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Bayesian topology identification of linear dynamic networks

Shengling Shi, Giulio Bottegal and Paul M. J. Van den Hof

Abstract— In networks of dynamic systems, one challenge
is to identify the interconnection structure on the basis of
measured signals. Inspired by a Bayesian approach in [1], in
this paper, we explore a Bayesian model selection method for
identifying the connectivity of networks of transfer functions,
without the need to estimate the dynamics. The algorithm
employs a Bayesian measure and a forward-backward search
algorithm. To obtain the Bayesian measure, the impulse re-
sponses of network modules are modeled as Gaussian processes
and the hyperparameters are estimated by marginal likelihood
maximization using the expectation-maximization algorithm.
Numerical results demonstrate the effectiveness of this method.

I. INTRODUCTION

Estimation problems in system identification typically

concern relatively simple structural setups, such as single-

input-single-output or multipe-input-multiple-output, open-

loop or closed-loop configurations [2]. Due to the increasing

complexity of current technological systems, there is a need

for estimation techniques in large-scale interconnected dy-

namic systems, usually referred to as dynamic networks.

This work considers the network of transfer functions

introduced in [3], where in the network, the nodes represent

measured signals and the directed edges denote transfer func-

tions, which are called modules. Identification problems in

this setup involves multiple aspects, including estimation of

one local module [3] [4], estimation of the topology [5] [1],

estimation of the full network model [6] and identifiability

aspects of the network models [7]. The network topology is

sometimes assumed to be known in the estimation problems

for dynamic networks [8] [9]. However, in many applications,

estimation of the network topology is the main object of

study, e.g. in systems biology [10], in social and political

science [11] [12].

Several methods using measures in the frequency domain

can be found in [5] [13] [14]. The approach in [5] uses the

coherence function and is built on the idea that nodes that

are adjacent in a network should have a higher correlation

than nodes that are more distant. However, this approach is

developed for undirected tree structures only. A follow-up

can be found in [13], where zero entries in a multivariate

Wiener filter estimate of the dynamics are used to infer the

topology. The approach in [14] is formulated for state-space
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models, building on the observation that the inverse of the

cross spectrum matrix changes if a subset of signals are set

to zero.

Some approaches make use of regularized regression to

enforce a subset of parameters belonging to the same module

to zero; the topology is then identified by the remaining

nonzero parameters. Typical regularization strategies exploit

the l0 norm penalty [14] or the grouped version of the l1
norm penalty [15] [16] on the parameter vector.

Search algorithms have also been employed to estimate the

topology. An iterative algorithm known as block orthogonal

matching pursuit in compressed sensing employs a forward

search procedure [17], while in the field of Bayesian net-

works, search algorithms coupled with Bayesian measures

are commonly used to infer the topology [18]. However, the

above approaches are not formulated for networks of transfer

functions. A Bayesian approach formulated for dynamic

networks can be found in [1], where the impulse responses of

the modules are modeled as Gaussian processes whose kernel

is parameterized by hyperparameters; these hyperparameters

are modeled as random variables whose probability density

aims at enforcing the sparsity of the network.

Inspired by [1], in this paper, a Bayesian model selec-

tion approach [19] [20] is explored to solve the topology

identification problem. While in [1] focus was on the joint

estimation of topology and dynamics, our aim is to develop

a Bayesian approach for topology identification, without

estimating the dynamics.

The approach in this work employs a Bayesian measure

coupled with a forward-backward search algorithm to select

the topology which optimizes the measure. To obtain the

measure, a Gaussian prior distribution is assigned to the

infinite impulse responses of the modules in dynamic net-

works. The hyperparameters of the prior are modeled as de-

terministic variables and estimated by maximizing marginal

likelihood using a computationally attractive instance of the

expectation-maximization (EM) algorithm; this constitute a

major difference from the approach in [1]. In addition,

comparing to that work, in this paper the topology is modeled

as a random variable, which permits to incorporate structure

prior information when required by specific applications.

II. PROBLEM FORMULATION

The linear dynamic network model first introduced in [3]

is considered in this work:

wj(t) =
∑

i∈I\j

Gji(q)wi(t) +Hj(q)ej(t), j ∈ I, (1)
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where q−1 is the delay operator, i.e. q−1wj(t) = wj(t− 1),
I = {1, · · · , L} is the index set, Gji is a transfer operator

and ej is a white noise process. The notation wI will be used

to denote the set {wj |j ∈ I}. With some abuse of notation,

wj(t) denotes both a random variable and its realization. In

addition, Y \B is used to denote the set difference between

set Y and B, i.e. Y \B = {x ∈ Y |x /∈ B}.

Combining (1) into a matrix form, the full model can be

written as

w(t) = G(q)w(t) +H(q)e(t),

where w(t) = [w1(t), ..., wL(t)]
T , e(t) = [e1(t), ..., eL(t)]

T

and H(q) is a diagonal matrix containing Hj(q). The matrix

G(q) contains Gji(q) and has zero entries on its main

diagonal.

The assumptions on (1) are summarized here:

• wj(t) can be measured for all j and up to time N .

• (I −G(q))−1 is proper and stable.

• Gji(q) is a stable and strictly proper rational transfer

operator, Hj(q) is monic and minimum-phase.

• ej(t) is a white noise process and is also indepen-

dent over nodes j. ej(t) follows a Gaussian distribu-

tion with an unknown standard deviation σj : ej(t) ∼
N (0, σ2

j ), ∀t.

The topology of (1) can be defined as follows:

Definition 2.1: The topology G corresponding to (1) is

defined as G = {[i j]|Gji 6= 0, i, j ∈ I}.

The graphical representation of the topology is fully

specified by G, where the signals are represented by nodes

and an directed edge wi → wj exists if [i j] ∈ G. The

problem of topology identification is to identify G of the

data generating system given the measurements of wj(t) for

all t and all j. We shall denote such a set of measurements

by D.

III. BAYESIAN MODEL SELECTION

To identify the topology, we need to define a measure

that distinguishes two candidate structures on the basis of

data. In this paper, a Bayesian model selection approach

[20] is employed by modeling the topology as a random

variable and using measure P (G1|D)/P (G2|D) to compare

two candidates, where P (Gi|D) is the posterior probability

of Gi given data. The measure can be further formulated as

P (G1|D)

P (G2|D)
=

P (D|G1)P (G1)

P (D|G2)P (G2)
=

P (D|G1)

P (D|G2)
, (2)

where P (D|G) is the marginal likelihood and the second

equality holds when there is no prior knowledge about the

topology and thus P (Gi) = P (Gj). In this work, we will

assume that the second equality in (2) holds and for the

reader who is interested in the structure prior, an example

can be found in [21]. Thus, we will use P (D|G1)/P (D|G2)
which is also called Bayes factor [19]: taking the logarithm

of P (D|G), we can obtain an objective function whose

maximization yields the topology with the highest marginal

likelihood. Note that the Bayesian information criterion

(BIC) is an approximation of logP (D|G) with a bounded

error when N → ∞ [19].

When the transfer operators are parameterized by a vector

θ, the marginal likelihood in (2) can be obtained as

P (D|G) =

∫

P (D|θ,G)P (θ|G)dθ, (3)

where P (D|θ,G) is the likelihood and P (θ|G) is the pa-

rameter prior distribution. Following the Bayesian approach,

the topology maximizing logP (D|G) is the solution of the

problem under study, which leads to the following problem:

max
G∈Gset

logP (D|G), (4)

where Gset denotes the set of all possible graphs. To solve

(4), we need to address i) the choice of P (θ|G), ii) the

calculation of the integration in (3), and iii) the solver

to select the topology when there are a large number of

candidates. Theses issues are discussed in the next section.

IV. BAYESIAN TOPOLOGY IDENTIFICATION

A. Reformulation of the problem

Model (1) can be reformulated as

wj(t) = ŵj(t|t− 1) + ej(t), (5)

where ŵj(t|t− 1) is the one-step ahead predictor, namely

ŵj(t|t− 1) = [1−H−1
j (q)]wj(t) +

∑

i∈I\j

Gji(q)

Hj(q)
wi(t),

and
Gji(q)
Hj(q)

=
∑∞

k=1 θji,kq
−k, 1−H−1

j (q) =
∑∞

k=1 θjj,kq
−k,

under the assumptions that Gji(z) is stable and Hj(z) is

minimum-phase [2]. Each infinite-order impulse response is

approximated by a finite order n, which will have no impact

on the performance of the method when n is sufficiently

large. Then the compact form of (5) containing measure-

ments up to time N can be written as

wN
j =

∑

i∈I

Ajiθji + eNj , j ∈ I (6)

where wN
j = [wj(1), ..., wj(N)]T , θji = [θji,1, ..., θji,n]

T ,

eNj = [ej(1), ..., ej(N)]T , and Aji is a Toeplitz matrix con-

taining the measurements of wi(t). Equation (6) can also be

written as wN
j = Ajθj +eNj , where Aj = [Aj1, ..., AjL] and

θj = [θTj1, ..., θ
T
jL]

T . Equivalently, the problem considered

in this work can be also formulated based on (6) as the

identification of the set Ḡ = {[i j]|θji 6= 0, i, j ∈ I}. Note

that Ḡ is defined on the predictor model (5) while G is defined

on (1). It can be found that G is equivalent to Ḡ when the self-

loops in Ḡ are removed. Even if the algorithm is designed

to recover Ḡ, the notation G is still used in place of Ḡ and

the self-loops are made implicit to improve the readability.



B. Decomposition of the objective function

In this section, we show that the objective function

logP (D|G) can be decomposed into a set of independent

terms corresponding to MISO problems, where each MISO

topology identification problem can be solved independently.

Based on (3), it can be seen that P (D|G) can be factorized

by decomposing P (D|θ,G) and P (θ|G). Due to the Bayes’

rule and the assumption that the noises are white and inde-

pendent over nodes, if each MISO model is independently

parameterized, it holds that the likelihood can be factorized

as

P (D|θ,G) =
L
∏

j=1

N
∏

t=1

P (wj(t)|ŵj(t|t− 1)). (7)

The independent parameter assumption implies that the term

P (θ|G) in (3) satisfies

P (θ|G) =
L
∏

j=1

P (θj |Gj), (8)

where Gj and θj denote the topology and the parameter

vector of one MISO model, respectively. Thus, given (1)

and the parameter independence assumption, the marginal

likelihood in (4) can be decomposed into L independent

terms as logP (D|G) =
∑L

j=1 logP (Dj |Gj), where Dj

denotes the data relevant to a single MISO problem of the

type (6) and

logP (Dj |Gj) , log

∫ N
∏

t=1

P (wj(t)|ŵj(t|t−1))P (θj |Gj)dθj .

(9)

Since each term is a function of the MISO topology, the

search algorithm for the MISO topology can then be paral-

lelized to obtain the overall network topology.

C. Objective function: Parameter prior and integration

Due to the independence among the MISO problems, in

this section we describe the developed algorithm for a single

MISO model of the type (6).

Firstly, we need to specify the dependence of P (Dj|θj ,Gj)
and P (θj |Gj) on one particular structure Gj . Given one

topology Gj = {[i1 j], ..., [ip j]}, P (θj |Gj) considers the

distribution of the parameter vector formulated based on

Gj , i.e. θj |Gj =
[

θTji1 · · · θTjip
]T

. Note that with some

abuse of notation, θj |Gj denotes a vector formulated based

on the indexes in Gj . In addition, the likelihood function

P (Dj |θj ,Gj) is calculated based on the model wN
j =

(Aj |Gj)× (θj |Gj)+eNj , where Aj |Gj =
[

Aji1 · · · Ajip

]

.

Parameter prior: Following the kernel-based approach for

system identification [22], since the prior knowledge that the

impulse responses should decay with time is available, the

parameter prior P (θj |Gj) is chosen from [23] as

θj |Gj ∼ N (0,Kj), (10)

where Kj is a block diagonal matrix as Kj =
diag(λji1K̄(βji1 ), · · · , λjipK̄(βjip )) , K̄(βji) is a n × n

matrix and the (k, q) entry of K̄(βji) is defined by β
max(k,q)
ji .

It is required that λji > 0 and βji ∈ [0 1). For this

choice of kernel K̄, βji regulates the velocity of the decay

of the impulse responses. Therefore, the module priors

depend on the unknown hyperparameter vectors, i.e. λj |Gj =
[

λji1 · · · λjip

]T
and βj |G =

[

βji1 · · · βjip

]T
. Since

every MISO problem will be assigned an independent pa-

rameter prior as (10), equation (8) is satisfied.

Integration: Denote ηj =
[

σj λT
j βT

j

]T
, where the

dependencies of λj and βj on Gj are implicit. Based on (6)

and (10), given one particular Gj , (9) can be obtained in a

closed form. After scaling and removing a constant term, we

can obtain that

J(Gj ; ηj) = 2 logP (Dj |Gj ; ηj)− constant term

=− (wN
j )TΓ−1

j wN
j − log det Γj , (11)

where Γj = σ2
j IN + AjKjA

T
j and the dependencies of Aj

and Kj on a particular topology Gj are implicit. Note that Γj

is also a function of ηj . Since ηj is unknown, an estimate of

ηj has to be computed first and then we can use J(Gj ; η̂j) as

the objective function for the topology estimation problem.

Estimation of hyperparameters: To obtain an estimate

of η̂j , we estimate the hyperparameter vector associated to

the full graph, namely ηfullj . Then, given a graph Gj , the

corresponding hyperparameter vector η̂j associated to that

graph can be obtained by neglecting those hyperparameters

associated to zero modules (i.e., missing edges in the graph).

This procedure avoids the re-estimation of ηj for all different

graphs and reduces the computational cost. The hyperpa-

rameter vector ηfullj is estimated by solving the following

marginal likelihood problem:

η̂fullj = argmax
η
full
j

logP (Dj |G
full
j ; ηfullj ), (12)

where Gfull
j is a full graph, i.e. Gfull

j = {[1 j], ..., [L j]}.

A local optimum of this problem can be found by the EM

algorithm [24].

Assuming that an estimate η̂
(k)
j of ηfullj is available at

the k-th iteration of the EM algorithm, an update estimate is

obtained by the following steps:

(E-step) Compute

Q(ηj , η̂
(k)
j ) = E

P (θj |wN
j
;η̂

(k)
j

)
[logP (θj , w

N
j ; ηj)]; (13)

(M-step) Compute

η̂
(k+1)
j = argmax

ηj∈V
Q(ηj , η̂

(k)
j ). (14)

Note that for a MISO problem, the input and the graph are

regarded as fixed and thus implicit in (13).

Proposition 4.1: Denote η̂(k) as the estimate of the hy-

perparameter vector at the kth iteration of the EM algorithm

used to solve (12). Then, according to (13) and (14), η̂(k+1)

is obtained with the following update rules:

• The hyperparameter σ̂k+1
j is obtained as

σ̂k+1
j =

√

M (k)

N
, (15)



where

M (k) =(wN
j )TwN

j − 2(wN
j )TAjĈ

(k)
j wN

j

+ tr[AT
j Aj∆̂

(k)
j ],

Ĉ
(k)
j =[σ̂

(k)
j ]−2[Σ̂

(k)
j ]−1AT

j ,

Σ̂
(k)
j =[σ̂

(k)
j ]−2AT

j Aj + [Kj(λ̂
(k)
j , β̂

(k)
j )]−1,

∆̂
(k)
j =[Σ̂

(k)
j ]−1 + Ĉ

(k)
j wN

j (wN
j )T [Ĉ

(k)
j ]T .

• The hyperparameter β̂k+1
ji , i = 1, ..., L, is obtained as

β̂k+1
ji = arg min

βji∈[0 1)
n log[tr(K̄−1(βji)∆̂

(k)
j [i])]

+ log det K̄(βji), (16)

where ∆̂
(k)
j [i] is a square sub-matrix obtained from ∆̂

(k)
j

by the [(i−1)n+1]-th row and column until the (in)-th

row and column of ∆̂
(k)
j .

• The hyperparameter λ̂k+1
ji , i = 1, ..., L, is obtained as

λ̂k+1
ji =

1

n
tr[K̄−1(β̂k+1

ji )∆̂
(k)
j [i]]. (17)

It can be found that (12) is decomposed into a set of

optimization problems with scalar optimization variables for

estimating β and closed-form solutions for estimating σ and

λ. The computational speed of the above algorithm can be

further improved by exploiting the factorization of K̄ [25]

[24], which is also implemented in the algorithm.

D. Algorithm for optimization

The objective function of problem (4) has been formulated

in (11), where J(Gj ; η̂j) is used to replace logP (Dj |Gj) and

η̂j is obtained as η̂j = η̂fullj |Gj . The next step is to design

the solver for the optimization problem.

Since the number of all possible directed graphs in Gset

is 2L
2−L, it is infeasible to consider all the candidates.

Following [18], a forward-backward greedy search algorithm

is implemented to find a local optimum of (4). Recall that

the graph of the predictor model is considered here, so that

self-loops are generally present. The algorithm initializes a

graph with only self-loops and then starts the edge-addition

phase, where at each iteration, the edge which most improves

the objective value is added to the graph from the previous

iteration. The iterations stop when no improvement can be

found by adding edges.

Given the final graph of the edge-addition phase, the algo-

rithm starts the edge-deletion phase, where at each iteration,

one edge is removed from the graph of the previous iteration

if such deletion improves the objective function comparing to

the removal of other edges. The final output of the algorithm

is obtained when no improvement in the objective value can

be found by deleting any edge.

As mentioned earlier, due to the decomposition in (9),

the search algorithm can be applied to every MISO problem

separately, merging the outcomes to obtain the network

topology.

E. Final algorithm

After the formulation of the objective function and the

greedy search algorithm, the algorithm is now complete and

summarized in this section. Firstly, recall that η̂fullj obtained

in the previous step is for a full graph and thus, given

a structure Gj , η̂j should be reformulated as η̂fullj |Gj =
[

σ̂j (λ̂full
j |Gj)

T (β̂full
j |Gj)

T
]T

. To simplify the notation,

the index j is dropped in the algorithm.

Algorithm (BS - Bayesian Search): Inputs: data D; Out-

puts: Ĝ

1) Obtain η̂ = maxη log p(D|Gfull; η) by EM algorithm

2) Initialize G(0) = {[j j]} and Edge = {[1 j], · · · , [Lj]}
3) For b = 1 : L− 1 (Edge-addition phase)

• Edge = Edge \ Ĝ(b−1)

• [̂i j] = argmax[i j]∈Edge J({Ĝ
(b−1), [i j]}; η̂)

• if J({Ĝ(b−1), [̂i j]}; η̂)− J(Ĝ(b−1); η̂) > τ

⋄ Ĝ(b) = {Ĝ(b−1), [̂i j]}

• else

⋄ break loop

4) Initialize for the second phase: Ĝ(0) = ĜFinalAddition

5) For d = 1 : |Ĝ(0)| (Edge-deletion phase)

• [̂i j] = argmax[i j]∈Ĝ(d−1) J(Ĝ(d−1) \ [i j]; η̂)

• if J(Ĝ(d−1) \ [̂i j]; η̂)− J(Ĝ(d−1); η̂) > τ

⋄ Ĝ(d) = Ĝ(d−1) \ [̂i j]

• else

⋄ break loop

The tolerance τ , determining whether an edge should be

added or removed, is chosen to be zero as default value;

its suggested range is [0, 10], see [19].

Remark 1: To empirically validate the choice of using the

estimate of η̂full under the full graph, the BS algorithm is

compared with its variant using an iterative EM approach,

which re-estimates η̂ by the EM algorithm under every

iteration of the search algorithm. We call this procedure the

iterative-EM BS algorithm.

Comparing to the approach in [1], the main difference

of the BS algorithm is that the hyperparameters are mod-

eled as deterministic variables and then estimated by the

EM algorithm. By contrast, in [1], the hyperparameters are

modeled as random variables and a prior distribution of the

hyperparameters is also used. The choice of modeling also

the hyperparameters as random variables requires designing

their prior distribution, which usually requires to include ad-

ditional hyper-hyperparameters that may be difficult estimate.

V. KERNEL-BASED GROUP LASSO

The performance of the BS algorithm is compared with the

group Lasso (GLasso) estimator [15], which is formulated on

the basis of (6) as

min
θj

1

2

∥

∥wN
j −Ajθj

∥

∥

2

2
+ δj

L
∑

i=1

‖θji‖2 . (18)

Here, the topology estimation problem is also divided into

independent MISO problems. It is also of interest to see if



the performance of (18) can be improved by incorporating

the covariance matrix in (10) into the regularization term.

This kernel-based GLasso can be formulated as

min
θj

1

2

∥

∥wN
j −Ajθj

∥

∥

2

2
+ δj

L
∑

i=1

√

θTjiK̄(βj , n)−1θji. (19)

To reduce the computational complexity, we choose to have

the same hyperparameters βj for all modules of each MISO

problem. To select δj and βj , cross validation can be em-

ployed. After having the estimated parameters, the topology

can be obtained by checking if the l2 norm of the parameter

vector corresponding to one module is zero.

VI. NUMERICAL RESULTS

To evaluate the performance of the algorithms, an existing

edge in the network is labeled as one positive instance; its

absence is labeled as one negative instance. Let P denote

the total number of positives and N denote the total number

of negatives in the ground truth. In addition, for the outcome

of the algorithm, if the algorithm outputs one edge that does

exist in the ground truth, it scores a true positive (TP ). If

the algorithm outputs one edge that does not exist in the

ground truth, it scores a false positive (FP ). The behavior

of the algorithms is studied by using the receiver operating

characteristic (ROC) curve [26], i.e. TP rate (TPR) vs FP
rate (FPR) over different choices of their tuning parameters,

where

TPR =
TP

P
, FPR =

FP

N
,

which are further averaged over the number of Monte Carlo

experiments. The tuning parameter for the BS algorithm and

the iterative-EM BS algorithm is τ ∈ {0, 1, ..., 10}, while the

tuning parameters of GLasso and the kernel-based GLasso

are δj ∈ {0, 10, 20, ..., 2000} and βj = {0.1, ..., 0.9}. To

build ROC curves for the two GLasso estimators, δj and

βj are kept the same for all MISO problems to reduce

the number of tuning parameters. The (0, 1) point in the

ROC plot denotes the ideal performance without any error.

Thus, the points on ROC curves of different methods can be

compared based on their closeness to the (0, 1) point, i.e.

computing dis =
√

FPR2 + (1− TPR)2. A smaller dis
value implies a better performance.

We consider dynamic networks with 6 nodes and three

experiment conditions with different data length N and

model order n are considered: N = 2000 and n = 100;

N = 500 and n = 100; N = 50 and n = 50. Note that

in the final study, the number of the postulated unknown

parameters in the algorithm is larger than the number of the

measurements. For each experiment condition, 50 different

data-generating systems and thus independent data sets are

randomly generated as follows. For each data-generating

system, its topology is generated by assigning a discrete

uniform distribution to the existence of each edge and then

we assign a random transfer function to every existing edge

by using drmodel function in Matlab. The orders of generated

Gji and Hj are randomly selected from 2 to 5 with a uniform

distribution. To guarantee a reasonable signal-to-noise ratio,

Gji is further normalized by its own l2 norm. Finally, the

data of the resulting system is obtained by injecting Guassian

noises with zero mean and σj(t) = 1, for all j and t.
For each data set, to initialize the hyperparameter vector

for the EM algorithm, we set β̂
(0)
ji = 0.5, λ̂

(0)
ji = 0.5 for all

modules and σ̂
(0)
j (t) is the same for all j and t, which is

drawn from a norm distribution with mean 1 and standard

deviation 0.2.

The obtained ROC curves are summarized in Fig 1. For

the kernel-based GLasso, since βj = 0.7 typically provides

the best performance, only the ROC curves corresponding

to βj = 0.7 are shown. It can be found that in all tests, the

two search algorithms perform better than the two GLasso

estimators because the ROC curves of the search algorithms

are closer to the (0, 1) point for every value of τ . To

compare the performance of the iterative-EM BS and the

BS algorithm, the following measure is used:

V = [

11
∑

i=1

disiter−EMBS,i − disBS,i

disBS,i

]÷ 11× 100%,

where i denotes the ith value of τ in {0, 1, ..., 10}. Given one

value of τ , one point on the ROC curve is correspondingly

selected and thus disBS,i can be calculated based on Fig 1.

Note that a positive value of V implies a worse performance

of the iterative-EM algorithm. It can then be found that V =
−4% when N = 2000, V = 1% when N = 500 and V =
18% when N = 50. Thus, the iterative-EM BS algorithm

performs better than the BS algorithm when N is large while

it has worse performance when the sample size is relatively

small. Intuitively, this can be explained by the fact that the

iterative-EM algorithm relies more on the data because it

adjusts the parameter prior given every different graph during

the search procedure, leading to a larger error when the data

length is limited. The computational speed of the iterative-

EM algorithm is also around 10 times slower in this 6-node

example. Thus, it is suggested to use the BS algorithm when

N is small and the faster computation is preferred.

The performance of the algorithms is also compared when

cross validation is employed for the two GLasso estimators

while τ equals to the default value, i.e. τ = 0, for the

two BS algorithms. For the cross validation, the training

data contains the data up to time 2(N + 1)/3 and the

data left is kept for validation. The tuning parameter that

provides the smallest root-mean-square error in predicting

the validation data is selected. Note that in this case, the

tuning parameters of the two GLasso estimators are allowed

to be different over the MISO problems. The final results

contain one (FPR, TPR) point for every algorithm and

their distance to (0, 1) is summarized in Table I.

TABLE I: Distance of the results of the algorithms to (0, 1)
with the cross-validated or the default tuning parameter

BS Iter-EM BS GLasso K-GLasso

N = 2000 0.04 0.04 0.59 0.64

N = 500 0.07 0.07 0.37 0.60

N = 50 0.20 0.22 0.52 0.47
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Fig. 1: TPR vs FPR over tuning parameters for different data length: N = 2000 (left), N = 500 (middle), N = 50 (right)

No significant difference is observed between the BS

and the iterative-EM BS algorithm while the two search

algorithms outperform the two GLasso estimators due to

their smaller distance to (0, 1). This is because the cross

validation is designed for obtaining the tuning parameters

corresponding to the best prediction performance, which

typically leads to a model with more positives to improve the

prediction. Instead, the Bayes factor typically favors simpler

models, which may lead to a model with poorer prediction

performance. This difference in the design purpose between

BIC, which is an asymptotic approximation of the Bayes

factor, and cross validation is also mentioned in [27].

VII. CONCLUSION

A Bayesian approach for topology identification of net-

works of transfer functions is explored. It uses the Bayes

factor coupled with a forward-backward search algorithm.

The Bayes factor is obtained by modeling the infinite impulse

responses of the modules as Gaussian processes, where the

hyperparameters of the Gaussian prior are estimated by

the EM algorithm. Numerical results demonstrate the effec-

tiveness of the algorithm, which shows better performance

compared to the group Lasso estimator.

APPENDIX

A. Proof of Proposition 4.1

Recall the notations defined in (15). The proof contains

two steps, including the E-step and the M-step of the EM

algorithm.

Proof: E-step: Firstly, note that logP (θj , w
N
j ; ηj) =

logP (wN
j |θj ; ηj)+logP (θj ; ηj), where logP (wN

j |θj ; ηj) is

the likelihood function given by the model and logP (θj ; ηj)
is the parameter prior of the full graph given by (10). Thus,

it can be found that

logP (θj , w
N
j ; ηj) =constant −

1

2

L
∑

i=1

log det(λjiK̄(βji))

−
1

2
log det(σ2

j IN )−
1

2σ2
j

(wN
j )TwN

j

−
1

2
θTj Σjθj +

1

σ2
j

(wN
j )TAjθj ,

where Σj is formulated as in (15) given ηj .

Q(ηj , η̂
(k)
j ) can then be obtained by calculating the expec-

tation of logP (θj , w
N
j ; ηj) over the posterior distribution of

θj given the data and η̂(k). Due to the Gaussian noise and the

parameter prior (10), it follows that the posterior distribution

of the parameter also has a Gaussian distribution as

θj |wj ∼ N (Ĉ
(k)
j wN

j , (Σ̂
(k)
j )−1).

Thus, the E-step can be finalized as

Q(ηj , η̂
(k)
j ) = Q1(σj , η̂

(k)
j )+

L
∑

i=1

Q2(λji, βji, η̂
(k)
j )+constant,

(20)

where

Q1(σj , η̂
(k)
j ) =−

1

2
tr(σ−2

j AT
j Aj∆̂

(k)
j )−N log σj

+
1

σ2
j

(wN
j )TAjĈ

(k)
j wj

−
1

2σ2
j

(wN
j )TwN

j ,

= −N log σj −
1

2σ2
j

M (k), (21)

Q2(λji, βji, η̂
(k)
j ) =−

1

2
log det[λjiK̄(βji)]

−
1

2
tr[(λjiK̄(βji))

−1∆̂
(k)
j [i]]. (22)

where M (k) is formulated as shown in (15).

It can be found that Q is decomposed into two parts,

including Q1 as a function of σj and Q2 as a function of the

parameters from the parameter prior. Thus, the optimization

of Q can be solved by considering Q1 and Q2 independently.

The constant term in (20) will be ignored because it does not

influence the optimization result.

M-step: It can be found that (21) is maximized by (15)

assuming that M (k) > 0.

To maximize Q2(λji, βji, η̂
(k)), set the derivative of (22)

over λji to be zero, which leads to the solution of λji as

λ∗
ji =

1

n
tr[K̄−1(βji)∆̂

(k)
j [i]], (23)



which is a function of βji. Plugging (23) back into (22), one

obtains that

Q2(λ
∗
ji, βji, η

(k)) =−
n

2
log[tr(K̄−1(βji)∆̂

(k)
j [i])]

−
1

2
log det K̄(βji) + constant,

which can be maximized by minimizing (16). After obtaining

β̂
(k+1)
ji , λ̂

(k+1)
ji can be found by (17). Thus, Q1, Q2 have been

optimized independently and M-step is proved.
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