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Abstract— For multiparametric mixed-integer convex pro-
gramming problems such as those encountered in hybrid model
predictive control, we propose an algorithm for generating a
feasible partition of a subset of the parameter space. The result
is a static map from the current parameter to a suboptimal
integer solution such that the remaining convex program is
feasible. Convergence is proven with a new insight that the
overlap among the feasible parameter sets of each integer
solution governs the partition complexity. The partition is stored
as a tree which makes querying the feasible solution efficient.
The algorithm can be used to warm start a mixed integer solver
with a real-time guarantee or to provide a reference integer
solution in several suboptimal MPC schemes. The algorithm
is tested on randomly generated systems with up to six states,
demonstrating the effectiveness of the approach.

I. INTRODUCTION

Model predictive control (MPC) is a discrete-time control
technique in which a receding horizon optimization problem
is solved in order to determine the optimal control input
at each time step. Advanced formulations of MPC include
hybrid MPC (HMPC) and robust MPC (RMPC) [1], [2],
[3]. HMPC handles systems like chemical powerplants,
pipelines and aerospace vehicles whose dynamics involve
either explicit discrete switches such as valves [4], [5] or
have nonlinearities that can be appropriately modeled via
a piecewise affine approximation [6], [7]. RMPC handles
systems that are affected by uncertainties such as in their
dynamics, in the state estimate and in the input [2], [8]. Many
practical applications call for a combined control of uncertain
hybrid systems which requires solving a convex mixed-
integer nonlinear program (MINLP) [9], [10], [11]. While
possible on powerful hardware, on-line MINLP solution is
both slow and NP-complete [4], meaning that there is
generally no real-time performance guarantee.

To improve MPC on-line computational efficiency, some
authors have worked on explicit MPC techniques which
reduce on-line computational demand by pre-computing off-
line all or part of the optimal solution. On-line it typically
remains to evaluate a piecewise affine (PWA) function.
Various explicit MPC methodologies have been proposed
[12], [13], [14]. When the MPC law is a linear or a quadratic
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program, an exact explicit law can be obtained by solving a
multiparametric program. Exact solutions for more general
programs are generally not possible due to non-convexity of
common active constraint regions [15]. Instead, approximate
solutions have been proposed via local linearization [16],
[17] or via optimal cost bounding by PWA functions over
simplices [15], [18], [19] or hyperrectangles [20]. An approx-
imate explicit solution to mixed-integer quadratic programs
has been proposed based on difference of convex program-
ming [21] and for MINLPs based on local linearization and
primal/master subproblems [22], [23].

Multiparametric programming, however, is restricted to
relatively low dimensional systems due to the worst-case
exponential partition complexity. Several authors in hybrid
MPC have therefore suggested to retain on-line mixed-
integer programming and either to reduce the integer vari-
able’s degrees of freedom [24] or to abort the solver at a
suboptimal solution when computation time becomes exces-
sive [4]. The former solution, however, has no rigorous way
of selecting a reference integer solution while the latter relies
on the ability to use the previous time step’s solution to warm
start the mixed-integer solver, which is not always possible
such as, for example, in some robust MPC schemes [8].

To address the issue of guaranteed real-time computation
of a feasible integer solution in the general setting, our main
contribution is a novel partitioning algorithm which pre-
computes feasible integer solutions in a polytopic subset of
the state space. This partition is stored as a tree which can be
queried in polynomial time. As a result, the partition provides
a guaranteed real-time warm start capability to the mixed-
integer solver and thus is helpful for [4], [24]. Our second
contribution is a convergence proof of the algorithm which
for the first time in literature considers an overlap property
as being a driver of partition complexity.

The paper is organized as follows. In Section II the scope
of MPC formulations that our algorithm can handle is defined
as a generic MINLP. The algorithm is then described in
Section III and its convergence, complexity and use-cases are
discussed in Section IV. The algorithm is tested on a large set
of randomly generated dynamical systems with up to 6 states
and 21 integer variable degrees of freedom, indicating that
it is robust and can scale to medium dimensional systems.
Section VI outlines future research directions and is followed
by some concluding remarks in Section VII.

II. PROBLEM FORMULATION

This section defines a template MINLP that generates all
MPC laws that our algorithm can handle. Because MPC is
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fundamentally an optimization problem, we do this without
specific mention of a receding-horizon optimal control prob-
lem.

We use the following notation. R denotes the set of reals,
I , {0, 1} the binary set and B , {x : ‖x‖2 ≤ 1} the unit
ball. Unless otherwise specified, matrices are uppercase (e.g.
A), scalars, vectors and functions are lowercase (e.g. x) and
sets are calligraphic uppercase (e.g. S). We use 1n ∈ Rn
to denote the vector of ones and In ∈ Rn×n to denote the
identity matrix. The scalar ` is a placeholder for some integer
value. The operator diag({xi}`i=1) ∈ R`×` creates a diagonal
matrix with value xi at row and column i and zero otherwise.
The constraint M � (�)0 means that M ∈ Rn×n is positive
(semi)definite. Sc, ∂S, cS and V(S) denote respectively the
complement, boundary, barycenter and vertices of S (with
the latter only relevant when S is a polytope). Given A ⊆
Rn, s ∈ R and b ∈ Rn, A + b , {a + b ∈ Rn : a ∈ A}
translates and sA , {sa : a ∈ A} scales the set A. The
shorthand a : b denotes the integer sequence a, . . . , b.

The following multiparametric conic MINLP generates all
MPC formulations that our algorithm can handle:

V ∗(θ) = min
x,δ

f(θ, x, δ)

s.t. g(θ, x, δ) = 0,

h(θ, x, δ) ∈ K,
δ ∈ Im,

(Pθ)

where θ ∈ Rp is the parameter, x ∈ Rn is the decision vector
and δ ∈ Im is a binary vector called the commutation. The
cost function f : Rp × Rn × Im → R is jointly convex
in its first two arguments while the constraint functions g :
Rp×Rn× Im → R` and h : Rp×Rn× Im → Rd are affine
in their first two arguments. The functions can be nonlinear
in the last argument. The convex cone K = Cc11 ×· · ·×C

cq
q ⊂

Rd is a Cartesian product of q convex cones where Ccii ⊂
Rci and d ,

∑q
i=1 ci, similar to [25]. Examples include the

positive orthant Rn+, the second-order cone Q` = {(t, z) ∈
R × R`−1 : t ≥ ‖z‖2} and the positive semidefinite cone
S`+ = {Z ∈ R`×` : Z � 0}. We also define the following
fixed-commutation multiparametric conic NLP:

V ∗δ (θ) = min
x

f(θ, x, δ)

s.t. g(θ, x, δ) = 0,

h(θ, x, δ) ∈ K,
(Pδθ)

which corresponds to (Pθ) where δ has been fixed, i.e.
assigned a specific value. The following definitions closely
follow [15].

Definition 1. The feasible parameter set Θ∗ ⊂ Rp is the set
of all θ parameters for which (Pθ) is feasible.

Definition 2. The fixed-commutation feasible parameter set
Θ∗δ ⊂ Rp is the set of all θ parameters for which (Pδθ) is
feasible.

Definition 3. The feasible commutation map fδ : Θ∗ → Im
maps θ ∈ Θ∗ to a commutation δ such that θ ∈ Θ∗δ .

This paper presents an algorithm for computing fδ over
a subset of its domain Θ ⊆ Θ∗. We shall assume in
Section III that the set Θ is available as a convex and full-
dimensional polytope in vertex representation. Section IV-C
discusses how one might obtain Θ. It is implicitly assumed
throughout this paper that (Pθ) and all related problems are
appropriately scaled. We suggest a per-axis unit scaling such
that maxθ∈Θ |eTiθ| = 1 ∀i = 1, . . . , p where {ei}pi=1 is the
standard Eucledian basis.

III. FEASIBLE COMMUTATION MAP COMPUTATION

This section proposes an algorithm for computing fδ . The
main idea is to generate a coarse simplicial partition R =

{(Ri, δi)}|R|i=1 such that Θ =
⋃|R|
i=1Ri and where each cell

Ri is associated with a fixed commutation δi that is feasible
everywhere in Ri, i.e. Ri ⊆ Θ∗δi . We then define:

fδ(θ) = δi such that θ ∈ Ri. (1)

Lemma 1. For any fixed δ ∈ Im, Θ∗δ is a convex set and
V ∗δ is a convex function.

Proof. Suppose θ′, θ′′ ∈ Θ∗δ . Let α′, α′′ ∈ [0, 1], α′+α′′ = 1
and θ = α′θ′ + α′′θ′′. Since g, h are affine in their first
argument and K is a convex cone:

g(θ, x, δ) = α′g(θ′, x, δ) + α′′g(θ′′, x, δ) = 0,

h(θ, x, δ) = α′h(θ′, x, δ) + α′′h(θ′′, x, δ) ∈ K,
so θ ∈ Θ∗δ which is thus a convex set. Next, (Pδθ) is a
minimization of f over a convex set in x which preserves
convexity in θ by the joint convexity property of f [26].
Thus, V ∗δ is a convex function.

Algorithm 1 Brute force fδ computation.
1: R ← ∅, Θ̄← Θ
2: for all δ ∈ Im do
3: R ← {(R′, δ) : R′ ∈ Θ̄ ∩Θ∗δ} ∪ R
4: Θ̄← Θ̄ \Θ∗δ
5: if Θ̄ = ∅ then
6: STOP

Since Θ∗δ is convex, an arbitrarily precise inner approxi-
mation of it can be found [27]. A conceptually trivial method
for generating R is given by Algorithm 1. The set difference
and intersection operations in Algorithm 1 are element-wise
[28]. The idea is to exploit the ability to inner approximate
Θ∗δ to procedurally “cover” Θ by intersecting it with fixed-
commutation feasible parameter sets.

The filling problem is combinatorial, however, such that
in the worst case all 2m possible values of δ are needed,
excepting those that are infeasible directly due to the con-
straints in (Pθ). Furthermore, accurate polytopic inner ap-
proximation of Θ∗δ in higher-dimensional spaces than about
R4 suffers from excessive vertex count [27]. Last but not
least, the set intersection and set difference operations used
by Algorithm 1 have poor numerical properties such as
creating badly conditioned (i.e. quasi lower-dimensional)



polytopes. One would like instead an algorithm which may
1) potentially avoid exploring all 2m combinations for δ,
2) minimizes vertex count and 3) uses only numerically
robust operations. We thus propose Algorithm 2 in which
the first requirement is addressed via (VR) discussed below,
the second by using only simplices (which have the lowest
vertex count among full-dimensional polytopes) and the third
by working solely in the vertex representation which is much
more numerically robust than the halfspace representation
and avoids the numerically fragile operation of converting
between the two representations.

Algorithm 2 Proposed computation of fδ .
1: Create empty tree with open leaf Θ as root
2: S ← delaunay(V(Θ))
3: Add child open leaves Si ∀Si ∈ S
4: while any open leaf exists do
5: R ← the first open leaf
6: if (Pθ) is infeasible for θ = cR then
7: STOP, Θ∗ \Θ 6= ∅
8: else
9: δ̂ ← solve (VR)

10: if (VR) is infeasible then
11: v̄, v̄′ ← arg maxv,v′∈V(R) ‖v − v′‖2
12: vmid ← (v̄ + v̄′)/2
13: Add child open leaf co{(V(R) \ {v̄}) ∪ {vmid}}
14: Add child open leaf co{(V(R)\{v̄′})∪{vmid}}
15: else
16: Replace leaf with closed leaf (R, δ̂)

Algorithm 2 creates a simplicial partition of Θ as follows.
The partition is stored as a tree whose leaves are cells (S, δ)
storing the set S and associated commutation δ. Non-leaf
nodes in the tree store just the sets and make evaluating (1)
more efficient (see Section IV-B). A “closed leaf” refers to
a cell that will be a leaf in the final tree while an “open
leaf” will be further partitioned at the next iteration and
thus will be merely a non-leaf node in the final tree. In
the algorithm, we refer to nodes directly by their contents,
i.e. S for open and (S, δ) for closed leaves. On line 3
the tree root is initialized to Θ and, since generally Θ is
not a simplex, Delaunay triangulation is first applied [29,
Section 9.3]. The tree is then iterated on line 4 in a depth-
first manner until no open leaves are left. By doing a depth-
first search, Assumption 1 in Section IV-A is disproved more
quickly in case that it does not hold, such that the algorithm
fails with less wasted time.

An open leaf R in the tree is selected on line 5. First, it is
checked whether (Pθ) is feasible at its barycenter. If not, this
point is a certificate of infeasibility of (Pθ) in Θ, in which
case Section IV-C should be consulted. If however (Pθ) is
feasible, then lines 9-16 partition R into at most 2 simplices.
First, it is checked whether R is fully contained inside some
particular Θ∗δ . The following lemma is used for this purpose.

Lemma 2. R ⊆ Θ∗
δ̂
⇔ (Pδθ) is feasible ∀θ ∈ V(R) and

δ = δ̂.

Proof. (⇒) Since R ⊆ Θ∗
δ̂
, θ ∈ V(R) ⇒ θ ∈ Θ∗

δ̂
. Since

Θ∗
δ̂

is the fixed-commutation feasible parameter set, (Pδθ) is
by definition feasible. (⇐) Any θ such that (Pδθ) is feasible
satisfies, by definition, θ ∈ Θ∗

δ̂
. By Lemma 1, since Θ∗

δ̂
is

convex, co{θ ∈ V(R)} ≡ R ⊆ Θ∗
δ̂
.

Using Lemma 2, one can efficiently check if R ⊆ Θ∗δ for
some δ via the following feasibility MINLP:

δ̂(R) = find δ

s.t. g(θ, xθ, δ) = 0 ∀θ ∈ V(R),

h(θ, xθ, δ) ∈ K ∀θ ∈ V(R),

δ ∈ Im,

(VR)

where xθ denotes a feasible decision vector corresponding
to the particular value of θ. Problem (VR) can be solved
in the standard fashion as a MINLP and the found feasible
commutation can be associated with R and the leaf can be
subsequently closed. If (VR) is infeasible, however, then R
is not fully contained in any Θ∗δ . In this case, R is split into
two smaller simplices at the midpoint of its longest edge. As
explained in Section IV-A, this yields a volume reduction that
necessarily leads to convergence if Assumption 1 holds.

IV. PROPERTIES

A. Convergence

The main result of this section is Theorem 1 which
guarantees convergence of Algorithm 2 under an assumption.

Definition 4. Let ∆ , {δ ∈ Im : Θ∗δ ∩Θ 6= ∅}. The largest
value κ ∈ R+ such that ∀θ ∈ Θ ∃δ ∈ ∆ such that (κB +
θ) \ (Θ∗ ∩Θ)c ⊆ Θ∗δ is called the overlap.

Assumption 1. The overlap is positive, i.e. κ > 0.

The overlap depends on (Pθ) and the choice of Θ. As-
sumption 1 implies that a non-zero overlap between fixed-
commutation feasible parameter sets exists everywhere near
∂Θ∗δ ∀δ ∈ ∆. This “fuzzy” commutation transition property
is instrumental for the convergence proof in Theorem 1.

Theorem 1. If Assumption 1 holds then Algorithm 2 either
converges or fails in a finite number of iterations.

Proof. Let Rk be the leaf chosen at the k-th call of line 5.
Whenever Rk is not closed, it can be shown that the partition
along its longest edge on lines 11-14 halves the volume,
therefore limk→∞ vol(Rk) = 0. Since the longest edge
length is also halved, ∃k large enough such that Rk ⊆ (κB+
cRk). Two possibilities exist: 1)Rk ⊆ (κB+cRk)\(Θ∗∩Θ)c

or 2) Rk∩(Θ∗)c 6= ∅. In the first case, the δ̂ picked on line 9
is then the one feasible ∀θ ∈ V(Rk). Leaf Rk is therefore
closed on line 16. By this logic, for a large enough (but finite)
k all regions that do not intersect the infeasible parameter
set (Θ∗)c get closed. If the second case does not occur, the
algorithm terminates.

In the second case, recall that limk→∞ vol(Rk) = 0. Since
Rk ∩ (Θ∗)c 6= 0, in a finite number of iterations cRk /∈ Θ∗

so line 6 will evaluate to true and the algorithm will fail on
line 7.



Corollary 1. If Assumption 1 does not hold then Algorithm 2
does not converge.

Proof. If Assumption 1 does not hold then there exists a
region Θ′ ⊆ Θ such that ∀θ ∈ Θ′, (κB+θ)\(Θ∗∩Θ)c ⊆ Θ∗δ
for some δ ∈ ∆ ⇔ κ = 0. This, however, implies that
the only simplex that would validate Lemma 2 is a lower-
dimensional one, i.e. with zero volume. Since this occurs at
iteration k =∞, Algorithm 2 does not converge.

Theorem 1 and Corollary 1 suggest that κ > 0 is not
only necessary and sufficient for convergence but that κ
also drives the convergence rate. A small κ implies a high
iteration count k until Assumption 1 guarantees leaf closure.
We call a MINLP with large κ “well-conditioned” and
Algorithm 2 will converge more quickly with a rate that is
derived in Corollary 2 of Section IV-B.

B. Complexity

In this section we analyze the complexity of Algorithm 2
in terms of the partition cell count as well as the on-line
evaluation complexity.

Theorem 2. The maximum tree depth τ of Algorithm 2 is
O(p2 log(κ−1)).

Proof. Algorithm 2 reduces search space volume by halving
the longest edge length on lines 11-14. Suppose that l0 is the
longest edge length of a simplex R ⊂ Rp, then its length
is lk , l0/2

k after k divisions. We wish to determine the
number of divisions necessary until R ⊆ κB + cR and gets
closed by Theorem 1. This approximately requires lk ≤ κ⇒
k ≥ log2(l0/κ). Since R has p(p + 1)/2 edges then an
approximate number of required subdivisions, i.e. the depth
of the partition tree, is given by:

τ =

⌈
p(p+ 1) log2(l0/κ)

2

⌉
, (2)

which yields τ = O(p2 log(κ−1)).

Corollary 2. The maximum tree leaf count η of Algorithm 2
is O(2p

2 log(κ−1)).

Proof. In the worst case, Algorithm 2 generates a full binary
tree of depth τ = O(p2 log(κ−1)) according to Theorem 2,
neglecting the first layer where the node count depends on
|S| on line 2. Such a tree contains η = 2τ = O(2p

2 log(κ−1))
leaves.

Corollary 2 tells us that the leaf count is exponential
in the parameter dimension and polynomial in the overlap.
However, if we assume that the algorithm terminates with a
given finite leaf count then the following lemma states that
a linearly proportional number of problems will have had to
be solved.

Lemma 3. The iteration count ι of Algorithm 2 is O(η).

Proof. A full binary tree with η leaves has 2η − 1 nodes,
thus at most ι = O(η) iterations will have occured.

We have analyzed the tree complexity alone, with disre-
gard for the complexity of the optimization problems that
need to be solved at each iteration of Algorithm 2. Unlike
[15] where convex NLPs need to be solved at each iteration
(due to their original, implicit MPC algorithm being non-
hybrid), we must solve MINLPs whose solution time is
O(n`2m) in the worst case. However, the basic assumption is
that the problem is solvable in the first place and that on-line
computation is offloaded to an off-line solution. Therefore,
we do not consider the issue of practically solving (Pθ) for
a given θ ∈ Θ.

Theorem 3. The on-line evaluation complexity of fδ is
O(p3).

Proof. Algorithm 2 outputs a tree with ηo nodes at the first
level followed by a binary tree thereafter, where ηo is the
number of simplices generated by the Delaunay triangulation
of Θ on line 2. Since a simplex in Rp has p+ 1 facets, there
are p + 1 inequalities to evaluate in order to check θ ∈ R.
Given a depth τ , there are at most (ηo + τ − 2)(p + 1)
inequalities to evaluate. Since τ = O(p2) by Theorem 2, the
evaluation complexity of fδ is O(p3).

Since the evaluation complexity of fδ is polynomial by
Theorem 3, fδ can be used for a guaranteed real-time warm
start of an on-line mixed-integer solver.

C. Choice of Θ

Throughout this paper we have assumed that Θ is avail-
able. We now explain possible methods of obtaining it. First
of all, Θ ⊆ Θ∗ should hold. If it does not, per Theorem 1
Algorithm 2 will report it in a finite number of iterations and
a different Θ must be chosen. Assuming the task of (Pθ) is
to drive θ (e.g. the current state) to the origin, a Θ in a small
enough neighborhood of 0 ∈ Rp should satisfy this property
as long as (Pθ) is a well-defined controller.

Since fδ is defined only over Θ, in practice it must be
ensured that θ /∈ Θ is never encountered during runtime.
This requires Θ to be a controlled invariant set of (Pθ). A
straightforward method for ensuring this is to include the
constraint Θ+ ⊆ Θ in (Pθ) where Θ+ models all possible
future values of θ. This is a common constraint in RMPC.
In this case, which is the most common one in practice, Θ
is explicitly known. Note that convergence of Algorithm 2
in this case certifies recursive feasibility of (Pθ).

Finally, note from the proof of Theorem 3 that the practical
complexity of fδ is O(ηo) since in practice ηo � p and
ηo � τ . There is therefore a considerable interest to make
the Delaunay triangulation of Θ yield a small ηo, e.g. by
using a simplex or a small number of simplices to define Θ.

D. Extensions

The algorithm has thus far been presented as a method
for partitioning Θ ⊆ Θ∗. A possible extension is to partition
the entire Θ∗. Since by Lemma 1 Θ∗δ is convex, it may be
inner-approximated with arbitrary precision [27]. Doing so
for each δ, one can run the algorithm for each commutation
δ ∈ Im by taking Θ = Θ∗δ . To remove overlapping regions,



the intersection of Θ∗δ with all previously considered fixed-
commutation feasible parameter sets can be removed.

V. ILLUSTRATIVE EXAMPLE

This section tests Algorithm 2 on a set of randomly
generated dynamical systems. The goal is to demonstrate
robustness by showing that the algorithm runs successfully
for a generic system and to verify the complexity analysis
of Section IV-B.

A. MPC Problem Instance Generation

We first explain how the MPC problem instance is created
for a randomly generated dynamical system. Consider the
following multiple degree-of-freedom (DOF) oscillator, in
continuous time (time is omitted for notational simplicity)
and in its configuration basis:

Mr̈ + Cṙ +Kr = Lu, (3)

where M ∈ Rnr×nr , M � 0, is the mass matrix, C ∈
Rnr×nr is the damping matrix, K ∈ Rnr×nr , K � 0, is the
stiffness matrix, L ∈ Rnr×nu is an input map, r ∈ Rnr is a
vector of generalized coordinates and u ∈ Rnu is the input.
The task is to generate M,C,K and L such that the system
is controllable and has poles located in a prescribed region of
the complex plane. Assuming that Caughey’s condition holds
[30] such that M,C,K are simultaneously diagonalizable,
(3) can be written in its modal basis:

η̈ + Λη̇ + Ωη = Γu, (4)

where η = T TM1/2r ∈ Rnr are the modal coordinates, T ∈
Rnr×nr is the modal matrix, Λ = T TM−1/2CM−1/2T , Ω =
T TM−1/2KM−1/2T and Γ = T TM−1/2L. The matrices Λ
and Ω are diagonal such that each row of (4) is a 1-DOF
oscillator which contributes two poles to the overall system:

η̈i + 2ζiωn,iη̇i + ω2
n,iηi = ui i = 1, . . . , nr, (5)

where we chose Γ = Inr
which ensures that (3) is control-

lable, ζi is the damping ratio and ωn,i is the natural frequency
of the i-th mode. Note that this implies nu = nr. To generate
(3), it remains to choose M , T , Λ and Ω. We choose a
uniform random diagonal M = diag({mi ∈ [0.1, 1]}nr

i=1),
T as the orthogonal matrix from QR decomposition of a
Gaussian random matrix and Λ,Ω from randomly generating
poles in the s-plane such that 1) the damping rate is ∈ [1, 10]
s and 2) the damped frequency is ≤ 2π rad/s and 3) damping
ratio ζ ≤ 1 with a probability of 0.2 that ζ = 1.

Once generated, the system (3) is written in state space
form ẋ = Ax+Bu+ Ew:[
ṙ
r̈

]
=

[
0 Inr

−M−1K −M−1C

] [
r
ṙ

]
+

[
0

M−1L

]
u+

[
0
Inr

]
w, (6)

where w ∈ Rnr is an exogenous disturbance force act-
ing along each generalized coordinate. This system is dis-
cretized via zero-order hold with sampling frequency ωs =
10 maxλ∈spec(A) |λ|, i.e. ten times faster than the fastest
natural frequency present in the system [31].

Following Section IV-C, Θ is chosen to be the smallest
robust invariant set for (6) using the uncertainty set W ,
{w : ‖w‖∞ ≤ 10−3} and an LQR controller with a Qlqr =
0.1I2nr

state penalty and an Rlqr = Inu
input penalty [32],

[33]. For the MPC law, the uncertainty model is changed to
be norm-bounded:

W ′ , {w ∈ Rnr : ‖w‖2 ≤ 0.4 · 10−3‖x‖2
maxv∈V(Θ) ‖v‖2

}, (7)

which is a smaller uncertainty but, importantly, introduces
second-order cone constraints into (Pθ) [8]. The ad hoc factor
of 0.4 is used to reduce uncertainty such that a planning
horizon of N = 3 is feasible for the robust MPC law,
whereas only N = 1 is guaranteed by the computation
method for Θ [33]. Finally, to make the control problem
mixed-integer the control input is constrained to be in a non-
convex set:

u ∈ U = {0} ∪ (Uext \ Uint), (8)

Uext , {u ∈ Rnr : −umax ≤ u ≤ umax},
Uint , {u ∈ Rnr : −10−3umax ≤ u ≤ 10−3umax},

where umax,i = maxv∈V(Θ) |eTiKlqrv| is the largest input
magnitude required by the LQR controller along the i-
th generalized coordinate. Note that since Uext and Uint

are origin-centered hyperrectangles, one can write U =
∪2nr+1
i=1 Ui where Ui are convex polytopes and U1 = {0}.

There are then N(2nr + 1) degrees of freedom to choose
which convex subsets of U the control inputs are to be in.
The robust MPC law is then:

min
xk,uk

N−1∑
k=0

uT

kRlqruk + xT

k+1Qlqrxk+1

s.t. x0 = θ,

xk+1 = Axk +Buk + Ewk k = 0 : N − 1,

xk ∈ Θ ∀wj ∈ W ′ j = 0 : k − 1, k = 1 : N,

uk ∈ Ui for some i ∈ {1 : 2nr + 1}, k = 0 : N − 1,

(9)

which can be transformed into the form (Pθ) via Hölder’s
inequality as was shown in [8]. Note that p = 2nr, therefore
(9) is constrained to even parameter dimensions.

B. Algorithm Performance Statistics

Algorithm 2 is applied to 100 randomly generated in-
stances of (9) with nr = 1, 2, 3. This demonstrates that the
algorithm can scale up to at least p = 6 and m = 21, with
higher dimensions likely possible as discussed in Section VI.

Figure 1 shows convergence plots using the fraction of
the volume of Θ made up by the closed leafs as the metric.
Since at first none and in the end all leaves are closed, this
metric goes from 0 at the start to 1 at the end of Algorithm 2
and is easily evaluated since the volume of a simplex is well
known [34]. The algorithm has a favorable convergence char-
acteristic in that no convergence curve in our tests deviated
significantly from a linear rate. The practical significance of
this is that the algorithm progresses steadily towards filling
up the entire volume of Θ rather than being very slow at the
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Fig. 1: Normalized convergence plots. Cumulative closed
volume, cumulative closed leaf count and runtime are nor-
malized by their final respective values. The solid/dashed
lines show the envelope max/min while the dotted reference
line shows linear convergence.
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Fig. 2: Final partition statistics. Whiskers show the full range.

beginning and very fast at the end or vice versa. Both cases
would be poor for the user to supervise since, especially for
p > 3, it becomes difficult to diagnose the reason for slow
convergence.

Figure 2a shows the wall-clock total runtime correspond-
ing to each run, which appears to increase linearly and with
unity slope as a function of the final partition cell count.
The linear trend agrees with the linear output complexity
of Lemma 3 while the unity slope may be interpreted as
that, regardless of p, it takes the current implementation
on average 1 second to add 1 closed leaf to the partition
tree. Note that this measurement includes the time taken to
traverse potentially many layers of the tree until adding a
closed leaf (up to about 20 layers according to Figure 2c).
The fact that p = 2, 4, 6 all lie on the same trend line
indicates that the current implementation’s bottleneck is not
the complexity of the intermediate MINLPs that have to be

solve but rather e.g. database access speed.
Figures 2b, 2c and 2d show statistics on the final tree leaf

count and depth along with fitted complexity curves resulting
from Section IV-B. Figure 2b shows clearly that the partition
tree leaf count increases exponentially with p as stipulated by
Corollary 2. Interestingly, we note from Figure 2c that for
some instances of (9) the tree depth does not go beyond
the first layer. In other words, sometimes the Delaunay
triangulation of Θ on line 2 of Algorithm 2 suffices. Note
that because the complexities in Theorem 2 and Corollary 2
depend also on the overlap κ, which currently cannot be
computed a priori, the regressions in Figures 2b and 2c
carry an omitted variable bias. However, Corollary 2 allows
to compute normalized values for κ by assuming that the
deviations in Figure 2b of the actual cell count from the
fitted one are due to κ alone. This effectively captures the
normalized variation required from κ in order to explain the
deviation of observed results from the regressed theoretical
values. This is shown in Figure 2d where κ = 1/e if the
match between the fitted and predicted cell counts is perfect.
As expected, the effect of κ diminishes for higher p where the
exponential complexity in p dominates over the polynomial
complexity in κ.

VI. FUTURE WORK

Algorithm 2 is subject to several potential improvements.
First, it would be interesting to compute the overlap κ given
Θ and (Pθ). This way, Algorithm 2 could be certified to
converge a priori. Next, the partitioning process is paralleliz-
able since lines 5-16 can be executed in parallel for different
leafs. Assuming that database communication latency can
be highly optimized to the point of being negligible, we
can say that lines 5-16 can be made to execute entirely
in parallel. Amdahl’s law then predicts that tp = ts/nproc
where tp, ts and nproc are the parallel total runtime, serial
total runtime and number of processors used respectively.
The total runtime can thus be reduced in inverse proportion
to the number of processors available. Given that modern
university facilities can typically provide access to on the
order of 102 processors and that another 102 factor can be
achieved by using a compiled programming language, we
expect that a compiled parallel implementation can yield a
speedup of at least 104. According to Figure 2a, this means
that one could compute partitions with p = 4 in 0.1 s, with
p = 6 in 10 s and (extrapolating) with p = 8 in 1000 s.

VII. CONCLUSION

This paper presented an algorithm for generating a feasible
parameter set partition applicable to hybrid MPC problems.
The algorithm consists of systematically breaking down the
feasible parameter set into smaller simplices until these can
be assigned an integer solution that is feasible everywhere
in them. Convergence in a finite number of iterations was
proven with novel insight into an overlap characteristic of the
MINLP. The on-line evaluation of the partition is polynomial
time and thus can be used as a guaranteed real-time warm
start of a mixed-integer solver. Extensive testing on randomly



generated systems confirmed the complexity calculations,
showed favorable convergence properties and suggests that
the algorithm is robust enough to be applied on a wide variety
of hybrid MPC problems.
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