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Input and state estimation exploiting input sparsity

Sophie M. Fosson', Federica Garin?, Sebin Gracy?, Alain Y. Kibangou?, Dennis Swart>?2

Abstract— Motivated by cyber-physical security applications,
we face the problem of estimating the state and the input of a
linear system, where the input may represent the presence of
adversarial attacks. We consider the case where classical filters
cannot be used, because the number of measurements is too
low, for example it is lower than the size of the input vector.
If the input, although of large size, is known to be sparse,
the problem can be tackled using techniques from compressed
sensing theory. In this paper, we propose a recursive estimator,
based on compressed sensing and Kalman-like filtering, which
is able to reconstruct both the state and the input from noisy,
compressed measurements. The proposed algorithm is proved
to be feasible and numerically efficient, and simulations show
a good recovery accuracy with respect to an oracle estimator.

I. INTRODUCTION

The problem of jointly estimating the state and the input
of a linear system has attracted a lot of attention in the last
years, mainly motivated by cyber-physical security applica-
tions. If a malicious agent injects an input to the system, in
order to disrupt its functioning, the system controller might
need to keep estimating the system state (despite the presence
of the input), as well as to estimate the unknown input, so as
to be able to counteract it, and preserve the system behaviour.
The relevance of this problem for cyber-physical systems has
been highlighted, e.g., in [1], [2], [3], [4], where the authors
characterize the systems where zero-dynamics attacks occur
(namely, attacks such that the input and state estimation is
not possible). The classical solution to the problem of joint
input and state estimation is a Kalman-like filter [5], [6].

Without any limitation on the input, e.g., on its size,
the problem would require output measurements from every
single state. However, in many cyber-physical security appli-
cations, one can make assumptions about realistic constraints
that the attacker might encounter [7]. In the recent literature,
the attacks are often supposed to be sparse, i.e., the attacker
can inject an input only in few places [8], [9], [10], [11],
[12], [13]. This assumption is particularly meaningful when
the input injection requires physical tampering in the location
of each actuator, or requires a cyber attack of independent
local units, so that the attacker can only make one, or very
few such actions. In linear systems, this can be modeled
as an input vector of large size, as large as the number of
vulnerable states, but sparse, i.e., with only few non-zero
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entries. The support, that is, the positions of the non-zero
entries, is not known and has to be detected.

In [10], [11], [12], [13], the problem of sparse input is
tackled in terms of state estimation and control of the system,
while the estimation of the input is not done. However, it
might be important to estimate the input as well, in order
to detect and isolate the attack, e.g., by switching off the
attacked actuators.

With this motivation, the aim of this paper is to pro-
pose a method to estimate both the state and the input,
under a sparsity assumption for the input. This scenario
has been considered in [14], where the authors study the
theoretical conditions for unique input reconstruction, and
propose two algorithms: the first one being batch (waiting
for the whole output sequence before recovering the state
and input sequences), and the second one being recursive. In
that work, however, noise is not taken into account, which is
a severe limitation for practical purposes. More precisely, the
algorithm proposed in [14] cannot be extended to the noisy
case and it is not tolerant to noise, as shown also in our
numerical experiments (Section IV). A noise-free setting is
considered also in [8], [9], where the identification of attacks
is studied for continuous-time linear systems.

Our contribution is to provide an algorithm for joint input
and state estimation, which is able to deal with noise. Specif-
ically, we propose a Kalman filtering approach; moreover,
assuming the input sparsity, we aim at performing estimation
from compressed measurements, which is possible thanks to
compressed sensing (CS) [15], [16], [17]. This is a recent
theory in signal processing which allows to achieve unique
reconstruction of a sparse signal with a number of samples
below the Nyquist rate, under some technical conditions on
the measurements. Since its advent, CS has been mostly
focused on static problems, where signal reconstruction is
done without any knowledge of the signal dynamics. In the
last years, however, an increasing attention to time-varying
problems has arisen, motivated by the ubiquitous applica-
tions. In the signal processing community, some research
has been devoted to dynamic CS, where the unknown sparse
signal is assumed to be time-varying, [18], [19], [20], [21].
In the framework of linear dynamical systems, instead, a
line of research where CS has been combined with Kalman-
like estimation has emerged, for systems where the state
is assumed to be sparse, see [22], [23], [24], [25] and the
references therein.

Differently from these papers, we do not assume sparsity
of the state, but rather sparsity of the input. In particular,
we use CS to recover the sparse input from a number of
measurements smaller than the number of vulnerable entries.



As discussed later, this is not achievable with classical input
and state estimation approaches [5].

The paper is organized as follows. In Section II, we intro-
duce the mathematical model and the necessary elements of
CS. In Section III, we propose our algorithm and we discuss
its theoretical properties. In IV, we show some numerical
results, that show the good performance obtained by the
proposed method when compared to an oracle estimator.
Finally, some conclusions are drawn.

II. PROBLEM STATEMENT AND PRELIMINARIES

The problem that we aim to tackle can be formulated as
follows. We consider a linear system

0]

Tpy1 = Az + Bug + wy
yr = Cp + v

where zp, € R", yr € R™, and u; € RP are the state, output,
and input, respectively. The input uy, is assumed to be sparse,
i.e., it has only s; < p non-zero entries. Its support is not
known and might change at each k. As discussed in the
the previous section, this can model a cyber-attack which
can affect a small number of vulnerable nodes at each time
instant. The process noise wy and the measurement noise
vy, are supposed to be zero-mean, uncorrelated, gaussian,
with covariance matrices () and R, respectively. Concerning
u, we have no knowledge about its dynamical evolution
in time, nor about its statistical properties. Notice that uy
is an unknown external input, while the possible closed-loop
control input is omitted here, since it is known by the system
controller, and it can be easily subtracted out from the state
update equation.

The goal is to develop a recursive (Kalman-like) algorithm,
which is able, at time k£ and given yg, to promptly output
estimates 2, and Uy_1 of xx and ui_1, so that an attack can
be readily detected and countermeasures can be taken, while
monitoring of the system state keeps properly running. This
problem is known as delay-1 input and state estimation.

We remark that the sparsity assumption cannot be ex-
pressed simply imposing a small input size p, because this
would imply assuming perfect knowledge of the locations
of the attacks. Instead, we rather propose the following. We
describe with B some knowledge about all the possible ways
the attacker might locally influence the states. In particular,
we consider B of the form B = [%’] which describes
the fact that p states are vulnerable to local attacks (an
input attack might be injected in either of these states,
individually), and n — p states are reliable and cannot be
attacked, e.g., because they have a stronger protection, or
because they are internal states and no actuator can directly
act on them.

A. Classical joint input and state estimation

The problem of jointly estimating the state and the un-
known input (with no extra assumption on the input sparsity)
is classical. The conditions under which a stable estimator
exists are discussed in [26] and [6], and are the following:
the system is delay-1 left-invertible (namely C'B has full

column rank), and is strongly detectable, namely [ 45" &

has full column rank for all z € C with |z| > 1.

In [5], an optimal (minimum-variance unbiased) estima-
tor is proposed. This algorithm requires the delay-1 left-
invertibility (rank(C'B) = p). Notice that rank(CB) = p
implies rank(C) = p, and in particular m > p, which
excludes the possibility of estimation from compressed mea-
surements (m < p), thus the use of possible prior information
on sparsity and CS. As discussed in [6], this filter is stable
(i.e., covariance remains bounded) if the system is strongly
detectable.

B. Compressed sensing in a nutshell

The problem posed by CS is to find the sparsest solution
(i.e., the solution with maximum number of null components)
to the underdetermined linear system of equations z = ®q,
a € RP, & € R™P, m < p,[15], [16]. The uniqueness of the
solution « is guaranteed if the so-called sensing matrix ® sat-
isfies certain conditions, in terms of coherence or restricted
isometry property (RIP) [17]. Since these conditions are
difficult to prove for deterministic matrices, random matrices
are generally considered. In particular, gaussian matrices are
known to satisfy the RIP (see [17] for a deeper overview).

The CS problem is NP-hard, which makes the recovery a
tough point. For this reason, convex formulations of CS have
been studied [27], which are computationally affordable,
e.g., Basis Pursuit, for the noise-free case, and Basis Pursuit
Denoising and Lasso, for the noisy case [17]. In particular,
Lasso [28] is a least squares problem with an ¢;-norm
regularizer, which is known to promote sparsity and has long
been known in statistical and machine learning communities,
also for overdetermined problems.

C. Exploiting compressed sensing for input estimation

In [14], the idea of exploiting CS for joint reconstruction
of state and sparse input is introduced. More precisely, CS
is used in the input recovery phase to estimate the sparse
input from compressed measurements (m < p). First, a batch
algorithm is proposed, where the whole output sequence is
collected and used for recovery; sufficient conditions for
successful reconstruction are discussed. Then, an iterative
algorithm is developed, which can be summarized as follows:
given an initial state estimate z,, at each time instant k,
an estimate u_; of the input ui_; is obtained, using CS
techniques, from the (underdetermined) linear system:

gk = CBu

where g, = yir — C AZi_1. Then, the state is estimated as
follows:
Tp = AZp_1 + Blg_1.

More precisely, assuming the absence of noise, up_p is
computed as the solution of the Basis Pursuit problem [17],
which reads as follows: mingege ||u]|1 s.t. gx = CBu.

In the noise-free case, if C'B satisfies the properties for
CS recovery, this algorithm provides the exact sequence of
states and inputs. However, when noise is introduced, this



procedure is not stable: the state reconstruction is just the
input-corrected prediction, while the output measurements
are only used to estimate the input. No Kalman-like correc-
tion of the open-loop state prediction is performed, therefore,
unless A is stable, errors are propagated (see Figure 4).

For this reason, the approach proposed in [14] is not
feasible in case of noise, and no straightforward extension
can be obtained from it to tolerate noise. In the next section,
we introduce our novel approach to this problem.

III. PROPOSED ALGORITHM

Our goal is to provide a recursive algorithm, which is able

« to exploit the input sparsity and CS paradigm so as to
deal with cases where C'B does not have full column
rank, as in [14] and differently from [5];

e to estimate state and input from compressed, noisy
measurements, as in [5] and differently from [14].

In this section, we introduce the proposed algorithm and
we illustrate its properties. In the rest of the paper, given a
set S C {1,...,p}, with cardinality |S| = s, we denote by
Bg the n x s matrix obtained selecting the s columns of B
whose index belongs to S.

The proposed algorithm exploits a Kalman filtering
approach as in [5], but with a peculiar feature: at each k,
the support of the sparse input is estimated and only the
columns of B associated with the estimated support are
used. The complete procedure can be summarized as follows.

Algorithm - SISE (Sparse-input and state estimator)
Initialization: z,, Py > 0.

For k > 1, read measurement y; and compute:
Preliminary calculations

Py = AP, AT +Q )
R, =CP.CT +R (3)

Innovation
gk = yr — CAZy, “4)

Input support estimate

Sp_q = support of the CS solution w of:

Jr = CBu + ey, &)
where e;, is a noise with 0 mean and covariance }NB;C
Bi-1=Bg, | (6)

Input estimate
My, = (Bl_,C"R;*CBe—1) 'B{_,CTR" (7)
Ug—1 = My ®)
State estimate: input-corrected prediction
2y = A& + Br_10x 9
Py = (I — B_1MyC)Py(I — By,_1 M, C)T

+ By_1 M, RMI' B}, (10)

State estimate: update
Ky = BOTR,
T = Lffz + Ky (yr — CZ%)
P, = P} — Ki(P;CT — B, MR)"

(1)
(12)
13)

The specific method to find the solution of (5), then its
support, is discussed later in Section III-A.

The presence of the stochastic error ey in (5) is explained
as follows (see [5] for the complete proof). Given a state
estimate 231 with error Ty_1 := x_1 — £x—1 having zero
mean and covariance Pj_1, the system equations (1) imply
that

Uk = CBup_1 + ey, (14)

where 9, = yr — CAZp_1 is the innovation, and e is a
noise, given by

er = C(AZp—1 + wi—1) + vi, (15)

having zero mean and having a covariance R}, that can be
computed from Py_; using (2)-(3).

Remark 1: The algorithm proposed in [5] is analogous

to SISE with no support detection: the whole matrix B is
used in [5] instead of the submatrix By_;. The algorithm
proposed in [5] produces tp_; by finding the best linear
unbiased estimate of the solution of the noisy equation (14);
clearly, this can be done only under the assumption that C B
has full column rank. Analyzing the steps of the algorithm
SISE, it can be noticed that this requirement is relaxed to
require that C'By_; has full column rank, which is clearly a
weaker restriction.
This point is fundamental as it allows us to work with com-
pressed measurements (m < p), and exploit CS techniques.
When m < p, indeed, C'B never has full column rank, while
CBj._1 can have full column rank.

A. Input support recovery

In this paper, we propose to perform the step (5) of SISE
using the Lasso formulation of CS, which reads as follows:

min 3 — CBul + Alulli, A>0.

The parameter A\ balances the weight between the least
squares term and the sparsity promoting regularizer: a larger
A is required in the presence of a larger noise, see [17,
Chapter 3] and [29] for details.

If C'B has full row rank, the solution of Lasso has at most
m non-zero entries [30], and hence the number of columns
of CBy,_1 does not exceed the number of rows. This ensures
that C' By, _1 has full column rank for all k if B = [IOP ] and C
has random independent entries, namely when measurements
are few linear combinations of all vulnerable states according
to some randomly designed coefficients.

We remark that other CS recovery strategies could be
tested. For example, the Orthogonal Matching Pursuit [31]
is a greedy method which iteratively builds the estimate by
introducing at each step a new element in the support. This
method requires only s iterative steps to build a support of



dimension s. However, this method is known to require a
larger number of measurements to be successful with respect
to Lasso, and also it requires to know s. For this reason, we
prefer to use Lasso for our experiments.

Moreover, in order to solve Lasso, we can use a very effi-
cient iterative algorithm, the Alternating Direction Method of
Multipliers (ADMM) [32] (see Section IV), which is more
efficient than other convex optimization methods, such as
interior points. ADMM rapidly converges to the minimum
of Lasso functional, and it is very popular also for its natural
predisposition to decentralization [33] and parallelization
[34], which makes it efficient even for large-scale problems.
These properties of ADMM perfectly match with our pro-
cedure, in which the support has to be evaluated at each k,
therefore the rapidity of solution is definitely important.

We finally remark that in (5) the goal is to recover the
support, and not the values of the non-zero entries. Therefore,
solving a whole Lasso is somewhat redundant. For example,
one might study strategies to stop the ADMM procedure
once the support has been detected, which might save some
time. Moreover, online methods have been recently proposed
which allow to track time-varying sparse signals without
solving a complete Lasso at each &k [21]. This further
accelerates the algorithm and opens the way for solving
large-scale problems. These numerical improvements will be
investigated in future work.

B. Support recovery guarantees

If the support recovery Sk in step (5) is exact, for all k,
then SISE is equivalent to the algorithm in [5] on a system
with a known, time-varying By, and inherits its optimal
properties: it gives minimum-variance unbiased estimates
and it is a stable filter, provided that the corresponding time-
varying system is uniformly strongly detectable [6, Theorem
51

For this reason, it is fundamental to accurately identify the
support. Using Lasso, guarantees of exact support recovery
are given in presence of bounded or gaussian noise, see,
e.g., [35], [29]. In our setting, the noise e in general is not
bounded nor gaussian; it is gaussian in case the input support
has been perfectly recovered in all previous time steps. In
practice, after an initial transient, the noise magnitude is
sufficiently small, which allows a successful support recovery
most of the times (see Section IV).

We finally remark the following limitation of our algo-
rithm: it requires that C'Bj, has full column rank, for all k.
In the case where B = [%’] and B, has one column, the
By’s columns form the canonical basis of RP. Therefore,
the condition rank(CBy) = 1 for all k& amounts at asking
that the first p columns of C' are non-zero, which means that
all the vulnerable states are taken into account into some
measurement. This requirement might be restrictive for some
specific applications, for example, in case of distant attacks
[9, Example 1]. Differently from [9], our limitation is not a
consequence of the /1 regularization, and remains true if the
input reconstruction in (5) is obtained by exactly solving the
£y problem or even with an exact oracle. Indeed, the rank

condition on C By, is necessary for the input estimation in
(7)-(8). To overcome this limitation, one needs to consider
different filters, where the input is reconstructed with a delay
¢ > 1 [26], namely after measuring y; one reconstructs wuy_g
instead of u;_; as in SISE.

IV. SIMULATION RESULTS

In this section, we show the results of some simulations.
The considered scenario is the following. A has independent,
gaussian components ~ N(0,1/y/n); B = [15’ |5 C has
independent, gaussian components ~ N (0, 1). From a CS
viewpoint, the sensing matrix C'B is then gaussian, which
guarantees good CS properties, [17], [29]. We fix the input
sparsity level to s = 1, and we assume to know s. The
problem is then to find the positions of the non-zero value.
As an initial example, the support is assumed to be constant
in time, although this information is not exploited in the
algorithm. The initial condition is assumed to be a standard
gaussian random variable ~ N(0,1). We finally fix noise
covariances R = Q = 0.01/, and the non-zero entry of the
input is such that the input-to-noise-ratio is 20dB.

In the first three experiments, we run the proposed SISE in
a system with m < p, and we compare it to an oracle version
of [5] which knows the exact support of the input. This works
as a benchmark to evaluate the performance of SISE. In the
fourth experiment, we show instead a comparison to [14].
The considered performance metrics for input and state are
the relative errors ||up — g ||2/||ukll2 and ||zk —Zk||2/ ]|k || 2-
For each experiment, we show averaged results over 100
runs.

As mentioned before, different algorithms can be used to
solve the CS problem; for these experiments, we use the
Lasso formulation. The Lasso parameter A is fixed to A = 1.
This choice follows the prescription in [29] for the design
of A based on the noise variance. In this problem, the noise
is larger in the first steps, which would suggest a large .
However, sometimes the noise is too large and would push a
A that cuts to zero all the input; therefore, we set it based on
the value of the noise after the transient. In order to cope with
the transient larger noise, in the first steps one might think to
take more measurements, which would definitely reduce the
effect of noise. This will be tested in future extended work.

To solve the Lasso, we implement ADMM [32], which is
sufficiently fast in our setting. Running the experiments on
MATLAB, on a PC with quad-core CPU @ 1.80GHz, RAM
16Gb, the time consumed for an iteration k is around 103
seconds. Given the Lasso solution, the support is estimated
by picking the component with largest magnitude, as we
assume to know that s = 1.

We show results for different dimensions. In the experi-
ment 1 (Figure 1), we consider the case p = 40, m = 20,
n = 50. We can see that, after some iterations, the support is
correctly estimated in almost all the runs. The mean relative
errors are of order 1072, very close to the benchmark. The
100% of correct support is achieved increasing the number of
measurements to m = 30 (see experiment 2 in Figure 2). In
this case, we are then able to provide an optimal estimation
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Fig. 1: Experiment 1: p = 40, m = 20, n = 50. The benchmark is an oracle version of [5] which knows the correct support.
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Fig. 2: Experiment 2: p = 40, m = 30, n = 50. The benchmark is an oracle version of [5] which knows the correct support.
With m = 30, SISE achieves a perfect support estimation.
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Fig. 3: Experiment 3: p = 40, m = 20, n = 70. The benchmark is an oracle version of [5] which knows the correct support.
As expected, the estimation accuracy decreases with a larger n/m.

from compressed measurements, which was not possible with V. CONCLUSIONS
classical approach [5]. In experiment 3, we show that the
estimation accuracy decreases when the number of states
is large with respect to the number of measurements: in
Figure 3 the case p = 40, m = 20, n = 70 is depicted.

In this paper, we have proposed a novel filter for sparse-
input and state estimation in linear systems, in the pres-
ence of compressed measurements and noise. Our method
leverages on compressed sensing techniques to estimate the
input support, which provides some conditions to guarantee

Finally, experiment 4 in Figure 4 shows a comparison the success. Future work will include: correcting the covari-
to [14], which is not robust to noise. In particular, we can  ance computation depending on the quality of the support
appreciate that the estimation accuracy degrades in time, and  reconstruction; using compressed sensing to estimate the
the relative errors tend to grow unbounded. This shows that  input itself instead of the support only (with the difficulty
the approach of [14] is definitely not tolerant to noise. to approximate the covariance of this non-linear estimate).
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