptimal solution at time k+1. Hence

by optimality we necessarily have

J∗(xk+1, εk+1) ≤ J
(
xk+1,S

(
{m∗

i|k}
N−1

i=0

)
, εk+1

)
,

and since this inequality holds for every realisation of ωk,

by taking expectations conditioned on the state xk we obtain

Ek

[
J∗(xk+1, εk+1)

]
≤Ek

[
J
(
xk+1,S

(
{m∗

i|k}
N−1

i=0

)
, εk+1

)]
.

(27)

Evaluating x̄i|k+1 by setting x̄0|k+1 = xk+1 and mi|k+1 =
m∗

i+1|k +KΦiωk in (9)-(10) gives the feasible sequence

x̄i|k+1 = x̄∗
i+1|k +Φiωk, i = 0, . . . , N,

and from (26) and (27) it follows that

Ek [J
∗(xk+1, εk+1)] ≤ J∗(xk, εk)− ‖xk − xr‖2Q

− ‖uk − ur‖2R + tr(WP ). (28)

Summing both sides of this inequality over k ≥ 0 after taking

expectations given information available at time k = 0, and

making use of the property that E0 [Ek [J
∗(xk+1, εk+1)]] =

E0 [J
∗(xk+1, εk+1)], gives (25).

Stability is the overriding requirement and in most recent

MPC literature the cost function is chosen so as to provide a

Lyapunov function suitable for analysing closed loop stabil-

ity [15]. Theorem 2 is proved via cost comparison, and, given

the quadratic form of the cost function, this analysis results

in the quadratic stability condition (25). Similar asymptotic

bounds on the time average of a quadratic expected stage cost

are obtained in [5], [20]. However, in the current context,

Theorem 2 demonstrates that an MPC algorithm can ensure

closed loop stability without imposing terminal constraints

derived from an invariant set.

Lemma 3: If K in (7)-(8) is the unconstrained LQ-optimal

feedback gain, KLQ, for the system (1) with cost (3), then

for the closed loop system under the control strategy of

Algorithm 1, the control law uk = m∗
0|k converges as k → ∞

to the unconstrained optimal feedback law uk = KLQxk.

Proof: Consider a system with the same model param-

eters A,B,W as (1), and a stabilizing linear feedback law

with gain K . Denoting the states and control inputs of this

system respectively as x̂k and ûk = Kx̂k, we have

lim
k→∞

E

[
‖x̂k − xr‖2Q + ‖ûk − ur‖2R

]
= tr(WP ) (29)

where P is the solution of (26). However the certainty

equivalence theorem [21] implies that tr(WP ) is minimized

with K = KLQ. Therefore (25) implies

lim
T→∞

1

T

T−1∑

k=0

E

[
‖xk − xr‖2Q + ‖uk − ur‖2R

]

= lim
T→∞

E

[
‖x̂T − xr‖2Q + ‖ûT − ur‖2R

]
,

so that uk → KLQxk as k → ∞ under Assumption 1.

The convergence result in Lemma 3 is to be expected

because of the discounted constraint (2). Since γk → 0 as

k → ∞, the probabilistic constraint places greater emphasis



on near-future predicted states and ignores asymptotic be-

haviour. Under this condition the unconstrained LQ-optimal

feedback control law is asymptotically optimal for (3).

V. THE BEHAVIOUR OF THE SEQUENCE {εk}
∞
k=0

AND CONSTRAINT SATISFACTION

This section considers the properties of the sequence

{εk}∞k=0
in closed loop operation under Algorithm 1. We

first give expressions for the parameters S̃ and P̃ in the

definition (14) of the terminal term f(x̄N |k). Then, using

the explicit expression for εk in (24), we derive a recurrence

equation relating the expected value of εk+1 to xk and εk.

This allows an upper bound to be determined for the sum of

discounted violation probabilities on the left hand side of (2).

With this bound we can show that the closed loop system

under the control law of Algorithm 1 satisfies the chance

constraint (2) if εk is initialised with ε0 = e.

Lemma 4: Let S̃ and P̃ be the solutions of

P̃ = γΦT P̃Φ+ CTC (30)

S̃ = γΦS̃ΦT +
γN+1

1− γ
W + γN X̂N . (31)

Then f(x̄N |k) defined in (14) satisfies

f(x̄N |k) =

∞∑

i=N

γi
tr
(
CTCX̂i

)
+
∥∥Cx̄i|k

∥∥2

t2
(32)

where x̄i|k is given by (10) for all i ≥ N .

Proof: Writing ‖Cx̄i|k‖
2 = ‖C(x̄i|k − xr) + Cxr‖2

and using (10), we obtain

∥∥Cx̄i|k

∥∥2
=

∥∥CΦi−N (x̄N |k − xr)
∥∥2

+ 2(xr)TCTCΦi−N (x̄N |k − xr) + ‖Cxr‖2

for all i ≥ N , and since P̃ satisfies (30), we have

∞∑

i=N

γi

t2
∥∥Cx̄i|k

∥∥2= γN

t2
∥∥x̄N |k − xr

∥∥2
P̃
+

γN

(1− γ)

‖xr‖2CTC

t2

+
2γN(xr)TCTC(I − γΦ)−1(x̄N |k − xr)

t2
. (33)

Furthermore, if S̃ =
∑∞

i=N γiX̂i, then S̃ is the solution of

the Lyapunov equation (31) since (11) implies

γΦS̃ΦT =

∞∑

i=N

γi+1ΦX̂iΦ
T =

∞∑

i=N

γi+1(X̂i+1 −W )

= S̃ − γN X̂N −
γN+1

1− γ
W,

and it follows that

∞∑

i=N

γi

t2
tr
(
CTCX̂i

)
=

tr
(
CTCS̃

)

t2
. (34)

Combining (33) and (34), it is clear that (32) is equivalent

to (14) if P̃ and S̃ are defined by (30) and (31).

The following result gives the relationship between εk and

the expected value of εk+1 for the closed loop system.

Theorem 5: If εk is defined by (24) at all times k ≥ 1,

then in closed loop operation under Algorithm 1 we have

γEk [εk+1] ≤ εk −
‖Cxk‖

2

t2
(35)

for all k ≥ 0.

Proof: Evaluating εk+1 using (24) and (32) gives

εk+1 =

∞∑

i=0

γi
tr
(
CTCX̂i

)
+
∥∥C

(
x̄∗
i+1|k +Φiωk

)∥∥2

t2
,

where x̄∗
i|k is given by (18)-(19) and ωk is the realisation of

the disturbance at time k. Taking expectations conditioned

on information available at time k, this implies

γEk [εk+1] =

∞∑

i=0

γi+1
tr
(
CTCX̂i

)
+
∥∥Cx̄∗

i+1|k

∥∥2

t2

+

∞∑

i=0

γi+1
tr
(
CTCΦiW

(
Φi

)T )

t2
,

but feasibility of the sequence {m∗
i|k}

N−1

i=0
at time k implies

∑∞
i=0

γi

t2

[
tr(CTCX̂i) + ‖Cx̄∗

i|k‖
2
]
≤ εk and therefore

γEk [εk+1] ≤ εk −
‖Cxk‖

2

t2

+

∞∑

i=0

γi

t2
tr
[
CTC

(
γΦiWΦiT + (γ − 1)X̂i

)]
.

To complete the proof we note that the sum on the RHS of

this inequality is zero since

γi+1ΦiWΦiT + (γi+1 − γi)X̂i = γi+1X̂i+1 − γiX̂i,

and because X̂0 = 0 and limi→∞ γiX̂i = 0.

The main result of this section is given next.

Theorem 6: The closed loop system under Algorithm 1

satisfies the chance constraint (2) if ε0 = e.

Proof: Theorem 5 implies that the closed loop evolution

of εk satisfies

γi+1
Ek [εk+i+1] ≤ γi

Ek [εk+i]−
γi

t2
Ek

[
‖Cxk+i‖

2
]

for all non-negative integers k, i. Summing both sides of this

equation over i ∈ {0, 1, . . .} gives

εk ≥
∞∑

i=0

γi
Ek

[
‖Cxk+i‖2

]

t2
+ lim

i→∞
γi
Ek [εk+i] . (36)

But γi
Ek [εk+i] is necessarily non-negative for all k, i ≥ 0,

so by Chebyshev’s inequality this implies

∞∑

i=0

γi
P
(
‖Cxk+i‖ ≥ t

)
≤ εk (37)

for all k ≥ 0. An obvious consequence of the bound

(37) is that the closed loop system will satisfy the chance

constraint (2) if ε0 is chosen to be equal to e.

The presence of the factor γ ∈ (0, 1) on the LHS of (35)

implies that the expected value of εk can increase as well as

decrease along closed loop system trajectories. In fact, for



values of γ close to zero, a rapid initial growth in εk is to

be expected, which is in agreement with the interpretation

that the constraint (2) penalises violation probabilities more

heavily at times closer to the initial time in this case. On the

other hand, for values of γ close to 1, εk can be expected

to decrease initially, implying a greater emphasis on the

expected number of violations over some initial horizon.

VI. NUMERICAL EXAMPLE

This section describes a numerical example illustrating the

quadratic stability and constraint satisfaction of the closed

loop system (21) under Algorithm 1. Consider a system with

A =
[

1 2

1.5 0.5

]
, B =

[
1.2

1.5

]
,

and Gaussian disturbance ωk ∼ N (0,W ) with covariance
matrix W = 0.2I2×2. The constraint (2) is defined by γ =
0.9, t = 1, e = 3.5, C =

[
0.6 0.52

]
, and the weighting

matrices in the cost (3) are given by

Q = CTC =

[

0.3600 0.3120

0.3120 0.2704

]

, R = 1.

Input and state references are ur = −0.6, xr = (0.72, 0.36),
and the prediction horizon is chosen as N = 7. The feedback

gain is chosen as K = [−0.92 −0.85] for the cost (3), and

matrices P , P̃ and S̃ are chosen to satisfy (26), (30) and

(31). The initial value for εk is ε0 = e = 3.5.

Two sets of simulations (A and B) demonstrate the closed

loop stability result in Theorem 2 and the constraint satis-

faction result in Theorem 6, respectively.

Simulation A: To estimate empirically the average cost,

J̄ := lim
T→∞

1

T

T−1∑

k=0

E

[
‖xk − xr‖2Q + ‖uk − ur‖2R

]
,

we consider the mean value of the stage cost over 100
simulations. Each simulation has a randomly selected initial

condition (x0 ∼ N (0, I), with infeasible values discarded),

and a length of T = 500 time-steps. This gives the estimated

average cost as J̄ ≈ 0.5036, which is no greater than

tr(WP ) = 0.5304, and hence agrees with the bound (25).

Moreover, the estimate of J̄ decreases considerably more

slowly as the simulation length T increases.

Simulation B: To test numerically whether the chance

constraint (2) is satisfied, we estimate the discounted sum

of violation probabilities on the LHS of (2),

V :=

∞∑

k=0

γk
P(‖Cxk‖≥ t),

by counting the number of violations at k ∈ {0, . . . , T − 1},

for 103 simulations with x0 = (−1.1130, 1.1156)T and T =
100. This gives V ≈ 0.8328, which is less than e = 3.5
and hence satisfies the constraint (2). For this example we

have γ100 ≈ 10−5, so increasing T beyond 100 time-steps

has negligible effect on the estimate of V . Therefore the

discrepancy between e and the estimated value of V can be

attributed to the conservativeness of Chebyshev’s inequality.

In addition, if the unconstrained LQ-optimal feedback law

uk = KLQ(xk − xr) + ur were employed, the value of the

bound
∑∞

k=0
γk

Ek

[
‖Cxk‖2

]
/t2 in (36) would be 4.6998,

which exceeds e. Hence this control law may not satisfy (2)

and is worse than the MPC law (20) in terms of this bound.

VII. CONCLUSIONS

A stochastic MPC algorithm that imposes constraints on

the sum of discounted future constraint violation probabilities

can ensure recursive feasibility of the online optimisation

and closed loop constraint satisfaction. Key features are the

design of a constraint-tightening procedure and closed loop

analysis of the tightening parameters. The MPC algorithm

requires knowledge of the first and second moments of the

disturbance, and is implemented as a convex QCQP problem.
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