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Trajectory Generation Using Semidefinite Programming For
Multi-Rotors

Xiao Hu, Daniel Olesen, Per Knudsen

Abstract— Trajectory generation is one of the most popular
techniques for multi-rotors to achieve autonomous navigation
capabilities. In this paper, we present an optimization-based
approach for generating smooth, feasible and collision-free
trajectories. Our method does not require a prior proper
time allocation but attempts to optimize time allocation au-
tomatically. This method first optimizes trajectories subjected
to dynamic constraints and 3D corridor constraints using a
quadratic program. Then time allocation is optimized as a
semidefinite program by leveraging semidefinite relaxation. A
feasible solution is obtained using the rank-one approximation
and used to update previous time allocation. This method run
iteratively until a feasible trajectory is obtained. Our approach
is validated with simulation results. Experimental results show
the proposed method ensures to generate feasible trajectories
in clutter environments.

I. INTRODUCTION

With the technological advancements in all aspects of
unmanned aerial vehicles (UAVs), more applications based
on UAVs have emerged, i.e. rescue, environmental moni-
toring and surveying, etc. Among various types of UAVs,
quadcopters have received great popularity because of their
superior maneuverability, simplicity, and robustness, which
enable them to navigate autonomously in cluttered environ-
ments. The challenging environments require the quadcopter
to efficiently generate trajectories and then take actions to
avoid obstacles, which attract lots of research interests in
recent years.

A considerable number of contributions on trajectory
generation for quadcopters have been proposed since 2011.
The pioneering work by [1] introduces the property of dif-
ferentiable flatness for quadcopter and proposes a trajectory
generation approach via Quadratic Programming (QP) in
order to minimize the control effort, which demonstrates
great performance in tightly constrained indoor environment.
For QP problems only subjected to equality constraints, [2]
proposes an analytical solution by reformulating the prime
problem with a mapping matrix. Lately, [3] extends their
work for moving target tracking by adding a 2 norm regu-
larization of the tracking difference between target trajectory
and generated trajectory. In order to deal with moving obsta-
cles, [4] generalize the QP problem to a nonconvex Quadratic
Constrained Quadratic Problem (QCQP). By Semi-Definite
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Relaxation (SDR), the nonconvex QCQP is further refor-
mulated as a standard Semi-Definite Programming (SDP)
which can be efficiently solved. A feasible solution may
finally be recovered using randomization technique. Another
typical solution for quadcopter trajectory generation is based
on motion primitives, which is detailed and demonstrated in
[5]. Thanks to its computation efficiency, a large number of
motion primitives can be generated onboard in real time and
then the optimal trajectory can be obtained using brute force
search. It has been successfully applied for quadcopter ball
juggling [5], autonomous landing in [6], etc.

Although the aforementioned methods have demonstrated
great performances, they all require a prior time allocation
which includes a series of traversing time from one waypoint
to the next. An inappropriate time allocation would make
the generated trajectory infeasible, which is shown in Fig. 1.
The most intuitive solution for this issue is to try to estimate
a proper time allocation a prior, which is often been done
with a constant or trapezoid velocity profile [7] [8]. However,
the shape of the generated trajectory depends on the choice
of time allocation, which makes those coarse estimations
inaccurate in most case. A trade-off solution is often taken
practically at the expense of underestimating the agility
of quadcopters, i.e. constraining the maximum traversing
velocity and acceleration to a conservative value [7] [9].
Other non-trivial approaches attempt to find a proper time
using optimization. By relaxation of the arrival time for
intermediate waypoints, the traversing time for each segment
can be optimized [8]. However, an estimation of total travers-
ing time is still required. [2] proposes an approach using
nonlinear optimization using NLopt [10]. They start with an
initial time allocation for trajectory coefficients computation
and then optimize time allocation with precomputed coeffi-
cients. The final solution requires iteratively solve a nonlinear
optimization problem.

In this paper, a trajectory generation approach is proposed
which facilitate generation from arbitrary initial states to a
target state while ensuring the smooth and feasibility of the
resultant trajectory. The proposed method iteratively solve
trajectory generation problem leveraging QP and SDP. More
specifically, the QP routine follows the classical minimum
snap trajectory generation approach [1]. A novel 3D corridor
constraint is proposed for obstacle avoidance. To deal with
time allocation, we leverage an SDP optimization routine
which attempts to optimize segments’ time automatically.
Simulation results demonstrate the performance of the pro-
posed approach. The major contribution of this work are
summarized as
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Fig. 1. Trajectory generation result with improper time allocation. The left column shows the generated trajectory connecting 3 assigned waypoints. The
middle and right columns plot the corresponding velocity profile and acceleration profile of generated trajectory. Grey areas indicate segments where the
trajectory is infeasible for given maximum velocity and acceleration constraints marked with the bold red dashed line.

• We propose a novel 3D corridor constraint that con-
strains trajectory’s deviation from its straight line coun-
terpart, which could be used for collision avoidance.
By leveraging two supporting planes, the proposed
3D corridor can be written with 4 convex inequality
constraints.

• The proposed method does not require a pre-determined
time allocation, but optimize time allocation using SDP
and relaxation, which ensures the feasibility without
sacrificing agility.

This paper is organized as follows. Section II reviews
the preliminaries for trajectory generation. The proposed
methodology is detailed in Section III. Section IV describes
the experimental results. Conclusion is finally drawn in
Section V.

II. PRELIMINARIES

In this section, we briefly introduce the notations and
preliminary knowledge used in the paper.

A. Notations

A trajectory is defined in a global frame (i.e. the com-
mon used North-East-Ground frame) denoted as W with 4
dimensions of x, y, z and the yaw angle φ. The number
of waypoints is denoted with N and their corresponding
arriving time is given by ti, i = 1, · · · , N . To traverse
through N waypoints, M = N − 1 trajectory segments of
rth order are needed. Vectors are indicated with small bold
letters (e.g. p) and matrices are represented by bold capital
letters (e.g. Q).

B. Differential Flatness

Differential Flatness [11] is an important property for
trajectory generation. The proof of differentiable flatness
for quadcopters is detailed in [1], which is further re-
fined in [12]. The property of differential flatness allows
to plan smooth trajectories in the differentiable space and
then appropriate inputs could be mapped from flat outputs,
which provides the fundament for the following trajectory
generation.

C. Polynomial Representation
Following the same representation of [1], we formulate

trajectory with piecewise polynomials. Then, for each di-
mension, the trajectory f(t,p) is written as:

f(t,p) =


∑r

i=0 pi,1t
i, t0 ≤ t < t1∑r

i=0 pi,2t
i, t1 ≤ t < t2

...∑r
i=0 pi,M t

i, tN−1 ≤ t < tN

(1)

where p = [p1
T · · · p1

T ]T .

D. Semidefinite Relaxation & Semidefinite Programming
According to [13], the real-valued quadratically con-

strained quadratic program (QCQP) is defined as

min
x∈Rn

xTQx

subject to: xTAix � bi, i = 1, · · · , m. (2)

where Q, Ai ∈ Sn with Sn denoting the set of real
symmetric n × n matrices. Using the property xTCx =
trace(CxxT ) and a new variable X = xxT , Eq. (2) can
be rewritten as

min
X∈Sn+

trace(QX)

subject to: AiX � bi, i = 1, · · · , m.
rank(X) = 1 (3)

where Sn+ denotes the set of real positive semidefinite sym-
metric matrices. The nonconvex rank-one constraint could be
dropped to obtain an SDR of (3) as

min
X∈Sn+

trace(QX)

subject to: AiX � bi, i = 1, · · · , m. (4)

which turns out to be a standard SDP [14]. With regarding
to convert a globally optimal solution X∗ of (4) to a feasible
solution of (2), a rank-one approximation can be applied as

x̃ =
√
λ1v1 (5)

where λ1 is the largest eigenvalue of X∗ and v1 is the
respective eigenvector. Better approximation result can be
obtained via randomization, which is described in [13].



III. METHODOLOGY

The proposed methodology is explained in details in this
section. We begin with the classical QP based trajectory
generation and discuss the novel 3D corridor constraint. The
optimization of time allocation leveraging SDP and SDR is
then described.

A. Trajectory Generation Using QP

If the time allocation is known, trajectory generation can
be solved as a QP problem [1]. The objective function is
defined with

J =
1

2

∫ tN

t0

||f (k)(t,p)||2dt (6)

where f (k)(t,p) denotes the kth derivative of trajectory.
With (1), for each segment l of polynomial, the kth derivative
is given by

f
(k)
l (t,pl) = [0 · · · 0︸ ︷︷ ︸

k

βjt
j−k · · ·βntn−k︸ ︷︷ ︸
j=k, ··· , n

]pl (7)

βj =
j!

(j − k)!
(8)

The objective function J can then be written as

J =
1

2
pTQ(t)p (9)

where Q = blkdiag(Q1, · · · , QM) is a block diagonal
matrix. Here t is omitted since t is known. The QP can be
formulated as

minimize: J =
1

2
pTQp (10)

subject to: Ap = b

Cp � d

A and b represent the equality constraints including:
• Waypoints constraints with designated position, veloc-

ity and acceleration that can be written as f (k)
l (t,pl) =

b
(k)
l , where b(k)

l represents the given constraints for the
kth derivative of lth segment, i.e. k = 0 equals to
enforce a position constraint and k = 2 means a desired
acceleration constraint. From (8), this kind constraint
can be written as affine function al,kp = bl,k.

• Continuity constraint for maintaining smoothness, a
trajectory is assumed to be at least C2 continuous
which means the derivatives up to 2ord should be equal
for adjoint segments. If the derivative is designated,
then 2 equality constraints are enforced. Otherwise,
we add the continuity constraint as f

(k)
l (tl+1,pl) −

f
(k)
l+1(tl+1,pl+1) = 0. Similarly, it can be written as

affine function al,l+1,kp = 0.
C and d are used for inequality constraints, such as:
• Physical constraints, e.g. maximum velocity, maxi-

mum acceleration, etc, which ensures the feasibility
of the generated trajectory. Usually, the quadratic con-
straint ||v||22 = vx2 + vy2 + vz2 ≤ ||vmax||22 is
simplified with three conservative separate constraints

|vi| ≤ vmax,i, i ∈ x, y, z, ||vmax,x||22 + ||vmax,y||22 +
||vmax,z||22 ≤ ||vmax||22, which also applies to accel-
eration, etc. With the polynomial representation, these
constraints can be formulated with affine function, e.g.
the maximum velocity constraint f (1)(t,px) ≤ vmax

can be formulated as cx ≤ dx.
• Corridor constraints. Corridor constraints are pre-

ferred for collision avoidance in the decoupled mo-
tion planning framework where a collision-free path
is generated by a global planner. If trajectory can be
bounded within a range of the collision-free path, then
trajectory is guaranteed to be collision-free which will
boost the efficiency since collision check is normally
computationally expensive [15]. Corridor constraints are
imposed as nonconvex constraints in [16], which would
result in a nonconvex optimization problem. We herein
propose a 3D corridor constraint which ensures the gen-
erated trajectory being bounded within the corridor by
using 4 linear inequality constraints. Now considering
two consecutive waypoints pi and pi+1, the normalized
vector from pi to pi+1 can be easily computed as v1 =
pi+1−pi+1

||pi+1−pi+1|| . Two orthogonal normalized vectors can
be obtained by v2 = [0 −v1(3) v1(2)]T , v3 = v1×v2.
Together with those two orthogonal normal vector and
the line linep1→p2

, two orthogonal supporting planes
intersected with line linep1→p2

could be established.
By constraining the distance from trajectory to these
two supporting planes with a threshold denoted with
lcorridor, the trajectory is guaranteed to be bounded by a
square box with its surfaces being parallel to respective
supporting planes and side length being 2lcorridor.
Considering the equation of point-to-plane distance
dist = |ax+by+cz+d|√

a2+b2+c2
and trajectories represented as

polynomials x = f(t,px), y = f(t,py), z = f(t,pz),
the trajectory-to-plane distance can be formulated as

dist =
|af(t,px) + bf(t,py) + cf(t,pz) + d|√

a2 + b2 + c2
(11)

which is nothing more than a rth order polynomial. The
3D corridor constraint can be imposed as{

af(t,px) + bf(t,py) + cf(t,pz) ≤ lcorridor − d
−(af(t,px) + bf(t,py) + cf(t,pz)) ≤ lcorridor + d

(12)
Similarly, they can be further written as affine functions.

The aforementioned equality and inequality constraints
can all be expressed with affine functions which are convex.
Moreover, the Hessian matrix Q is positive semi-definite
since it is an integration of a positive semi-definite matrix
over a nonnegative interval. It is clearly Eq. 10 is a convex
optimization problem, which can be solved efficiently.

It is worthy to note that inequality constraints are meant
to be satisfied over a whole time interval, theoretically
corresponding to an infinite number of inequality constraints.
This can be relaxed by discretization and creating finite
inequality constraints [1] [16]. However, the discretization
density is often tricky to estimate, so we utilize another



iterative method based on creating supporting inequality con-
straints at extrema points. By that means, a trajectory is firstly
solved without inequality constraints. Then violation points
can be found by checking the extrema points and enforced
back by adding inequality constraints on the extrema instants.
It has been proven that a theoretical upper bound existed
for the number of the supporting constraints for constraining
the polynomial within the boundary range [8]. Thanks to the
polynomial representation, extrema points can be analytically
found for trajectory lower than 5th order.

B. Time Allocation Optimization Using SDP

Considering the initial assigned traversing time for the lth

segment is tl and the corresponding updated traversing time
t̃l, their relationship can be formulated as

tl = st̃l (13)

Consequently, the kth derivative of the lth trajectory segment
to t̃l can be obtained using Chain rule as

d(k)f

dt̃(k)
=
d(k)f

dtk
dt(k)

dt̃(k)
= sk

d(k)f

dtk
(14)

Assuming the coefficients of polynomials are known, the cost
function (6) is a polynomial function of s

J = q̃1s+ q̃2s
2 + · · ·+ q̃2k+1s

2k+1 (15)

Unfortunately, the cost function is nonconvex which may turn
out to be difficult to solve directly. Instead, we introduce a
new variable s̄ = [1, s, s2, · · · , sk+1]T , cost function (15)
could be written as

J = s̄T Q̄s̄ (16)

From section II-D, we know that (16) could be relaxed to
a classical SDP with optimization variable being S̄ = s̄s̄T .
Inequality constraints can be reformulated with S̄ in the form
of trace(C̄S̄) ≤ d. Equality constraints have to be relaxed
in SDP optimization.

We summarize the SDP optimization problem as

minS̄∈Sk+2
+

trace(Q̄S̄)

subject to: trace(C̄iS̄) ≤ di, i = 1, · · · , m̄ (17)

The rank-one approximation is used for recovering a feasible
solution from S̄∗. A new time allocation is computed with
the feasible solution using (13).

C. The Algorithm

The overall algorithm consists of the following steps:
1: Trajectory generation using initial time allocation using

QP.
2: Check feasibility. If feasible, exit.
3: Solve SDP for updating time allocation and go back to

1.
It is worthy to note here that the initial time allocation can
be chosen rather trivially, e.g. pick a uniform distribution
t ∈ [0, 1, · · · , N ]. Actually, the initial time allocation
could be improper, while it will be optimized automatically

TABLE I
TRAJECTORY GENERATION PARAMETERS

Parameter Value
vk,max, k ∈ {x, y} 10m/s

vz,max 3m/s
ak,max, k ∈ {x, y} 8m/s2

az,max 3m/s2

lcorridor 0.4m

in this algorithm. The aforementioned feasibility check is
to check if the generated trajectory satisfies all designated
physical and corridor constraints. Violation points will be
used for creating supporting inequality constraints in the next
iteration. At the end of iteration, the output of the proposed
approach will be the optimized time t∗ allocation as well as
the trajectory coefficients which minimizes the cost function
defined in Eq 10. Compared with [1], the proposed approach
releases the prerequisite time allocation.

IV. EXPERIMENTS

Simulation results are presented in this section. Our
trajectory generation approach is implemented in Matlab.
The semi-definite problem is solved with CVX1 which
is a package smafor specifying and solving convex pro-
grams [17], [18].

We start with an experiment to validate the robustness
of the proposed approach. In this experiment, waypoints
are manually assigned through a developed GUI program.
The initial and target states (velocity and acceleration) and
dynamic constraints (i.e. maximum velocity, acceleration,
corridor size) could also be designated arbitrarily. A snapshot
of one experimental result is shown in Fig. 2 and detailed
in Fig. 3. It can be seen from Fig. 2 that the generated
trajectory is strictly bounded with 3D corridor (in this case,
lcorridor = 1m). The exact distances from trajectory to the
2 supporting planes are shown in Fig. 3, which shows that
the trajectory is constrained within the corridors formed by
the two supporting planes. The corresponding velocity and
acceleration profiles are demonstrated in the middle and right
columns of Fig. 3, where the maximum velocity and acceler-
ation for x, y and z axis are 8m/s, 5m/s2, 3m/s, 2m/s2,
respectively. From Fig. 3, the velocity and acceleration of
the trajectory is well bounded by the maximum tolerances,
which guarantees the feasibility of the planned trajectory.

In the following experiment, numerical simulation of mo-
tion planning in a 15m× 15m× 2m workspace with artifi-
cially generated obstacles is carried out. The motion planning
is composed of a global planner using the Rapidly-exploring
Random Tree Star (RRT*) [19] for generating a collision-free
path and a trajectory generator using the proposed method
for planning a feasible trajectory corresponding to the path.
The workspace is represented with a 3D grid map with the
resolution being 0.1m. Obstacles are generated by using the
Perlin noise in the experiment, as shown in Fig. 4. For this
experiment, the starting waypoint and ending waypoint are

1http://cvxr.com/cvx/
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Fig. 3. Detailed profile curves for trajectory shown in Fig. 2. The left and right figures show the velocity profile and acceleration profile corresponding
to the generated trajectory. The maximum tolerant constraints are plotted with the red dashed lines.

set to [−7, −7, 0] and [8, 8, 1], respectively. Intermediate
waypoints are generated automatically using the RRT* algo-
rithm and then pruned with the line-of-sight collision check,
where a collision radius of 0.5m is used here. The initial and
final velocities, accelerations are set to zero. The velocity and
acceleration profile for those intermediate waypoints are left
free for optimization. Constraints for trajectory generation
are defined in Table I. The experimental result is shown in
Fig 4. Although the map is challenging, the resultant trajec-
tory is guaranteed to be collision-free thanks to the proposed
3D corridor which controls the deviations of the generated
trajectory to the planned path. The velocity and acceleration
profiles are shown in the middle and bottom figures of Fig 4.
It can be observed that velocity and acceleration are strictly
bounded with given constraints, which ensures the feasibility

of the generated trajectory.

V. CONCLUSION AND FUTURE WORKS

In this paper, a trajectory generation approach has been
proposed for quadcopter vehicle. The proposed method
solves the trajectory generation problem iteratively us-
ing quadratic programming and semi-definite programming.
Compared with previous works, the proposed method doesn’t
rely on a proper prior time allocation but optimize the
time allocation automatically via relaxation and semi-definite
programming. Experiments show that the proposed method
can generate a feasible trajectory which satisfies dynamic
and environmental constraints even with an improper time
allocation.

In the future, we will consider the onboard implementation
of the proposed method on quadcopter vehicle to enable
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Fig. 4. The Top figure shows the trajectory generation result for the
map of Perlin noise. The start point and end point are plotted as the
magenta and cyan square and diamond points, respectively. Intermediate
waypoints planned by RRT* are shown with blue circular points and linked
by the green dotted line. The generated trajectory is demonstrated with
the solid colored line with the color representing the velocity profile.
The middle and bottom figures detail the velocity profile and acceleration
profile corresponding to the trajectory. The maximum velocity constraint
and maximum acceleration constraint are shown with red dashed lines.

quadcopter to navigate autonomously in the outdoor environ-
ment. The proposed method is also planned to be extended to
task-driven trajectory generation problem involving multiple
UAVs in the future.
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