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Abstract

This paper studies system stability and performance of multi-agent
systems in the context of consensus problems over wireless multiple-
access channels (MAC). We propose a consensus algorithm that ex-
ploits the broadcast property of the wireless channel. Therefore, the
algorithm is expected to exhibit fast convergence and high efficiency in
terms of the usage of scarce wireless resources. The designed algorithm
shows robustness against variations in the channel and consensus is al-
ways reached. However the consensus value will be depending on these
variations.

1 Introduction

Achieving consensus is an essential task in many distributed control scenar-
ios where a number of control units (“agents”) interact to achieve a common
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aim. Consensus problems in multi-agent systems require the agents to reach
an agreement over a certain real-valued scalar or vector, e.g., [1, 2, 3]. Each
agent has a local guess of this entity, called the agent’s information state,
which has to be updated according to some rule, typically a function of the
information states of neighbouring agents. Consensus is achieved if all the
information states converge to the same value. Consensus-based approaches
have been proven to be valuable choices in a wide set of problems, as, for
example, the rendez-vous problem [4], control of vehicle formation [5], or the
so-called flocking problem [6]. Classical approaches consider communication
and computation as two distinct tasks. Indeed, as communication strategies
are usually designed to reliably deliver each information state to a subset of
agents by creating independent communication channels, agents have knowl-
edge of other agents’ information states. In general, however, each agent is
only interested in a function of other agents’ information states, which car-
ries less information (in the information-theoretic sense) than the knowledge
of individual information states. This opens the door to significant perfor-
mance gains. Inspired by [7], the authors of [8] proposed an approach that
merges communication and computation of nonlinear functions and is based
on the nomographic representation of functions. As pointed out in [8], Buck
proved in [9] that every real-valued multivariate function is representable in
its nomographic form as a function of a finite sum of univariate functions.
Based on this deep insight, the authors of [8] concluded that the superposi-
tion property of the wireless channel (also called the broadcast property) can
be used to approximate an arbitrary function of transmitted signals. Accord-
ing to this, each agent simultaneously broadcasts a suitably chosen function
of its information state. Then, each agent postprocesses the received signal,
which is a noisy superposition of the locally preprocessed information states
transmitted by its neighbours, to estimate the desired function value. If
the goal is to achieve average consensus, the employed consensus function
is typically linear in the neighbouring agents’ information states. In this
case, the consensus function is already expressed in its nomographic repre-
sentation with both pre- and postprocessing functions continuous in the set
of real numbers [8]. Using the superposition property of wireless channels
then allows for significantly faster convergence when compared to standard
communication protocols, but introduces distortions (namely, the unknown
channel coefficients) proportional to the transmitted signals, which, if not
properly addressed, will cause undesired behaviour. Existing approaches
to exploit superposition neglected the influence of channel coefficients, by
considering ideal MACs (wireless multiple access channels) [8, 10]. We will
relax these assumptions and assume, in a realistic way, channel coefficients
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with no constraints apart from positivity.
An outline of this paper is as follows. In Section 2, consensus problems

on graphs are presented; channel superposition and usage of interference for
consensus problems over wireless networks are then explained. In Section 3,
a consensus algorithm exploiting superposition is proposed. The influence
of its parameters on convergence rate and consensus value is addressed in
Section 4 and illustrated via simulations in Section 5. Finally, in Section 6,
concluding remarks are stated.

Nomenclature

We use N and R to denote, respectively, the set of positive integers and the
set of real numbers. The set of positive real numbers and nonnegative real
numbers are denoted, respectively, by R>0 and R≥0. Given a scalar a, its
absolute value is denoted by |a|. The closed unit interval is E := [0, 1] ⊂ R.
The n×m zero matrix is denoted by 0n×m. Given a matrix A, its transpose
is A′, while its conjugate transpose is A∗. The trace of a matrix A is denoted
by tr(A). The element in position (i, j) of A is referred to as [A]ij . The
n × m matrix A is positive (nonnegative), denoted by A > 0 (A ≥ 0), if
∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ m, [A]ij > 0 ([A]ij ≥ 0). A ≥ 0 is row-stochastic if
A1 = 1 where 1 is the column vector with all ones. Two n× n nonnegative
matrices A and B are of the same type (denoted by A ∼ B) if they have
zero entries in the same locations. A is double-stochastic if A and A′ are
both row-stochastic. A nonnegative square matrix A is said to be primitive
if there exists k ∈ N such that Ak > 0. Eigenvalues of the n × n matrix A
are denoted by λi(A), 1 ≤ i ≤ n, and assumed without loss of generality
to be ordered as follows: |λ1(A)| ≤ |λ2(A)| ≤ · · · ≤ |λn(A)|. The identity
matrix of dimension n × n is denoted by In; usually, in the event that the
context is clear, subscripts are neglected.

The convex hull C(S) of a set S = {vi ∈ Rn, 1 ≤ i ≤ m, m ∈ N, n ∈ N}
is the intersection of all convex sets containing S. So we have C(S) =
{
∑m

j=1 λjvj : λj ≥ 0 ∀j,
∑m

j=1 λj = 1}.
Given a discrete-time signal p(k) : N → R, its zeta-tranform is denoted

by P (z) = Z(p(k)).
Finally, given a finite set V, its cardinality is denoted by |V|.

Definition 1 (Directed graph). A directed graph (or digraph) is a pair
(N ,A), where N represents a finite set of nodes and A ⊆ N ×N is the set
of arcs.

In the following, we always assume that (i, i) 6∈ A, ∀i ∈ N .
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Definition 2 (Neighbors). Given a directed graph (N ,A), the set of neigh-
bours of a node i ∈ N , denoted by Ni, is the set of those nodes l ∈ N for
which (l, i) ∈ A.

By the assumption above, i 6∈ Ni.

Definition 3 (Weighted directed graph). A weighted directed graph is a
triple (N ,A, w), where (N ,A) is a digraph and w : A → R>0 associates
each arc (j, i) ∈ A with a positive weight wij .

The digraph is balanced if ∀i ∈ N ,
∑

j∈Ni
wij =

∑
{j: i∈Nj}wji, i.e. if,

for each node, the sum of the weights of all incoming arcs equals the sum of
the weights of all outgoing arcs. A directed path in a digraph is a sequence
of nodes in which there is an arc pointing from each node in the sequence
to its successor in the sequence. The digraph is called strongly connected if
there exists a directed path between any two distinct nodes. The digraph is
called fully connected (or complete) if there exists an arc between any two
distinct nodes.

2 System model and problem statement

2.1 Consensus for weighted digraphs

We consider a time-varying network described by a sequence of weighted
directed graphs

Γ = {Γk : Γk = (N ,A, w(k)), k ∈ N} (1)

with n = |N | communicating agents (nodes) and with a strongly connected
topology. Each agent has the following discrete-time integrator dynamics:

xi(k + 1) = xi(k) + ui(k), i ∈ {1, . . . , n}. (2)

xi : N → R is the agent’s state and ui : N → R its input. The system (2)
can be also expressed compactly as

x(k + 1) = x(k) + u(k), (3)

where x(k) = [x1(k), . . . , xn(k)]′ and u(k) = [u1(k), . . . , un(k)]′, ∀k ∈ N.

Definition 4 (Perron matrix). Let a graph Γk = (N ,A, w(k)), consisting
of n communicating agents with dynamics (2), and a parameter εk ∈ (0,∆k)
with

∆k =
1

maxi(
∑

j∈Ni
wij(k))

(4)
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be given. The Perron matrix of Γk with parameter εk is the matrix Dn(k)
defined to be

Dn(k) := In − εkL(Γk), (5)

where L(Γk) is the Laplacian of Γk [2]. The entries of Dn(k) are [Dn(k)]ii =
1 − εk

∑
j∈Ni

wij(k) > 0, ∀i ∈ N , [Dn(k)]ij = εkwij(k), ∀(j, i) ∈ A, and
[Dn(k)]ij = 0, ∀i 6= j with (j, i) 6∈ A. We refer to Lemma 3 in [3] for the
properties of the Perron matrix, which is row-stochastic by construction,
and primitive if Γk is strongly connected.

In literature (see e.g. [11]), the linear consensus protocol

ui(k) = εk
∑

j∈Ni

wij(k)(xj(k)− xi(k)) (6)

is widely used and can be expressed in matrix form as

u(k) = −εkL(Γk)x(k). (7)

By applying (7) to the system (3), the closed loop dynamics becomes

x(k + 1) = Dn(k)x(k). (8)

As mentioned in Definition 4, Dn(k) is primitive, therefore it has a unique
real eigenvalue that strictly dominates the moduli of all other eigenvalues,
which is ρ(Dn(k)) = λn(Dn(k)) = 1 since Dn(k) is also row-stochastic.
By the Perron-Frobenius theorem, in case of a time-invariant problem (i.e.
∀k ∈ N, w(k) = w) with graph Γk unbalanced, the consensus value will be
x∗ = w′x(0), where w′Dn = w′ and w′1 = 1. Accordingly, x∗ ∈ C(x(0)). In
case of Γk balanced, Dn is double stochastic and consequently x∗ = 1

n1′x(0),
which is (linear) average consensus.

In the general case, some convergence results for time-variant multi-agent
systems are presented in [12]. In the case considered in this paper, Γ is a
sequence of weighted digraphs with the same topology but with different
positive weights. By Definition 4, for a strongly connected topology, Dn(k)
will be a sequence of row-stochastic primitive matrices of the same type
and with positive diagonal entries. Their product is characterized by the
following result.

Proposition 1. Given two nonnegative n×n primitive matrices A,B with
positive diagonal entries, then AB will be primitive with positive diagonal
entries.
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Proof. By [13, p. 3], if A is primitive, any nonnegative matrix Ã of the same
type as A is primitive. If Ã is primitive and C is nonnegative, (Ã + C) is
primitive. As

[AB]ij =
n∑

k=1

[A]ik[B]kj ≥ [A]ij [B]jj , (9)

and [B]jj > 0, [AB]ij is positive whenever [A]ij > 0. We can therefore write

AB = Ã+ C, (10)

where Ã is nonnegative and of the same type as A, and C is nonnegative.
Hence, with the above argument, AB is primitive. Positivity of its diagonal
elements is straightforward as [AB]ii =

∑n
k=1[A]ik[B]ki ≥ [A]ii[B]ii > 0.

By Proposition 1, ∀k, h ∈ N, the product Dn(k+h)Dn(k+h−1) . . . Dn(k)
results in a primitive and row-stochastic matrix, therefore, according to [14],
(8) achieves consensus. In addition, the agreement value lies in the convex
hull of the initial states. Some examples of average-consensus for time-
variant systems can be found in [15]. Next we present a result that is used
later in this paper.

Proposition 2. Given a row-stochastic matrix P of dimension n and a
scalar ε ∈ R>0, there exists a directed graph ΓP , such that P is the Perron
matrix of ΓP with parameter ε. Moreover, if P is positive, ΓP is fully
connected. If P is symmetric, ΓP is undirected.

Proof. By (5) we need to show that, given P and ε ∈ R>0, there is an
adjacency matrix A ∈ Rn×n≥0 of a graph with tr(A) = 0, such that P =
I − ε(D − A), where D is the degree matrix of A as defined in [16], with
[D]ii =

∑n
j=1[A]ij , 1 ≤ i ≤ n. This condition can be written as





[P ]ii = 1− ε
∑

i 6=j aij ∀i
[P ]ij = εaij ∀i 6= j∑

j [P ]ij = 1 ∀i
. (11)

By (11), A is an adjacency matrix of a weighted digraph, whose elements are

aij =
[P ]ij
ε , ∀i 6= j, 1 ≤ i ≤ n, 1 ≤ j ≤ n, and aii = 0, 1 ≤ i ≤ n. Whenever

P is positive, then, aij > 0, ∀i 6= j, in which case ΓP is fully connected.

If P is symmetric, we have aij =
[P ]ij
ε =

[P ]ji
ε = aji, ∀i 6= j, 1 ≤ i ≤ n,

1 ≤ j ≤ n, so that Γ is undirected, since its adjacency matrix is symmetric.
This completes the proof.
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2.2 Exploiting channel superposition for average consensus

To introduce the underlying idea, we first review some existing results. By
[9], we know that each multivariate function f : En → R has a nomographic
representation:

f(x1, . . . , xn) = ψ(

n∑

j=1

φj(xj)), (12)

for some ψ : R → R and φj : E → R. We are interested in nomographic
representations since they allow us to exploit the superposition (interference)
property of the wireless channel for function computation over a multi-agent
wireless network.

We consider a wireless network represented by a directed graph (N ,A),
where N = {1, . . . , n} is the set of nodes and (i, j) ∈ A ⊂ N × N if and
only if information transmission from i ∈ N to j ∈ N is established.

If, after the implementation of a general consensus protocol, each agent
evolves according to

xi(k + 1) = fi(x1(k), . . . , xn(k)), i ∈ N , (13)

it does not need to reconstruct the individual information states of other
agents. By using a nomographic representation of fi and the interference
property of the wireless channel, one use of the noiseless channel is sufficient
to compute the function. For this, each node i ∈ N will broadcast simultane-
ously with all the other nodes at instant k ∈ N its pre-processed information
state φi(xi(k)). By describing the communication with the standard affine
model of a wireless multiple-access channel (MAC) [8], the real-valued signal
received at node i ∈ N becomes

Yi(k) =
∑

j∈Ni

hij(k)φj(xj(k)) + vi(k), (14)

where hij(k) ∈ R>0, ∀j ∈ Ni (otherwise 0), denotes a channel coefficient
from node j (transmitter) to node i (receiver) and vi ∈ R is the correspond-
ing receiver noise. Ideally, hij(k) = 1, ∀j ∈ Ni, and vi(k) = 0, ∀i ∈ N . In
this ideal case, every node i ∈ N computes xi(k+1) = ψi(φi(xi(k))+Yi(k)) =
fi(x1(k), . . . , xn(k)).

To achieve average-consensus, each node i ∈ N may compute at iteration
k

xi(k + 1) = fi(x1(k), . . . , xn(k)) =

∑
j∈Ni∪{i} xj(k)

|Ni|+ 1
. (15)
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This function is nomographic with φj(yj) = yj and ψi(y) = y
|Ni|+1 , both

trivially continuous and differentiable in R. If the receiver noise can be
neglected (i.e. ∀k ∈ N, ∀i ∈ N , vi(k) = 0), then, for the average-consensus
problem, (14) becomes

Yi(k) =
∑

j∈Ni

hij(k)xj(k). (16)

Each agent i ∈ N then computes xi(k+1) = 1
|Ni|+1(xi(k)+Yi(k)). Therefore

x(k + 1) = D(k)x(k) (17)

with

D(k) =




1
|N1|+1

h12(k)
|N1|+1 . . . h1n(k)

|N1|+1
h21(k)
|N2|+1

1
|N2|+1 . . . h2n(k)

|N2|+1

. . . . . . . . . . . .
hn1(k)
|Nn|+1

hn2(k)
|Nn|+1 . . . 1

|Nn|+1



. (18)

D(k) is a sequence of nonnegative square matrices (according to the defi-
nition of channel coefficients). In what follows, the following assumption is
made:

Assumption 1. The communication topology (N ,A) is strongly connected.

However, D(k) is in general not row-stochastic. Hence, we cannot expect
consensus.

3 Controller Design

In the following, we discuss a control strategy that achieves consensus despite
the a priori unknown channel coefficients.

3.1 Protocol design

Under the assumption of a noiseless channel, each agent i ∈ N broadcasts
two orthogonal signals, τi(k) = xi(k) and τ ′i(k) = 1 (by using a MAC of
order 2 [17]). Due to the superposition property, each agent i ∈ N re-
ceives from neighbouring agents two orthogonal real-valued signals, Yi(k) =∑

j∈Ni
hijτj(k), which is equal to (16), and

Y ′i (k) =
∑

j∈Ni

hij(k)τ ′j(k) =
∑

j∈Ni

hij(k). (19)
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3.2 Controller design

A controller can then be defined by

ui(k) = σi

(
Yi(k)

Y ′i (k)
− xi(k)

)
(20)

resulting in

xi(k + 1) = (1− σi)xi(k) + σi

[
Yi(k)

Y ′i (k)

]
, (21)

where σi ∈ (0, 1), 1 ≤ i ≤ n. As the quantity Yi(k)
Y ′i (k)

is a weighted average of

neighbours’ information states,

Yi(k)

Y ′i (k)
=

∑
j∈Ni

hij(k)xj(k)∑
j∈Ni

hij(k)
, (22)

the system can be written in matrix form as

x(k + 1) = Dσ
n(k)x(k), (23)

where

Dσ
n(k) =




(1− σ1) σ1h12(k)∑
j∈N1

h1j(k)
. . . σ1h1n(k)∑

j∈N1
h1j(k)

σ2h21(k)∑
j∈N2

h2j(k)
(1− σ2) . . . σ2h2n(k)∑

j∈N2
h2j(k)

. . . . . . . . . . . .
σnhn1(k)∑
j∈Nn

hnj(k)
σnhn2(k)∑
j∈Nn

hnj(k)
. . . (1− σn)



. (24)

The sequence Dσ
n(k) is composed of row-stochastic matrices ∀k ∈ N. We

show next that, ∀σi ∈ (0, 1), 1 ≤ i ≤ n, Dσ
n(k) is a sequence of primitive

matrices of the same type.
We need first to consider a special case; if σi in (21) is

σi = σ̄i := εk
∑

j∈Ni

hij(k) ∀i ∈ N , (25)

where εk is chosen as

0 < εk <
1

maxi(
∑

j∈Ni
hij(k))

, (26)

then Dσ
n(k) is the Perron matrix with parameter εk of a directed weighted

graph Γσ,k (Proposition 2), and is denoted by D̄σ
n(k). To be precise, we have

Γσ,k = (N ,A, w(k)), k ∈ N, (27)
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where the weights are determined by the channel coefficients wij(k) = hij(k),
∀(j, i) ∈ A. By Assumption 1, by Definition 4, and since hij(k) > 0 if
(j, i) ∈ A, D̄σ

n(k) is a sequence of primitive row-stochastic matrices.
In the general case, ∀σi ∈ (0, 1), 1 ≤ i ≤ n, the resulting Dσ

n(k) is
a sequence of nonnegative matrices of the same type as D̄σ

n(k), therefore
primitive.

As presented in Section 2, since Dσ
n(k) is a sequence of row-stochastic

primitive matrices of the same type, (23) achieves consensus, i.e. x(k) →
x∗ = 1x∗ where x∗ ∈ C(x(0)). However, Dn(k) is non-symmetric in general;
therefore (23) converges to a weighted average consensus, i.e., in general
x∗ 6= 1

n

∑n
i=1 xi(0).

4 Influence of σ, n, and hij

In the following, we assume σi = σ in (21). Thus, the closed loop dynamics
(23) is characterized by the matrix

Dσ
n(k) =




(1− σ) σh12(k)∑
j∈N1

h1j(k)
. . . σh1n(k)∑

j∈N1

h1j(k)

σh21(k)∑
j∈N2

h2j(k)
(1− σ) . . . σh2n(k)∑

j∈N2

h2j(k)

. . . . . . . . . . . .
σhn1(k)∑

j∈Nn

hnj(k)
σhn2(k)∑

j∈Nn

hnj(k)
. . . (1− σ)



. (28)

The parameter σ ∈ (0, 1) represents a stubbornness index: for small values
of σ, each agent relies more on its current information state than on those
of its neighbours, intuitively leading to a slower convergence.

In the following, we analyse the time-variant and the time-invariant cases
separately.

4.1 Time-invariant system

If the channel coefficients do not depend on time,

Dσ
n(k) = Dσ

n, ∀k ∈ N. (29)

Then
x(k) = (Dσ

n)k x(0). (30)

The following proposition shows how the limit x∗ = lim
k→∞

x(k) depends on

the parameter σ and the channel coefficients.
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Proposition 3. Let w be the left-eigenvector of Dσ
n corresponding to the

eigenvalue λn = 1. Then, the limit point x∗ = 1x∗, with x∗ = w′x(0), is
independent of σ, while depending on the channel coefficients as follows




x∗ =

∑n
i=1 wixi(0)

wi =
∑

j∈Ni

wjhji∑
l∈Nj

hjl

. (31)

Proof. Let n ∈ N and σ ∈ (0, 1) be arbitrary but fixed. SinceDσ
n is primitive,

the Perron-Frobenius theorem states that (Theorem 1.2 in [13] p. 9), as
k →∞,

(Dσ
n)k = λknvw′ + 0(km−1|λkn−1|), (32)

where λn and λn−1 are, respectively, the largest and the second largest eigen-
values of Dσ

n and m is the multiplicity of λn−1. Additionally, v′w = 1,
where v > 0 and w > 0 are, respectively, the right and left eigenvec-
tors of Dσ

n, associated with its largest eigenvalue λn. Since Dσ
n is row-

stochastic, we have λn = 1, |λn−1| < 1, and v = 1. Hence, we have
x∗ = lim

k→∞
[(Dσ

n)kx(0)] = vw′x(0) = 1w′x(0), from which we conclude the

first part of (31).
By the definition of the left eigenvector, we have w′Dσ

n = w′. So∑n
j=1 wj [D

σ
n]ji = wi, ∀i ∈ {1, . . . , n}. This, by using the entries of Dσ

n,
becomes

wi(1− σ) +
∑

j∈Ni

wjσ
hji∑
l∈Nj

hjl
= wi, (33)

from which the second part of (31) immediately follows.

4.2 Time-variant system

Note that in the time-variant case, the equation for agent i can be rewritten
as

xi(k + 1) = (1− σ)xi(k) +
σ

|Ni|
∑

j∈Ni

xj(k)+

σ

|Ni|

∑
j∈Ni

∑
l∈Ni

(hij(k)− hil(k))xj(k)∑
j∈Ni

hij(k)
, (34)

where the last term on the right hand side of (34) represents the impact of
the channel at time k. Let νij(k) be

νij(k) =

∑
l∈Ni

hij(k)− hil(k)∑
l∈Ni

hil(k)
xj(k), (35)
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∀(j, i) ∈ A, ∀k ∈ N, and νij(k) = 0, ∀(j, i) 6∈ A, ∀k ∈ N. If the channel coef-
ficients are realizations of a stochastic process, independent and identically
distributed, we can prove that the expected value of νij(k) is 0, ∀k ∈ N,
∀(j, i) ∈ A.

Putting (35) into (34) yields

xi(k + 1) = (1− σ)xi(k) +
σ

|Ni|
∑

j∈Ni

xj(k) +
σ

|Ni|
∑

j∈Ni

νij(k), (36)

∀i ∈ N , which can be written in matrix form as

x(k + 1) = Dσ
Ax(k) +Dσ

Bν(k), (37)

such that the state vector x(k) ∈ Rn and the state disturbance vector ν(k) ∈
Rn2

, with ν(k) = [ν11(k), . . . , ν1n(k), ν21(k), . . . , ν2n(k), . . . , νnn(k)]′. The
dynamics matrix Dσ

A is a row-stochastic matrix whose elements are [Dσ
A]ii =

(1 − σ), ∀i ∈ N , [Dσ
A]ij = σ

|Ni| , ∀(j, i) ∈ A, and 0 elsewhere. The matrix

Dσ
B ∈ Rn×n2

is a block-diagonal matrix that can be written as

Dσ
B =




Dσ
B,1 01×n . . . 01×n 01×n

01×n Dσ
B,2 . . . 01×n 01×n

. . . . . . . . . . . . . . .
01×n 01×n . . . Dσ

B,n−1 01×n
01×n 01×n . . . 01×n Dσ

B,n



, (38)

where ∀i ∈ N , Dσ
B,i is a row-vector of dimension n, whose elements are

[Dσ
B,i]j = σ

|Ni| , ∀j ∈ {j | (j, i) ∈ A }, and 0 elsewhere.

We define X(z) and V(z) as the Zeta-transforms of their respective time-
domain signals, i.e. X(z) = Z(x(k)) and V(z) = Z(ν(k)). In a complex
frequency domain representation, (37) becomes

X(z) = FA(z)x(0) + FB(z)V(z), (39)

where FA(z) = z(zIn−Dσ
A)−1 and FB(z) = (zIn−Dσ

A)−1Dσ
B, respectively a

n-dimensional square matrix and a (n×n2) matrix in the complex frequency
domain. In the following, we assume that Γ is a sequence of fully connected
Γk, then, ∀k ∈ N, ∀i ∈ N , |Ni| = n− 1.

We solve FA(z) and FB(z) as functions of the complex variable z and of
parameters n and σ; then, the final value theorem for time-discrete systems
gives

lim
k→∞

x(k) = lim
z→1

(z − 1) (FA(z)x(0) + FB(z)V(z)) (40)

= lim
z→1

1

n
11′x(0) +

σ

n(n− 1)
ΞV(z), (41)
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n ∈ N, σ ∈ (0, 1) and Ξ a n× n2 matrix in the form

Ξ = 1nξ
′, (42)

where ξ ∈ Rn2
is a column vector whose elements are [ξ]hn+1 = 0, ∀h =

0 . . . n− 1, and 1 elsewhere.
By (41), stubborn systems (small values of σ) reduce the impact of time-

varying channel coefficients on the agreement value more than systems with
higher values of σ. However, as argued in the beginning of this section, we
may expect the convergence rate to decrease if σ > 0 becomes smaller.

A smaller impact of time-varying channel coefficients is also a benefit of
a larger network (where n is large).

The formal analysis of the transient behaviour (function of time-varying
channel coefficients), together with the relaxation of the assumption of a
fully connected topology, will be the subject of future work.

5 Numerical example

1

2

4

3

Figure 1: Communication digraph with topology (N ,A).

Let us consider the balanced communication topology in Figure 1. Let
the initial information states xi(0) be randomly generated out of an uniform
distribution between 0 and 2π, i.e. xi(0) ∼ U(0, 2π), ∀i ∈ N . First, consider
the time-invariant system, where channel coefficients are distributed like
hij ∼ U(0, 10), ∀(j, i) ∈ A. The system in Figure 2a, with σi = σ = 0.2,
achieves weighted average consensus. Larger values of σ give a higher rate of
convergence, resulting in a faster system, as in Figure 2b, where the initial
state vector and the realizations of channel coefficients are the same as in
Figure 2a, but σ = 0.5. In this case, as already shown, x∗ is independent of
σ, which affects therefore only the convergence rate.
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(a) Time-invariant consensus problem with σi = σ = 0.2.

0 5 10 15 20

Time [k]

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

In
fo

rm
at

io
n 

st
at

e 
[

]

Time-invariant problem with = 0.5
∑n
i=1 xi(0)

(b) Time-invariant consensus problem with σi = σ = 0.5.

Figure 2: Consensus problem with constant channel coefficients.
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Figure 3: Time-variant system with σ = 0.5.

We will now consider the time-variant case for σ = 0.5 in Figure 3.
Channel coefficients are generated at each step under the assumption that
they are independent and identically distributed. For the same σ, the con-
vergence rate stays roughly the same as the one of the time-invariant case
in Figure 2b. Also, as already proven, x∗ ∈ C(x(0)).

According to Section 4, for a fully connected network, in case of smaller
σ (more stubborn system), the rate of convergence is expected to be much
slower, but the consensus value is closer to the linear average of initial in-
formation states, as in Figure 4a.

By increasing the network size to n = 30 and setting σ to 0.8, with a
fully connected topology, agents achieve consensus (Figure 4b), converging
to an agreement value closer to the linear average consensus.

As a conclusion, the proposed control offers robustness against the varia-
tion of positive channel coefficients (under Assumption 1); the system always
achieves consensus. However, the agreement value is depending on the real-
izations of the channel coefficients.

6 Conclusion

In this paper, we investigated a consensus scheme that exploits the super-
position property of wireless communication by relying on broadcast of in-
formation. In particular, we took the case of unknown (time-variant and
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(a) Time-variant system with σ = 0.2.
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(b) Time-variant system with n = 30 and σ = 0.8.

Figure 4: Time-variant system over a fully connected communication topol-
ogy.
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time-invariant) channel coefficients into account. In both cases, the result-
ing consensus is a weighted average one. We introduced a tuning parameter
that, in the time-invariant case, influences the convergence rate, but not
the asymptotic consensus. It was also shown, that this tuning parameter
affects both convergence rate and value in the time-varying case. Finally,
for systems with a large number of agents, the resulting consensus value will
be close to the linear average value.
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