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Abstract— The paper addresses the problem of multi-agent
distributed solutions for a class of linear programming (LP)
problems which include box constraints on the decision vari-
ables and inequality constraints. The major difference with
existing literature on distributed solution of LP problems is
that each agent is expected to compute only a single or few
entries of the global minimizer vector, often referred as a
partition-based optimization. This class of LP problems is
relevant in different applications such as optimal power transfer
in remotely powered battery-less wireless sensor networks,
minimum energy LED luminaries control in smart offices,
and optimal temperature control in start buildings. Via a
suitable approximation of the original LP problem, we propose
three different primal-dual distributed algorithms based on
dual gradient ascent , on the methods of multipliers and on
the Alternating Direction Methods of Multipliers. We discuss
the computational and communication requirements of these
methods and we provide numerical comparisons.

I. INTRODUCTION

The continuous reduction of cost of electronic devices
capable of sensing, actuation and computation and their
increased connectivity via wireless, mobile and internet
communication are posing the basis for the creation of large
scale networks of smart devices that can cooperate to achieve
a common goal, an area often referred by different com-
munities with different names as multi-agent smart systems,
internet-of-things, cyber-physical systems, networked control
systems. Many cooperative tasks in these systems reduce to
large-scale optimization problems that can be solved only
via cooperation. One of the major challenges for these
optimization problems is scalability, i.e. the computational,
communication and memory complexity per device should
be almost independent of the number of agents involved.
Fortunately, many of these optimization problems require
each agent to compute only a subset of the decision variables
involved and these variables are only locally coupled via
physical proximity, yet the problem is challenging since
the decision of one agent can affect the behaviour of the
network via cascading effects. Example of such problems
are the control traffic lights in a smart cities, the control of
power transmission in wireless sensor networks, the control
of active and reactive power injection of photovoltaic panels
in smart energy grids, and environment control in large smart
building.

In this work, we address a specific class of optimization
problems, namely linear programming (LP) problems where
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the decision variables needs to satisfy box constraints and
a number of inequalities each involving a small set of the
decision variables. This specific optimization problems arise
from diverse applications such as optimal power transfer
in remotely powered wireless sensor networks [1], optimal
LED lighting control in smart offices [2], and optimal
temperature control in smart buildings [3], as explicitly
shown in Section III. Distributed optimization has received
the attention of large community of researches and many
solutions and algorithms have been proposed: distributed
subgradient methods [4], Lagrangian-based methods [5],
consensus-based methods [6], and distributed linear pro-
gramming [7], just to name few popular classes. However,
most of these approaches require that each agent involved
computes the whole global minimizer. This is reasonable
for some specific distributed optimization problems such as
map-building and classification [4], [5] where the number of
decision variables is independent of the number of agents
involved and the difficulty arises from the fact that data is
physically distributed among these agents. However, these
approaches are of little use in our context since the number
of decision variables scale with the number of agents, thus
giving rise to an unscalable solution. Recently, alternative
algorithms have appeared exploiting the observation that
in some optimization problems each agent is required to
compute only a subset of the decision variables [8], [9],
[10]. These approaches are often referred as partition-based.
Nonetheless, they are not directly applicable to our specific
problem since they are either developed for unconstrained
problems [8], or admit only equality constraints [9], [10].
In this work is to propose three Lagrangian-based algo-
rithms based on well-known optimization strateguies, namely
dual gradient ascent (DGA), multiplier methods (MM), and
alternating direction multiplier methods (ADMM) that are
suitable for partition-based implementation. The first contri-
bution of this work is to strongly-convexify the original LP
problem into a quadratic programming problem (QP) which
exploits the box constraints to explicitly quantify bounds
on the performance degradation incurred by this approxima-
tion. The second contribution is to transform the inequality
constraints into equality constraints via the introduction of
additional slack variables so that MM and ADMM ideas
can be applied. The third contribution is to substitute the
standard optimization step in the primal variable in MM
and ADMM, which cannot be implemented with a partition-
based architecture, with a gradient descent step. For the DGA
algorithm we provide convergence guarantees as well as
step-size tuning procedures, while for MM and ADMM we



provide only numerical simulations. Numerical comparisons
show that these algorithms have pros and cons in terms
of speed of convergence, computational and communication
complexity, which deserve further exploration given the wide
applicability and relevance of the original LP problem.

II. PROBLEM DESCRIPTION

Consider the following linear programming problem sub-
ject to linear constrains

min aTx (D
s.t. Bx <d
xmlnl S X S xmawl
where a = [a1,...,an]" € RV, x ijxl,...,xN]T €
RN, B €¢ RMXN d = [dy,...,dy]" € RM, 1 =
[1,....,1" € RY and Zmin,Zmae € R, and where the

inequalities are component-wise. Assume that the set
X:{XERN: Bx <d, xminlgxgxmml},

is not empty, namely, the optimization problem is feasible.
Observe that, under the assumption X # (), the optimization
problem in might not have a unique minimizer x* being
the cost function a”x simply convex.

Consider now two sets of nodes V = {vy,...,vn} and
S = {s1,...,8m}. Nodes in V are responsible for the
state variable x; specifically, state variable z; is stored in
memory by node v; that can modify its value according to the
output of some algorithm aiming at solving the optimization
problem in (I). Instead nodes in S are responsible for the
set of constraints Bx < d to be satisfied; in particular
constraint Z;V=1 Byjx; < dy is monitored by node sj,.
Constraints Bx < d are soft constraints, meaning that they
might be violated during the transients of algorithms. Instead
constraints Z,inl < X < T4zl are hard constraints,
namely, each node v; must guarantee that ,,;, < ; < Tiax
is not violated at any time.

We assume the nodes can periodically communicate with
each other, and based on the exchanged information, they
take actions to collaboratively solve the above optimiza-
tion problem. In particular, the admissible communications
among nodes are described by the communication graph Gy s
which models the communication between nodes in V' with
nodes in S; more precisely Eys C V xS and (v;, sp,) € Evs
if and only if B;; # 0, namely, nodes v; € V and s;, € S can
exchange information with each other if and only if B;;, # 0.

Let us define NV,, = {s; € S| (v, s;) € Evs}, the set of
neighbors of v;, and Ny, = {v; € V| (vj,s5) € Evs}, the
set of neighbors of node sj. Observe that, if node s, € NV,
then v; € N, and vice-versa.

The goal of this paper is to design iterative and distributed
algorithms that leads the state x to an optimal solution of
the problem in (T). Beside the fact that each single node has
just a local knowledge of the optimization problem to be
solves (i.e., nodes V stores in memory only a component of
the state variable and nodes in S monitor only a constraint),
by distributed we mean that each node in V' is allowed to
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Fig. 1. A sample wireless power transfer network where the black nodes
represent the wireless chargers, blue nodes represent RF-powered devices
and the red nodes represent the sensors. While wireless chargers are charging
the receivers, they also contribute to the EMR value measured by the sensors.

communicate only with its neighbors in S and vice-versa.
Observe that we do not require communications either among
nodes in V' or among nodes in S. In this sense we seek for
algorithms with limited communication requirements.

III. APPLICATION EXAMPLES

In this section we present three examples where the
problems to be solved fits into the above scenario.

A. Wireless Charging

Removing batteries from wireless networks completely
and powering the embedded devices forming these networks
directly from energy harvesting alone is an area of great
interest. In particular, a new class of RF-powered embedded
devices that can sense, compute and communicate by means
of radio frequency (RF) energy harvesting are becoming
popular [11]. In order to provide continuous energy to
the RF-powered devices, a dedicated network of wireless
chargers should be deployed so that they can charge nearby
devices collaboratively to maximize the total transmitted
power. However, the wireless chargers should also ensure
that the electromagnetic radiation (EMR)—measured by the
sensors deployed at particular points—always satisfy the RF-
exposure regulations [1]. Therefore, the operation of the
wireless charging network can be formulated as an opti-
mization problem where the individual chargers maximize
the total transmitted power meanwhile satisfying the EMR
regulations [12], [13]. Since new chargers as well as sensors
and energy receiver devices can be introduced to the charging
system dynamically, a one-shot centralized solution of the
aforementioned problem is not suitable. Figure [T| presents a
sample wireless charging network, and in turn an instance
of the distributed optimization problem. In this case, the
state variables x = [21,...,2x]" represent the individual
power transmission levels of the wireless chargers in V' =
[v1,...,vN]. Note that T and zpay denote the minimum
and the maximum power levels of the wireless chargers—
they are the hard constraints which are hardware dependent
and not modifiable. We can rewrite the objective function as
a” = 17 A where the matrix A holds the relation between
the individual charger power and the received power by each
single energy receiver inside the power transmission range—
which is inversely proportional to the distance between them.
The set S = [s1, ..., sp] denotes the set of sensors that can
measure the EMR value and the matrix B holds the relation-
ship between the charger power and EMR value measured
by the sensors. Hence, sensor s;, measures Zjvzl By jx; that



should be smaller than the d;— the h-th entry of the vector d
holding the EMR threshold, which is the soft constraint that
might be violated occasionally. The entries of the matrix B
are a decreasing function of the distance from the transmitters
to the receiver and represent the power loss coefficient due
to the medium.

B. Lighting control

In large offices up to hundreds of LED luminaries are
being installed in new buildings or are being replacing more
traditional neon luminaries in old buildings. The intensity of
the light (lumens) of these luminaries can be independently
controlled and the total amount of energy consumed to
illuminate the office is proportional to the sum of the light
intensity of all the lamps. The objective in future smart
buildings is to minimize this energy while satisfying a
minimum light intensity at each desk depending when a
person is present [2]. Typically, the number of desks is
smaller then the number of luminaries and not all desks
are occupied. Moreover, additional illumination could arrive
from windows during the day, which we indicate with d;*"
for the i-th desk. Since the light intensity of the desk can
be well approximated as a linear combination of the light
intensity generated by local luminaries, the objective falls
exactly in the framework described in section II where
a =1, Tmin = 0,Zmaz = Pmazr Where Pp,, is the
maximum luminance power that a luminary can provide,
B = —-B',d = —d' + d**" where B'x 4+ d**" > d’
represents the requirement that the light intensity measured at
each desk being greater than a specific threshold depending
whether a person is present or not. The intensity of light of
i-th desk is the sum of the contribution of all luminaries that
affects it corresponding to the entries of the i-th row of B
and the light coming from the windows d;“".

C. Temperature control

In large buildings multiple heaters or air conditioning
inlets are presents. The use of wireless sensor networks
equipped with temperature sensors could provide a finer
resolution of temperature distribution among different rooms
and areas than what is typically achieved today with fewer
cabled temperature sensors. Such additional resolution can
be used to improve comfort as well as minimizing the
energy used to heat or cool them. Today’s temperature is
achieved by means of simple decentralized controller, i.e.
the air conditioning fan velocity is adjusted based an a single
temperature measurement. A more refined approach would
try to model the effect of each air conditioning heat flow
in the temperature at multiple locations [3]. Let us indicate
with z; the heat flow generated by each of the N inlet.
Assuming a steady-state condition, a reasonable model for
the temperature at some M location T = [T, ..., Ty]7 can
be written as T = B’x + qT, where the coefficient of B
and q depends on the building materials and planimetry, and
T, is the external temperature. The objective is to regulate
the heat flows given by x to guarantee T,,;,, <T < T4z
where T, Tnar are based on the preference of the people

or the presence of people in a specific area. Assuming that
the energy expenditure is simply the sum of the heat flow
provided, this problem can be easily cast as in Section II.

IV. A DUAL-ASCENT LIKE APPROACH

Observe that the LP problem (I) can be equivalently
reformulated as

x* := argmin aTx 2)
XEX
st. Bx<d

where X = {x| Tminl < X < Tpael} is a closed
convex set, more specifically a hypercube. A standard ap-
proach in constrained convex optimization is to introduce
the Lagrangian

L(x,\) =alx + AT (Bx —d)
where A € RM, and the corresponding dual function

q(A) = mi)r?l L(x, ).

x€E

Let A* be the maximizer of ¢(A), namely,
A= arg r}\lgé(q()\).

From convex optimization theory it also follows that there is
no duality gap between the primal and the dual problem, i.e.:
q(A*) = aTx*. At this point, one might be tempted to apply
a standard primal-dual coupled iterative algorithm to find a
solution to both the primal and dual problem as follows:

x* = argmin £(x, A¥) 3)
xEX‘
AP = max{0, AF + p*(Bx* ! —d)} (4)

where p* is a (possibly time-varying) step size for the
dual ascent, and the max operator has to be interpreted
component-wise. The previous algorithm however does not
guarantee to provide an optimal solution of the primal
problem, the problem being that x**! might not be unique
since £(x,A¥) is simply convex in x. In fact, although it
can be shown that for a suitable decreasing step-size p*, we
have A¥ — X*, this does not help to guarantee x* — x* if
argmin, c ¢ £(x, A*) does not provide a unique solution.

As a consequence, we propose to approximate the objec-
tive function by adding a regularization term which would
make the primal problem strongly convexm Consider the
following approximated optimization problem:

xp = argmin  Jp(x) = aTx + §||x — za0ell?  (5)

xeX
s.t. Bx <d

where Tave = (Tmin + Tmaz) /2. Moreover consider the
corresponding Lagrangian and dual functions:

Lo(x,A) =alx + AT (Bx —d) + ng — Zavel|[? (6)
go(A) = min Lo (x, A). (7

xeX

'We refer the reader to [13], [14] for the detailed explanation and proofs.



Let x?()\) := argmin, .y Lo(x,A) where XA € RM 6 >
0. Then the vector x?(X) = [z{(\),...,2%]7 is unique and
it is given by:

x?(\) = Proj (mal + %(—a = BTA)> ®)

where Proj is the projection operator on the convex set
X. The algorithm we propose to solve the approximated
optimization problem is given by the following two iterative
updates:

1
Xk+1 = PrOj/\? (wave]- + 5(—a — BT)\k:))
Ak+1 — Ak +p(BXk+1 . d) 9)

Notice that the vector A is composed by the M Lagrange
multipliers Ay, ..., Ay where the multiplier )\, is associated
to the constraint Zjvzl Byjz; < dg; we assume that A\, is
stored in memory and updated by node s,. Observe that
Equations in (9) can be rewritten component-wise as:

1
merl = Proj [Tmin,Tmaz] [xave_a(ai +§ Bhi)‘ﬁ) (10)
h:sp eN’ui

S et

Nk 4 p(
j:UJE./\/.SK

(1)

It follows that node v; to update its state needs to receive
the values of the Lagrange multipliers only from nodes in
N,,; similarly node s, to update the corresponding Lagrange
multiplier, requires the values of the states stored in memory
only by the nodes in N, .

Proposition 1: Consider the algorithm (9). If

< 260
P ——
1BlloclIBll1’
then limy_, o x* = x3.
V. MULTIPLIERS METHOD

As in the previous algorithm, each node sy stores in
memory a Lagrange multiplier A\, associated to the constraint
Z;V:l Byjz; < dg. Now, given ¢ > 0, we introduce the
augmented Lagrangian as follows:

2
M

N
1
T. 2
L.x,N=a x—l—%; max<0,\¢+c Zlngxj—dg =}
Next, we describe an algorithm that iteratively updates the
pair (x, A) to reach a saddle point of £C
Let (xk, )\k) denote the values of the powers and of the

multipliers at the k-th iteration. Then, the vector of the

Lagrange multipliers is updated as
N = max {0, A% + ¢ (BxF —d)}. (12)

Based on A**! we would like to set x**! equal to the
minimizer of the following problem:

Lo (x, A1)

st. Tyminl <X < Thmazl

min (13)

2We refer the reader to [12] for the details.

In general, computing in a distributed way the minimizer of
the above problem is a difficult task. For this reason, we limit
ourselves to compute an approximated solution. In particular
we resort to a projected gradient algorithm to update the
values of the powers toward the optimal solution of (T3).
Observe that

g—i :a—i—BTmax{O,)\kH+c(Bxk—d)}

where the max is meant component-wise. Hence, given a pair

(x,\) we first compute X = x* — 0‘% where « is a given
step size. Then, since xf“, i =1,..., N, must be within the

interval [Z,in, Zmaz], due to the hard constraints on the state
variables, we set x**1 = Proj ;(X) where the operator Proj
projects each component of X into the interval [Z,in, Tmaz]-
Now, observe that can be rewritten component-wise as

)\ZJrl = max {O,)\ﬁ—l—cmﬁ}, (14)
where
mf= Y Buak—d, (15)
jinGJ\fsh

Observe that node sj, to locally update the variable
Ap, requires state information of the nodes within N, . In
addition observe that

gt = Proji, o (Ti) (16)
where o
T=aF—a {a] (17)
X | .

with [32], = ai + 32, en,, Bri max {0, M emb).

It follows that, node v; in order to compute the i-th
component of Z, i.e., Z;, needs the all the nodes s;, within
N, transmit to it the updated values of the Lagrange
multiplier A;, and of the quantity my,.

VI. AN ADMM-BASED ALGORITHM

Alternating direction multipliers method (in short ADMM)
is a very popular algorithm used to solve optimization

problem of the form:

$€r)rclj;1€y f(z)+g(y)

st. Ar+By=c

ADMM is applied in several applications (see for instance
[5] and reference therein). In the following we manipulate
problem in (1) in such a way to implement an ADMM-based
algorithm to solve it. Observe that, by introducing the slack
variable y € RM, problem in @ can be reformulated into
the equivalent problem:

m}g‘n aTx (18)
s.t. Bx+y=d
Tminl <X < Tiagl
y>0

Now let us introduce the augmented Lagrangian:

L(xy.X) =a"x+ X (Bx+y —d)+ || Bx+y—d|*.



The ADMM algorithm keeps alternating the following steps:

xFHl = argmin L (x, y*, /\k) 19)
Tmin1<X<Tmazl
y** = argmin £ (xk'H, v, )\k) (20)
y=0
Ak+1 — )\k +p (Bxk+1 +yk+1 o d) ) (21)

Computing the first step in a distributed way is an hard prob-
lem. A reasonable approximated solution might be computed
taking the derivative of £ with the respect to x, i.e., g—i,
solving % = 0 w.r.t. x and projecting the obtained solution
into the box constraints Z,,;n1 < x < Zye. 1. Precisely
g—i =a+B"A'+p(B"Bx+ B"y" - B"d) =0

from which we get

11
x=(B"B)” <a — —BTA" - BTy" 4 BTd) :
p P

Observe that the matrix B is typically sparse and, in turn,
also BT'; however the product BY B might be, in general, a
full matrix. It follows that, in order to compute x with only
one exchange of information, an all-to-all communication
graph is required thus compromising a distributed imple-
mentation. In our paper we approximate the first step in an
alternative way which works as follows. We first compute a
gradient descent step of the form

x=x"—a (a + BTX* + pBTBxF 4 pBTy* — pBTd)
and, then, we project X into the box constraints

k+

X t= Proj[mminl;xmazl] (X)

We perform similar steps for the update of the variable y.
Observing that

oL

—=A B —-d),

oy ~MTP (Bx+y—d)
we first compute y = y* — 3 (A* + p (Bx**1 + y* — d))
and then the projection step y*+! = Proji, ) (¥). The
update of X is performed as above reported.

We now discuss the distributed implementation of the
ADMM-based algorithm above discuss. Again, let mf =
Zj:,uj N, B;,,jx;? — dp,. As in the previous algorithms, the
variable x; is stored in memory by node v;, while the
quantities mp, zp, A\, are stored by node sp. Now, let us
write the component-wise update of x,y, A. We have that

jixfa(ai+p > BM(AZ+y’,§+m£)> (22)

h:sn€Ny,;
and, in turn,
wit =Projy, o (3). (23)
Now, let
mptt = Y Byaitt —dy. (24)

Jivj €~/\[Sh

Then, regarding the variable y, we have that

In=yr = BF+p(mpt +yp)) (25)

and, in turn,

k+1

Yy, =max{0,7n}. (26)

Finally, as far as the variable A is concerned, we have that

N =N (T ) 27
Summarizing the ADMM-based algorithm keeps alternating
the following steps:

1) For h =1,...,M, s transmits the value of A\, my,
and y;, to all nodes in N, ;
2) Fori=1,..., N, v; gathers all the quantities sent by
the nodes in NV, and updates z; as in (22) and 23);
3) Fort=1,..., N, v; transmits the updated value of z;
to all nodes s;, in N, ;
4) For h =1,..., M s; gathers the values of the states
sent by nodes in N, s, and updates in order my, as in
(Z4), yp, as in @3) and (26), and A;, as in @7).
Remark 1: Notice that, also in the ADMM-based scheme,
we perform only one iteration of the projected gradient for
both the updates of z; and yj, leading to values of xf“
and y}’f“ which are just approximations of the minimizers
in (I9) and 20). To the best of our knowledge there are no
theoretical guarantees in literature for these approximated
schemes. However, we might modify the algorithm to per-
form several iterations of the projected gradient steps be-
tween two consecutive updates of the Lagrange multipliers.
Hopefully, this would allow nodes in V' and nodes in S to
compute a value of x**! and y**! which might be very
close to the minimizers in and (20), respectively. In this
case, convergence results from in [5], would ensure theo-
retically the convergence of the proposed algorithm toward
the optimal solution. However, in simulations, we perform
only one iteration of the projected gradient algorithms in
both the Multiplier Method and in the ADMM approach in
order to provide a fair comparison in terms of communication
requirements with the dual ascent algorithm.

VII. NUMERICAL SIMULATIONS

In this section, we present a comparison of the aforemen-
tioned distributed Lagrangian-based optimization algorithms
based on the numerical simulation results obtained from their
MATLAB implementations.

Problem Generation: During simulations, we created 50 X
1 vector a and 150 x 50 matrix B by filling their entries
using the random values from the interval [—0.5,0.5]. We
set several entries of the matrix A and B to zero so that
we obtain a sparse matrices representing the communication
network. Moreover, the entries of the 150 x 1 vector d and
the initial 50 x 1 vector x are selected randomly from the
interval [0, 1]. Finally, we set z;,, = 0 and assigned a
random value to X,y from the interval [0,1]. Therefore,
we created a random instance of the linear programming
problem described in ().
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Fig. 2. The value of the objective function a”'x (left) and the constraint satisfaction indicated by max(Bx — d) at each iteration.

TABLE I
THE SELECTED PARAMETER VALUES.

0 P c e B8
Dual Ascent 0.9  Use Prop.() - - -
Multipliers - - 2 001 -
ADMM - 2 - 001 0.01

Algorithm Parameters: In order to get a baseline for com-
parison, we used MATLAB’s 1inprog function to obtain
the optimal solution. For the dual-ascent like approach de-
scribed in Section IV} we selected 6 as 0.9 and p accordingly
using Proposition (I). For the multipliers method described
in Section we set @« = 0.01 and ¢ = 2. Finally, for
ADMM, we set a = 0.01, § = 0.01 and p = 2. The initial
entries of the M x 1 vector A in dual-ascent and ADMM-
based approaches are set to 0. Moreover, the entries of the
M x 1 vector y in ADMM are initially selected randomly
from the interval [0, 1]. All of the selected parameter values
during simulations are summarized in Table [

Observations: We performed 200 iterations using the
proposed approaches. We would like to mention that we
performed only one gradient descent iteration for each it-
eration of the multipliers and ADMM methods—providing a
fair comparison under the same communication complexity.
Figurepresents the value of the objective function a’x and
the constraint satisfaction indicated by max(Bx — d) with
the aforementioned approaches during a sample simulation.
From our results, we observed that the multipliers method
had faster convergence rate while the ADMM approach was
the slowest among them. On the other hand, the constraints
were satisfied slower with dual-ascent like approach as
compared to ADMM and multipliers methods.

VIII. CONCLUSIONS

In this work we addressed the problem of partition-based
solutions of a specific class of LP problems which involve
box constraints and inequality constraints in the decision
variables. We have shown that this specific optimization
problem arises from a number of diverse applications in
the context of smart multi-agent systems. We proposed three
Lagrangian-based algorithms based on dual gradient ascent,
multiplier methods and alternating direction multiplier meth-
ods, each showing pros and cons in terms of speed of
convergence and communication/computational complexity.
Future research avenues involve the theoretical analysis of

convergence properties of the proposed MM and ADMM
algorithm since their implementation does not fall into the
traditional convergence assumptions, and the extension of
all three algorithms in the more realistic setting with asyn-
chronous updating and lossy communication.
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