
Echo State Networks: analysis, training and predictive control

Luca Bugliari Armenio1, Enrico Terzi2, Marcello Farina2, and Riccardo Scattolini2

Abstract— The goal of this paper is to investigate the theoreti-
cal properties, the training algorithm, and the predictive control
applications of Echo State Networks (ESNs), a particular kind
of Recurrent Neural Networks. First, a condition guaranteeing
incremetal global asymptotic stability is devised. Then, a mod-
ified training algorithm allowing for dimensionality reduction
of ESNs is presented. Eventually, a model predictive controller
is designed to solve the tracking problem, relying on ESNs
as the model of the system. Numerical results concerning the
predictive control of a nonlinear process for pH neutralization
confirm the effectiveness of the proposed algorithms for the
identification, dimensionality reduction, and the control design
for ESNs.

Index Terms— Echo State Networks, Neural networks, Model
Predictive Control(MPC)

I. INTRODUCTION

In the last decades, Recurrent Neural Networks (RNN),
also called Dynamical Reservoirs, have become very attrac-
tive for their potentially wide range of applications. RNNs
were developed in the 1980s, and in 1993 it was possible
to solve a deep learning task requiring more than 1000
subsequent layers in a RNN [21]. Afterwards, their use
spread in a lot of different areas such as linguistic [22],[6],
musical [7], technological [16],[9], social [2],[8], economic
[25] and biological [26].

Among RNNs, Echo State Networks (ESNs) stand out
for their versatility and ease of use. The main advantage
of the ESNs with respect to other RNNs lies in the training
algorithm. In fact, while in general the training algorithms of
RNNs are based on iterative solutions to non-linear problems
[10], e.g. the Back-propagation algorithm, the training of
ESNs reduces to the solution to a linear regression problem.
Their mathematical models in state-space form are com-
posed of a non-linear state equation but a linear output
one. The reservoir of ESN is the recurrent layer formed
by a large number of sparsely interconnected units with
non-trainable weights, that are chosen randomly. The ESN
training procedure, indeed, is a simple adjustment of output
weights to fit input/output data with the state trajectory of
the net starting from a random initialization. ESNs enjoy,
under mild conditions, the so-called Echo state property (see
[12]), that ensures that the effect of the initial condition
vanishes after a finite transient. ESNs have been exploited
so far with notable results in speech recognition [29], time-
series prediction tasks [13], reinforcement learning [24], and
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language modelling [28]. A common feature of ESN is the
large number of states, that enables the modeling of complex
phenomena at the price of a significant computational effort
when used in control applications. It is typical to find ESNs
with thousands of states [12], which expand their descriptive
capabilities but make them less suitable in cases where
online optimization problems are involved, for example,
when predictive control is employed. The use of ESNs for
control purposes has been therefore rather limited so far,
and only few contributions are found in control literature,
among these [20],[19] and [18]. In particular in [18] the issue
of nonlinearity with high dimensional states (of ESNs) is
tackled by means of a Taylor expansion, to which a nonlinear
term is added.

In this work ESNs are addressed both theoretically, and
through their application for control purposes, specifically
in the Model Predictive Control framework [4], that is
made possible thanks to the addition of a suitable model
reduction phase. First, a sufficient condition for ESN to
be Incrementally Globally Asymptotically Stable (δGAS,
[3]) is provided. Second, to face the dimensionality issue,
we propose a modified algorithm for the training, that is
based on the solution of a LASSO program [27]. This
allows to train a network that is non-minimal, so that its
dimension can be reduced thanks to a suitable algorithm
detailed in [1] and based on decomposition of the system
into observable/unobservable parts. Third, we consider ESN
into the MPC design of a regulator solving tracking and
disturbance rejection problems. Numerical examples show
the effectiveness of the proposed approach for identification,
dimensionality reduction, and predictive control of a SISO
nonlinear plant for PH neutralization.

The paper is organized as follows: In Section II the nota-
tion is introduced and some properties of nonlinear systems
are recalled, Section III defines the model of ESNs, states the
main theoretical result, and illustrates the proposed modified
training algorithm. Section IV describes the formulation
of the Model Predictive Control problem, followed by the
simulation example reported in Section V. Conclusions and
hints for future work are included in Section VI.

II. NOTATION AND BASIC DEFINITIONS

Let us consider the general discrete-time system:

x(k + 1) = f(x(k), ω(k)) (1)

where k ∈ Z is the discrete time index, x(k) is the state
vector, ω(k) is the input vector and f(·) is a nonlinear
function of the input and the state.

ar
X

iv
:1

90
2.

01
61

8v
1 

 [
cs

.S
Y

] 
 5

 F
eb

 2
01

9



Defining the sequence ~ω = (ω(0), . . . , ω(k)) for k ≥ 0,
we indicate with x(k, x0, ~ω) the solution to system (1)
at time step k starting from initial state x0 with input
sequence ~ω. Moreover, given a column vector v with entries
vi, i = 1, . . . , n we denote ‖v‖2 as the 2-norm of v, ‖v‖1 =∑n
i=1 |vi| the 1-norm, ‖v‖A = vTAv the norm weighted by

matrix A, and vT as the transpose of v. We denote with
Ker(A) = {v ∈ Rn : Av = 0} the kernel of matrix A,
and with ‖A‖ = supv 6=0

‖Av‖2
‖v‖2 its norm, while ρ(M) is

the spectral radius of the square matrix M (i.e. maximum
absolute value of the eigenvalues).

In the following we also recall some notions related to
nonlinear systems [3], that are useful for the analysis of
ESNs.

Definition 1 (K-Function): A continuous function α :
R≥0 → R≥0 is a class K function if α(s) > 0 for all s > 0,
it is strictly increasing, and α(0) = 0.

Definition 2 (K∞-Function): A continuous function α :
R≥0 → R≥0 is a class K∞ function if it is a class K function
and α(s)→∞ for s→∞.

Definition 3 (KL-Function): A continuous function β :
R≥0 × Z≥0 → R≥0 is a class KL function if β(s, t) is
a class K function with respect to s for all t, it is strictly
decreasing in t for all s > 0, and β(s, t)→ 0 as t→∞ for
all s > 0.

Definition 4 (δGAS): A system of the form (1) is called
incrementally globally asymptotically stable (δGAS), if there
exist a KL function β such that for all k ∈ Z≥0, any initial
states x0, x′0 and any disturbance sequence ~ω

‖x(k, x0, ~ω)− x(k, x′0, ~ω)‖2 ≤ β(‖x0 − x′0‖2, k)

III. ECHO STATE NETWORKS

A. Model

In the terminology of Neural Networks, ESNs are com-
posed of a dynamical reservoir (also called hidden layer)
in which the connections between neurons are sparse and
random. The ESN we consider is characterized by n neurons
in the reservoir, i.e. states composing the vector x, an input
u and an output y. The nonlinear activation function of the
neurons is tanh(·), as is common practice [14]. The state
and output equations of the ESN read:

x(k + 1) = tanh(Wxx(k) +Wuu(k) +Wyy(k)) (2)

y(k) = Wout1x(k) +Wout2u(k − 1) (3)

where Wu,Wx,Wy,Wout1 and Wout2 represent the con-
nection weight matrices. The form (2) - (3) is equivalent
to the conventional one [12], the equivalence is shown in
Appendix (Property 3). Matrices Wx,Wy,Wu are randomly
generated, while Wout1 and Wout2 are not known, and must
be properly identified in the training phase. For simplicity of
presentation, here we consider a SISO system, i.e. y(k) and
u(k) are scalar variables.

B. Properties

With reference to model (2), the notion of Echo State plays
an important role in understanding the ESN behaviour. It is
related to the weight matrices (Wx,Wu,Wy), and thus to
the network before its training, and it takes the following
definition [12].

Property 1 (Echo States): Assume to have a network (2),
(3) with weights (Wx,Wu,Wy) driven by an input u(k) and
with output y(k) belonging to compact intervals U and Y .
The network (Wx,Wu,Wy) has echo states with respect to U
and Y , if for every left-infinite input/output sequence (u(k−
1), y(k−1)), where k ∈ (−∞, 0), and for all state sequences
x′(k), x′′(k) subject to the network dynamics:

x′(k + 1) = tanh(Wuu(k) +Wxx
′(k) +Wyy(k))

x′′(k + 1) = tanh(Wuu(k) +Wxx
′′(k) +Wyy(k))

it holds that x′(k) = x′′(k) for all k ≥ 0. �

In other words, if the ESN has been run for a very
long time, the current network state does not depend on its
initial value, but only on the history of the forcing signal.
Experimental results [12] show empirically that a sufficient
condition for the Echo State Property is ρ(Wx) < 1. In
the following, δGAS is formally guaranteed under a slightly
stronger condition, i.e. ‖Wx‖ < 1.

Theorem 1: If ‖Wx‖ < 1, then system (2) is δGAS �

Proof: See the Appendix

C. ESN Training and order reduction

The training of ESNs consists of learning a model such
that the difference between the model and the system outputs
is minimized. In this form, this is a Least Square (LS)
problem, that allows to find the output connection matrices
Wout1 and Wout2 (see [12]). The learning algorithm is
reported next.

Algorithm 1
1) Generate randomly a sparse matrix Wx with spectral

radius ρ < 1.
2) Generate random matrices Wu and Wy .
3) Start from x(0) arbitrary and integrate (2) forced by the

real system data retrieved (u, y).
4) Discard the first K0 points (associated to the initial

conditions) and get the state trajectory x(k) for k > K0.
5) Store the values of (x(k), u(k− 1)) and of ysys(k) for

k > K0 respectively into matrices Φ and Ysys.
6) Solve the LS problem minWout

‖Ysys−ΦWout‖22 to find
the output weights Wout = [Wout1Wout2 ]T .

As widely known, however, NNs may require, in order
to well reproduce the system input-output behaviour, a
significant number of states, compromising the practical use
of NN-based control algorithms in real-time applications. A
network subject to a suitable model reduction phase may
allow to reduce significantly the computational time required
for the solution to the optimization program underlying
the design of a MPC algorithm as described next, without
meaningful losses in the modeling performances. In this



paper we propose a theoretically sound method for reducing
the number of states of the network. This method relies on
the notion of minimality, which has been characterized in the
context of Mixed Networks (MN, see [1]). Indeed, ESNs are
included in this class, as shown in Appendix (Property 4). A
remarkable property of MNs is minimality, whose definition
is reported in [1]. In a few words, a MN is minimal if, for
any initialization, any other input-output equivalent network
has greater or equal dimension. A sufficient condition for
minimality is stated below [1]:

Property 2: Given an ESN of the form (2)-(3), if Wout1

has all non-zero columns and Ker(Wout2) = 0, then the
network is minimal. �

Note that, however, the solution to the LS problem stated
above leads the output weights to be in general different
from zero, hence the network is minimal (and not reducible)
thanks to Property 2.

We propose a modified training algorithm that is aimed at
enforcing a sparse structure to Wout when possible, making
the network non-minimal and so “reducible”.

The modified training Algorithm consists of three steps.
Algorithm 2

1) Perform steps 1)-6) of Algorithm 1 with the modified
cost function

min
Wout

‖Ysys − ΦWout‖22 + λ‖Wout‖1, λ ∈ R+

2) Perform a dimensionality reduction of the network ob-
tained, applying the procedure proposed in [1], pag.29.
The resulting network will be minimal and characterized
by n0 ≤ n states

3) Perform Algorithm 1 with the reduced ESN.
Note that Step 3, involving the reduced ESN, is recom-

mendable after the first training since the LASSO formula-
tion in Step 1 biases the Wout coefficients towards zero, see
also [5].

IV. MODEL PREDICTIVE CONTROL (MPC)

MPC is a model-based iterative control technique: at each
sampling time Ts, we measure or estimate the current state
of the system model (in our case the ESN), we compute the
predicted output by means of (2) and (3) as function of the
future control variables, and we obtain the optimal control
input by minimizing a cost function subject to constraints,
see [15]. The aim of our control strategy is to track changes
of the output reference ȳ, without the need to compute the
steady state values of the state and of the control input
corresponding to ȳ. To this end, an integrator is inserted
in cascade to the system input u(t), in such a way that the
actual manipulable input is now δu(k):

u(k) = u(k − 1) + δu(k) (4)

Furthermore, to avoid steady state modelling errors, a well
known technique in MPC is applied, inspired by [17]. This
consists in considering the difference between the real system
output ysys(·) and the predicted output y(·) as an additional

Fig. 1. Calculum of the mismatch between real and estimated output

disturbance d̂(·) (Fig. 1). The estimate of the disturbance
is computed each time a new optimization problem is set
and the disturbance is considered constant over the entire
prediction horizon N . Then, this estimated disturbance d̂
is added to the future predicted outputs of the optimal
control problem. The resulting cost function formulated for
computing the optimal control input over the prediction
horizon N is:

J(k, δU(k)) =

N−1∑
i=0

(
‖ê(k + i)‖2Q + ‖δu(k + i)‖2R

)
(5)

where ê(·) = y∗(·) − ȳ = y(·) + d̂(·) − ȳ is the esti-
mated output error, δu(k) = u(k) − u(k − 1) is the input
rate of change, thus the input of the integrator, δU(k) =[
δu(k) . . . δu(k +N − 1)

]
and the matrices Q > 0 and

R > 0 weight the estimated error and the rate of change of
the input respectively. The cost function J is subject to the
ESN dynamics (3) and to the constraints:

d̂(k + i) = d̂(k) i = 1, . . . , N − 1 (6)

umin ≤ u(k + i) ≤ umax i = 0, . . . , N − 1 (7)

After each time step k, the optimization problem

min
δU(k)

J(k, δU(k)) s.t. (6), (7) (8)

is solved, and the input u(k) = u(k− 1) + δu(k) is applied
to the system according to the Receding Horizon principle,
see [15].

V. SIMULATION RESULTS

A. pH neutralization process

The nonlinear system of study considered for our simu-
lations is the pH neutralization process represented in Fig.
2 where the goal is to keep the pH of the solution at a
neutral level (pH = 7). As it can be noticed, the system is
composed of a principal tank, called reactor tank, in which
the transformation takes place. Three flows enter the reactor:
• acid stream q1e;
• buffer flow q2;
• alkaline stream q3.

where q1 = q1e is assumed to be constant since its dynamics
is much faster than the main process one, the flows q1 and
q2 are considered as unmeasured disturbances, while stream
q3 is the control input regulated by a valve. The output of



Fig. 2. pH neutralization system scheme

the system is the stream q4, that is the final solution from
which the pH is measured and controlled. The model of the
process can be written in the state space form with x ∈ R3,
d ∈ R. For the full system equations we make reference to
[11].

B. Identification

In order to identify the ESN model, the real plant has
been excited over the whole operating conditions with a
Multilevel Pseudo-Random Signal (MPRS) characterized by
two different frequencies: one with switching period of 10
seconds and the other one of 1000 seconds. The choice of 10
seconds is explained by the fact that, for the control of the
neural network (ESN), the adopted sampling time is set to
10 seconds. Moreover, we have to teach to the ESN how the
real system behaves under ”fast” changes of the input. On the
other hand, the part of the input with period of 1000 seconds,
greater than the settling time, is used to well identify the
steady state behaviour of the system. As for the amplitude,
in the simulation for the pH system we have used as the
forcing input flowrate q3 a MPRS signal with a minimum
value of 12.7 mL/s and a maximum one of 16.7 mL/s. The
corresponding pH output of the process is in the interval
[6, 8.65].
The input/output signals used to train the ESN have been
acquired with a sampling time Ts = 10 s in order to have
empirically from 20 to 40 samples in the part of the step
response that goes from 0 to the settling time of the system.
Once the input/output sequences have been retrieved, an ESN
with 300 states has been trained following the procedure
explained in Section III-C. Thanks to the application of
Algorithm 2, the final network with 188 states guarantees
satisfactory performances despite the nearly 40% dimen-
sionality reduction. A quantitative comparison of the trained
networks’ performances are reported in Table I, where the
fitting value is computed as

100

(
1− ‖Ysys − Y ‖2
‖Ysys −mean(Ysys)‖2

)
% (9)

always with respect to validation data. We notice that if
the training is performed only with steps 1-2 of Algorithm
2, the network shows negative performances, specifically the
gain of the process is badly identified, and this motivates the
adoption of the complete algorithm.

TABLE I
pH system:COMPARISON OF THE TRAINED NETWORK PERFORMANCES

Algorithm Number of states n Fitting

1 300 81.15%
2 (step 1) 300 71.75%

2 (step 1-2) 188 -596%
2 full 188 79.26%

As it is possible to see from Fig. 3, with the final identified
ESN there is an error at steady state, that justifies also
the introduction of the disturbance compensation in the
predictive control algorithm discussed in Section IV and
based on the ESN model.

2000 3000 4000 5000 6000 7000 8000
Time [s]

6

6.5

7

7.5

8

8.5

pH
 

Fig. 3. Validation of the reduced network (188 states). dashed line: plant,
solid line: identified model

C. Reference tracking

Once the identification of the model has been completed,
the MPC described in Section IV has been used in order
to control the original model of the pH process and, in
particular, to track the changes of the reference signal ȳ and
to reject disturbances. The parameters of the optimal control
problem are listed for clarity in Table II. The predictive

TABLE II
pH system: PARAMETERS FOR THE MPC WITH MODEL ERROR

COMPENSATION

Parameter N Ts Q R

Value 20 10 2 1

control performances are reported in Fig. 4 which shows



the trend of the process output during reference tracking
and in presence of step-wise non-modelled disturbance vari-
ations. The process has been first initialized with steady

Fig. 4. pH neutralization system scheme. dashed line: setpoint, solid line:
output of the controlled system

state input ū = 15.556 mL/s, then the output had to
follow the steps in reference to values [8 7.5 6.5 7] at
times [500, 2000, 3500, 5000] s and the non-modelled dis-
turbance variations to values [0.45 0.85 0.35] at instants
[6000, 7000, 8000]. As it is possible to see, the output reaches
quite fast the reference value with zero steady state error and
with just small overshoots. Moreover, the control input coun-
teracts the action of the non-modelled disturbance bringing
back the system to its reference output value with zero offset.
Then, we can conclude that the overall performances of the
controlled process are satisfying. Given the necessity to solve
a nonlinear optimization program online, we checked the
computational time required by MPC based on both the full
network and the reduced one for the same control problem.
The comparison is shown in Figure 5, and it shows that
almost always the time required decreases for the network
with a smaller number of states. The average value over
the whole simulation is decreased from 0.35 s to 0.25 s,
thus reporting nearly 30 % reduction and motivating the
dimensionality reduction of the network.

VI. CONCLUSIONS

In this paper we have focused our attention on Echo State
networks, in order to test their applicability for control design
purposes. First, a new result concerning stability-related
properties of ESNs has been proven. Then, an algorithm
for the reduction of the dimensionality and the training
of ESNs has been proposed and exploited to obtain the
identified model of a nonlinear case of study. Such model
has been used for the design of an MPC regulator to tests
the performances in reference tracking and in presence of a
step-wise disturbance. Future work concerns the extension to
MIMO systems and the derivation of additional theoretical
properties.

APPENDIX

In order to prove Theorem 1 we first need to introduce
some definitions.
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Fig. 5. Comparison of times required to complete the nonlinear optimiza-
tion. Black solid value: full ESN (300 states), grey line: reduced ESN (188
states)

Definition 5 ([23]): A real function f : R → R is called
locally Lipschitz continuous if there exists a constant L ≥ 0
such that, for any x, y ∈ R it holds:

|f(x)− f(y)| ≤ L|x− y|
Remark 1 ([23]): An everywhere differentiable function

f : R → R with (L = sup |f ′(x)|) is Lipschitz continuous
if and only if it has bounded first derivative.

Definition 6 ([23]): If function f is Lipschitz continuous
on all the space R, then f is called globally Lipschitz
continuous.

Remark 2: The function f(x) = tanh(x) is Lipschitz
continuous since sup |f ′(x)| = 1. Moreover it is also
globally Lipschitz continuous with L = 1.
Now we can prove Theorem 1:

Proof: In order to prove δGAS of system (2) we
show the existence of a KL−Function in the initial states
through a suitable δGAS Lyapunov function. Let us consider
V (x(k), x′(k)) = (x(k)−x′(k))T (x(k)−x′(k)) = ‖x(k)−
x′(k)‖22 as a candidate δGAS Lyapunov function. We define
ω(k) = (u(k), y(k))T and Win = (Wu,Wy). From now on,
for notational simplicity we drop the dependence on time k
which is implicit.

V (f(x, ω), f(x′, ω))− V (x, x′) = . . .

= ‖f(x, ω)− f(x′, ω)‖22 − ‖x− x′‖22
By means of Lipschitz condition of the function tanh we
have:
‖f(x, ω)− f(x′, ω)‖22 − ‖x− x′‖22 ≤ . . .
. . . ≤ L2‖Winω +Wxx−Winω −Wxx

′‖22 − ‖x− x′‖22
≤ L2‖Wx(x− x′)‖22 − ‖x− x′‖22

where L = 1 is the Lipschitz constant of the function tanh.
Now, we can write:

‖f(x,ω)− f(x′, ω)‖22 − ‖x− x′‖22 ≤ . . .
. . . ≤ ‖x− x′‖2WT

x Wx
− ‖x− x′‖22

≤ ‖x− x′‖2WT
x Wx−I

≤ ‖x− x′‖2−Q



where we introduced Q = I −WT
x Wx.

Since by assumption ‖Wx‖2 < 1, all the eigenvalues of
symmetric matrix Q are λ > 0. Therefore, Q is a positive
definite matrix, while −Q is a negative definite one.

Therefore

V (f(x, ω), f(x′, ω))− V (x, x′) ≤ −‖x− x′‖2Q

Then, with standard arguments we can write:

‖x(k)− x′(k)‖2 ≤ αk‖x(0)− x′(0)‖2

where α =
√

1− λmin(Q).
If we define β(‖x(0) − x′(0)‖2, k) = αk‖x(0) − x′(0)‖2
δGAS is proved.

Property 3 (Alternative canonical form of ESN): In liter-
ature the mathematical model of the Echo State Networks
is generally expressed by the following state and output
equations, where ξ(k + 1) is the input vector:

x(k + 1) = tanh(Wxx(k) +Wuξ(k + 1) +Wyy(k)) (10)

y(k) = Wout1x(k) +Wout2ξ(k) (11)

This formulation is equivalent to (2)-(3), save for an addi-
tional state equation. In particular defining

ξ(k + 1) = u(k) (12)

it follows that (10) becomes (2), and (11) becomes (3). �

Property 4: Mixed network are dynamical systems char-
acterized by a state dynamic of the following form:

x1(k + 1) = tanh(A11x1(k) +A12x2(k) +B1u(k)) (13)
x2(k + 1) = A21x1(k) +A22x2(k) +B2u(k) (14)

y(k) = C1x1(k) + C2x2(k) (15)

with A11, A12, A21, A22, B1, B2, C1, C2 matrices of suit-
able dimensions. Comparing (10),(12) and(11) with (13),(14)
and (15) respectively, the membership of ESN to Mixed
Network is apparent. �
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