N
N

N

HAL

open science

An Average Study of the Signalized
Link-Transmission-Model
Carlos Canudas de Wit

» To cite this version:

Carlos Canudas de Wit. An Average Study of the Signalized Link-Transmission-Model.
ECC 2019 - 18th European Control Conference, Jun 2019, Naples, Italy. pp-3185-3191,

10.23919/ECC.2019.8795830 . hal-02268168

HAL Id: hal-02268168
https://hal.science/hal-02268168
Submitted on 20 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-02268168
https://hal.archives-ouvertes.fr

An Average Study of the Signalized Link-Transmission-Mode

Carlos Canudas-de-Wit*

density density
P = Pmax

Abstract— In this paper we present an average study between
the continuous-time signalizedT-periodic Link Transmission
Model (LTM), and its time-averaged version. Those are macre
scopic models capturing the time-evolution of the vehicles
densities in urban traffic networks controlled by periodic traffic
light of period T'. In this paper, we formalize the mathematic
sense in which the solutions of the periodic signalized LTM
model are approximated by the solutions of its averaged veisn.
In particular, we shown that the error norm between the
solutions of the signalized and the averaged models is boued,
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in both a finite and infinite time-intervals, by a constant time step time step

proportional to the the ratio, T/L, between the traffic light

time-cycle T', and the considered road segment (link) length, Fig. 1. Density time-evolution per row of a planar squarewoek of
L. This result confirm the intuition that the precision of the 40 roads connected by standard 4-ways intersections. igtd-show the
averaged models improves with the increase of traffic light real systemd = f(z, u(t))), and the right figure the average ong £
frequencies and link road lengths. f(y, @)). Figure from [8].

. INTRODUCTION ) _
between 0 and 1 after a suitable number of clock ticks),

One of the most popular flow traffic model is theor depending on the traffic load when used as a feedback
LWR-model, proposed by Lighthill and Whitham [15] andcontrol. In many cases, traffic signal profiles are computed
Richards [17] in the middle of the 50’s. The model originallyj, advance and deployed based in some optimized periodic
derives from the conservation law of vehicles. It is desatib gcnedule.
by an scalar hyperbolic Partial Differential Equation (PriE When « is time-dependent and periodic, this model is
term of macroscopic distributed variables such as the tensinamed as theignalized-LTM(S-LTM), and leads to a set
flow and average speed of the vehicles. of nonlinear periodic ODEsof the formi = f(x,u(t)),

For convenience of their use for simulations and fojyhereu(t) = u(t+7) € {0, 1} describes the integer (binary)
control design, the LWR model can be approximated byontrol variable indicating the stop (red 0) or the release
finite-dimensional ordinary differential/difference egions. (green= 1) of flows at the traffic light. It is possible to use
A popular method to do that is the Godunov scheme [13{his model for control design at expenses of an increase in
The discrete version of LWR model with triangular fun-the design complexity due to the mixed integer/real nature
damental diagram, is then formulated as an iterated COWf the control/state variables [7]. To simplify the compitgx
pled map with time and space discretized into time angs the control design, it is convenient to replace the paciod
space (cells) steps, and supplemented by a special “suppiput v(t) by its average over a period,< [0, 1], and to use
demand” update rule to describe interactions between adjgis averaged input as the nesentinuouscontrol variable.
cent freeway cells as well as shock and advection wavephe control design can now be performed on the basis of
This discretized version of the LWR model, is known as the¢ne resulting “averaged” modegl= f(y,u).

Cell Transmission Model (CTM) [3], and has become one of ap averaged version of theignalized-LTMhas been used
the most popular macroscopic traffic m_o_dels used_for contr@ghr designing one-step ahead optimal control policies for
de5|gn._ A complete treatment of stability analy5|§, cantrane traffic lights [8], where time-dependent traffic signals
properties and the use of the CTM for ramp metering can bge then replaced by it time-average (or duty-cycle) over a
found in [12]. traffic light cycle. The problem has been efficiently solvéal v

The CTM naturally addresses models of highways, bufnear programming, because the optimization time-harizo
it can be also used to modeling traffic in urban networkfas been limited to one step (one traffic-light cycle), babal
by including diverging and merging cell, but also signadize hecause the optimization variabiét) was replaced by his
intersections [4]. In case of a single cell between intetsec averagei over the considered optimization cycle. The paper
the CTM is then named "Link Transmission Model (LTM)" present some numerical comparison between the signalized
in relation to the node-link structure of urban networks
where a single link is used to describe the road between!For simplicity in the presentation and for convenience & &veraged

two intersections (nodes). In these models. the traﬁicaignanalysis, in this paper we will use the the continuous-tireesion of the
' LTM rather than the discrete-time version. We will referritte differential

(named hemf“)_ could be ConStE_mt (describing the tumi_ngequation, rather thadifferenceequations as originally stated in the LTM
"average” priority of the flow), time-dependent (altermati model.



time-dependent model versus the averaged one, as shown in
Fig.1. The comparison reports average difference$05t, our F-mm-
with maximum picks of20%, see [8] for detailsThe aver-
aged model has been also used in studies of controllability
Gramians in large-scale networks, s€g [ 3

This kind of averaged representation has also been used 3 -
in other models to describe the network traffic flow process e o P
in a simplified way, so as to circumvent the inclusion of
discrete variables. An example is the "store-and-forwardfig. 2. Schematic representation of the triangular pieseviundamental
discrete-time model [6] proposed by Gazis and Potts (196?;?9"&‘”1’ wherepy, is the the maximum flowp,, is the maximum density,

. . is the critical densityp is the free-flow velocity, andv is the congested
and more recently used for designing LQ-optimal contrsllerye|ocity. Y v 9

[1]. Other studies formulate the "store-and-forward” dete-

time model in a stochastic setting, where vehicle inflows and

outflows are assumed to be random [20]. The model is usedhicles tend to travel at an equilibrium speed and that
as a basis for the design of the Max-pressure control that = V' (p)p, where V(p) is the flow speed depending on
maximizes throughput. the density.V (p) varies in the rangé0, v|, wherew is the

It is worth to notice that the "averaged” models allowmaximum velocity at free-flow. As shown in Fig. 2, the
for highly efficient control methods to be deployed in larg€undamental diagram can be defined, in its simplest form,
scale networks by mitigating complexity of the associateds a triangle with its maximum at,; = ®(p*) describing
optimization problems. At the other hand, these modelinthe maximum capacity of the road. The critical densgity
simplifications allows only for split optimization, whilescle  defines the boundary between the free-flow and the congested
time and offsets must be delivered by other control algomodes, whilepy; is the maximum density that the road
rithms [7]. A main reason being that averaging is invariantan withstand. The slopey, defines the speed at which
with respect to offsets (delays). congestion travels upstream.

In spite of their popularity and its widely spread use for The evolution of the number of vehicled], within any
control design, the theoretical foundations and the aitalytspatial section(0, L) is given by the following vehicles
properties of these averaged models have been disregardashservation law
In particular, and to the best of the the author knowledge, L
theoretical questions concerning how and in which sense the &N = Vin — Pout, N = / p(z, t)dx Q)
solutions of the “averaged” systep{t), approximated the 0
solutions of the true system(t), remain unanswered to date.wherey;, and,,; are the input (at: = L) and output (at
This contribution provides a formal answer to this question = 0) flows at the boundaries of the road section of length
for the continuous-time version of the LTM. L. Equation (1) can be rewritten (see [15]) as a hyperbolic

For simplicity of exposition, we assume constant deman@quation involving only the density
and supply at the boundaries, and we first shown that the
open-loop system is globally bounded, and continuously Lip Orp + 0:®(p) = Oup+ 0p® - Dup = 0 2)
schitz. Those properties are used to shown that the differenThe macroscopic continuous density dynamics is then given
between the true and the averaged systems is boundedHdyythe LWR Cauchy problem described by (2) with the initial
¢(T)e, in some finite time-interval depending efi.e. condition p(x,0) = p°(z). The model has been shown to

be consistent with hydrodynamic theory [3]. Validationttes

le(®) =yl < e(T)e, 0=t <Tr/e with real data have been reported in [16].

wheree = 1/L > 0 is the inverse of the cell length, and
¢(T) ~ T depends on the physical parameters of the mod
including in particular the traffic light time-perio@. The ~ The analysis presented in this note, can be extended to
paper also analyze other properties (equilibria, stgboit multi-road networks and to CTM models with arbitrarily
the equilibria, contractivity), which are useful to extetn¢t numbers of cells. For the sake of clarity in the exposition
result to all the positive time-axis. In particular, thigesion Of the technical results, we limited this analysis to a sngl
is mainly due to the contractivity property of the averagedink road, described by a signalized one-cell CTM, named

é?" Signalized Link-Transmission Model

model around its equilibria. before as the Link Transmission Model (LTM).
Consider the scenario shown in Fig. 3 of a single link road
Il. PRELIMINARIES of length L with T-periodic traffic lightu(t) = u(t + T),

The LWR macroscopic model is based on the vehicland densityp(t). Let Dy and Sy be the boundary (external)
conservation’s principle, and on the assumption that thdemand and supply, respectively. For the sake of simplicity
traffic can be described by the empiric relation between thessume they are constant although the presented anabis al
flow, ¢, and densityp, as:p = ®(p), where the functio®(-)  holds if they are considered time, or state-dependent.,Also
is called Fundamental Diagram. The constitutive assumptiave do not consider the light phases as they have no effect
of this model, motivated by experimental data, is that then the average approximation. Under those assumptions,
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Let average modelwith y = p, be described as

o0
o0

y(t) = efau(y) (10)
with
DO So 1 T
L & - ‘ fau(y) = T/ [y, t)dt
0
L LT
Fig. 3. Schematic description of the considered scenaridhis study. = g(y)? /0 u(t)dt
= ag(y)
the continuous-time version of the Signalized LTM, can b&he problem is to study in which sense the averaged system
written as: (10) approximates the original system (7). Or, in other \gord
) 1 . . how the norm|z(t) — y(¢)| can be upperbounded by a
t)y = —u(t Dy, S - D S 3 :
A Lu( ) [min{ Do, 5(p)} = min{D(p), So}] (3) function depending ol, with z(0) = y(0).
with, _
A. Model properties
D(p) = min{“ﬂia SOM}a (4)

) The following properties holds for every possible value
S(p) = min{ear, wlpym —p)} ®)  of the boundary demand and supply below its maximal

Note that, the standard discrete-time S-LTM form can bgapacity; [Do(t)] < oar, [So(t)] < ¢an, and for any
recovered by replacing the time-derivatiygt), by its Euler u(t),u € [0,1].

approximation, i.ep(t) ~ (p(k + 1) — p(k))/At, where At

is the time-discretization step. It is worth to recall thas, Lemma 1 (Boundednees)Let 2 = [0, pas] be the compact
the conservation laws like (2) generate irregular flowsy the(closed and bounded) set defining the solution space for
cannot be integrated numerically using standard metheds (ssystem(7). The set is indeed an positive invariant set for
[4], [14]), but efficient methods that reproduces correttly  all the solutions of(7),

propagation of the shock waves, like the Godunov scheme
[11]. x(0) € Q,= x(t) € Q,Vt > 0.

B. Averaged Link-Transmission Model Proof. This property comes from the vehicle conservation
the averaged model is nowroperty of the CTM, and can be easily verified by noting
g that: if z(0) = 0, thenz(t) > 0, while if 2(0) = pas, then
z(t) < 0. This property also shown the system “open-loop”
boundedness for any(0) € .

In the context of this study,
defined using the "averaged” density and the average
input w over the traffic light cycleT-period, where the
dynamics ofp is defined by:

. 1
p(t) = Eﬂ [min{ Dy, S(p)} — min{D(p),So}] (6) Lemma 2 The functiongy;,,(x), andg,..(x) are continuous

) ) o ) Lipschitz in{2, i.e. There exist two Lipschitz constantg, =
Sinceu(t) is assumed to be periodic, and being of the form;," ;g Agus = v, such that:

u(t) = { 1 if nT <t<auan+1)T 0) |gin(z1) = gin(x2)| < Ainlz1r — 22|, Vai,z0 € Q
0 if aln+1)T<t<(n+1)T 1) |Gout (1) — Gout(x2)| < Aout|x1 — w2|, Vai,29 € Q
forall n € Z, andvt > 0. Then the duty cycle: is indeed Proof. The proof of this statement can be easily veri-
the average of the control input, i.e. fied by observing that the slope of the secant line joining
1 (T - (1, gin(z1)) and (x2, gin(z2)) is always bounded above by
U= f/o u(t)dt, uel0,1] w, and bywv for the secant line joinindz1, gou:(z1)) and
(2, gout(z2)). Note that Lemma 2 holds for every possible

I1l. PROBLEM DEFINITION AND MODEL PROPERTIES value of the boundary demand and supply below the maximal
Let's write original model(3) in a general form by letting capacity.

x = p be the state, and = 1/L > 0 be the "small’

parameter: Lemma 3 (Lipschitz continuity) As a consequence of

i(t) = eu(t)g(z) = ef (z,u(t)) = ef (z,t) (7) Lemma 2 the functiorf(x, ) is continuous Lipschitz i,

. . . with the Lipschitz constant = w + v, i.e.
with g(2) = gin(z) — gout(x), Whereg;, (z) is the inflow,

and go.:(z) is the outflow: [f(z1,t) = fze,t)] < ANz1 — 22|, V1,20 € Q,VE > 0.

gin(z) = min{Do, S(x)} C) Proof. The proof follows from the property that a linear
Jout(x) = min{D(x), So} (9) combination of arbitrary Lipschitz continuous functiorss i



Lipschitz continuous: from which we get

[f(@1,t) = fla,t)] = Ju(t)g(ar) — u(t)g(ws)] G = u{ —vy if yeth
< Ju®llglrz) - g(as) Do=50 <0 +f yeih
< g(z1) — g(x2)] If initial conditions are taking ag/(0) € Q4, theng(t) =
~ —pr(t i — a7 ~ _
< gin(z1) — gin(2)] + 3{(0)6 re® ] with pp = euw. If y(O) E-le, theng(Th) =
7(0) 4 (Do — So)T; decreases linearly in timgD, — Sp) <
|9out (1) = Gout (w2)| 0), enters in the the regidf; in finite-time T}, and thereafter
< AinlT1 — 22| + Aout|T1 — 22 converges exponentially to its equilibrium with a rate give
= (Nin + dout)|T1 — 72| by ps. These two cases can be combined to get the upper
_ )\|$1 _ le bound,
~ ~ Ty ,—pgt —pgt
where we have used the fact thatt)| < 1, and the previous 9] < [g(Tr)]et 7T e™ 1" = cpe™"I7, ¥t > 0.
bounds from Lemma 2. Caseb). Following similar steps we get
Lemma 4_(Equi|it_1r_ia)_ Let z(0) € Q, then systen{7) has = Eu{ Dy - So >0 l:f y e
the following equilibria: —wy if ye
o If Dy < Sy, there exists an unique free-flow equilib-which leads to
H . % _ Do
rnum: Ty = = . . . |~(t)| < |~(T )l peTs ,—pet —pet Vvt >0
o If Dy > Sy, there exists an unique congested equilib- YW= fytt2)jer e =Ce€ L VEZ U
rium given by:ag = pa — R - ) with . = euw, andTs being the time to reackl, from
o If Dy =Sy = Ppg, there exist an equilibrium manifold §(0).
Q. CQ, In the case), the error system dynamics writes as:
o i) ~
QeZ{UC*ZLSSUC*SpM—LS}- . —vy if yeth
v w y=ecu —wy if ye€ Qo
Proof. By direct inspection of the values fai* satisfying: 0 if yeQe
g(z*) = min{ Dy, S(z*)} — min{D(z*), So} = 0 For casescl) and ¢2), it is easy to see that the error
_ system converges exponentially to the respective left and
for all considered cases. right boundaries of2. with rates: ;s and p.. In the case

. ¢2), both the signalized and the averaged model have the
Remark 1 Properties from Lemma 1 to Lemma 4 of thesame trivial solutionsa(t) = y(t) = =(0) = y(0)), and

original system(7), also hold for the average systeg(h0). needs not be analyzed.

Aggregating all the cases in Lemma 5, we get the follow-
Lemma 5 Consider the average systei0) with y(0) € ©,  ing result.

and g(t) = y(t) — y*, then:
a) If Dy < Sy, 3 positive constants;, 1y, such that: Lemma 6 (Exponential stability) The average syste(i0)
~ —pyt * ok with y(O) € Qr (DOaSO) S OM, and g(t) = y(t) - y*a is
GO] < epe™ V20, y" =y} =Do/v, globally exponentially stable, i.e.

b) If Dy > Sy, 3 positive constants,, 1., such that: §(t)] < cent

[G(t)] < cce V>0, y* =yl =pm — So/w,

C) If Dy =5y =®pg, then:
cl) |g(t)| < [§(0)|e st ¥t > 0,y* = yt, y(0) € O, Lemma 7 (Contractivity) Consider two solutionsy; (t),
¢2) 15(0)] < 15(0)]er<t, ¥t > 0,y* =y, y(0) € Qy,  andyz(t) of the average systed0) with (yi(to),y1(to)) €
e3) |g(t)] =0,vt >0, y* =y(0), y(0) € Qe. Q, then there exists a large enough tinig, (independent of
€), and a constant < k < 1, such that

wherec = max{|7(0)|, ¢y, cc}, andp = min{puy, pe} = pe.

with yi = ®ps /v, y5 = pu — Pps/w.

Proof. Note first that the analysis is conducted around the 191(t) = %2(t)| < klyi(to) —w2(to)], vt >T5 > 0.
equilibrium points as specified by Lemma 4, which is alsqith 75 = max {7}, T>}.
valid for the averaged system (10). The three stability €ase
and the position of the corresponding equilibria are skedch ~ Proof. Introducey = y1(t) — y2(t) = 91 (t) — 7=2(t), from
in Fig. 4. Lemma 5 we can see thgtdecreases first linearly in time
Casea). From Fig. 4 and equations (10), we can see thatp t0 ¢ = T3; and then it follows ar. exponential decay,

i.e:
i g Do=Dly) if ye
4 Dg— 5 <0 if yeQs §(t) = (¢(Do, So)Ts + §(to)) e M=) vt > Ty
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Fig. 4. Equilibria points and stability profiles fow) So > Do, b) Do > So, andc) Do = So = $ps.

where ¢(Dy, Sp) is a constant with sign such thatThe next step is to find upperbounds for each of the two
¢(Do, So)t + g(to) < y(to). Then the following upperbound integral terms. For the first term in the RHS of (12), we can

applies: use the Lipsichtz property in Lemma 3 to get the following
[5(t)] < |g(to)]e =) upperbound:

Therefore,e*(*=73) < 1Vt > T3, and the contractivity

property holds. / |f(@,7) = fy, )| dT < 6)\/ le(7)|dr (13)

Remark 2 The contractivity property of the averaged modeDerivation of an upperbound for the second term in the RHS
is an essential property to show the time-horizon validity oof (12) is a bit more involved, but it can be obtained with
the error upperbound can be extended to the infinite. the help of the Besjes's Lemma [2], as indicated in [18].
Before proceed, let introduce some useful properties on the

IV. MAIN RESULT integrant of the second term,

Let introduce the error system dynamiest) = x(t) —

y(t), given by: Lemma 1 Let f(y,7) = f(y,7) — fau(v), the f(y,7) has
et) =e(f(z,t) — fau(y)), €(0)=0. (11) the following properties:

The main results below states that given some time-intervali) f(y,7) is periodic in7, with a periodT,

0 < t < Tr/e, the error variable is bounded by the productii) f(y,7) has zero mean for fixeg,
of e and a constant depending on the periad ii) f(y,7) is bounded for alkt, and for ally € ©,

iv) f(y,7) is continuous Lipschitz if2, and has the Lips-
Theorem 1 (Finite-time horizon) For all ¢ > 0, and any hltz constan.

arbitrarily Tr > 0, there exist a constantT") such that
i) follows directly from the periodicity off (y, 7). i) is also
j2(t) = y()] < e(T)e easy to derive by noticing that
for0 <t <Tp/e.

T
Before proceeding the the proof, note that due to the /0 fy,7) =g(y)/0 (u(r) —@)dr =0
boundedness property of Lemma 1, Theorem 1 holds for
anye, and anyT». This is in opposition to the standard first-#i¢) follows from Lemma 1, andv) follows from Lemma 3,
order averaging results whefd may be chosen arbitrarily, !-€-
but thene and ) are chosen in response. Here the system

solutions are bounded in the setindependently to the value [y, m) = fly2, )l < 1y, 7) = Flya, Tl +

of ¢, andTr. | fau(y1) — fau(y2)|
Proof. The proof follows general ideas for analyzing first- < Ny — y2| + Ay — v

order averaging systems from [18] by establishing suitable = 2|y — 1ol

bounds on the error system (11) in the time interval of

interest0 < ¢ < Tp/e. Now for the second term and following Besjes's Lemma
Let first rewrite the error system (11) as: [2], we can partition the integral in the interval,¢],

et) = elf(at) — fly O] +elf W t) — fau(®)] in m intervals of duration7, and one fractional;

[0,T],[T,2TY,...[(m —1)T,mT], [mT,t],
with e(0) = 0. From this equation we have that

t t o m T
e(t) = 6/0 [f(z,7) = fly,7)]dr + € /0 fly,m)dr| < 6; /(i_l)T fly,7)dr| +
¢ / Fr) — fanly)] dr (12) + el




For the[0, mT]-time interval, we have

A” F(y, r)dr /ﬁ F(y,m)dr

i—1)T (i—1)T
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where the equality holds becaugéy((i — 1)T),7) has

zero mean for fixedy, (Propertyii in Lemma 1), and the [
upperbound results from the continuous Liptchitz property

of f (propertyiv in Lemma 1).

which conclude the proof, witk(T) = c3(T)e *.

Theorem 1 holds for a finite-time horizon. Extension of
such a result to infinite time horizon will typically require
that the average system (10) be contractive as already demon
strated in Lemma 5.

Theorem 2 (Infinite-time horizon) For all ¢ > 0, there
exist a constanC(T") such that

|x(t) —y(t)] < C(T)e, Vt>O0.

Proof. The proof is based on the time-partition trick
proposed by [19] to extend the error grown to the interval
0, o). For other similar analysis see Theorem 5.5.1 in, [18].
Let split the positive time axis, in time intervals equally
Spaced by large enough lengffy /e, such that both the

Using (10), the integrant of the last inequality can p&ontractivity property (Lemma 7) and the finite time bound-

rewritten as

ym—mwnn—[rzwm—mlT

i—1)T i—1)T

9(y(s))ds

V7 in the interval(i — 1)T < 7 < ¢T. Now, since|g(y)| <
om, Yy, and|T — (i — 1)T'| < T the following bound holds;

v - 0D] < e [ et

< eufr — (i — 1)T| - max{[g(y)}
< eulpy
== ET(pI\,[ (14)
from which we get
T iT
[ fenar < o[y -y - Dl
(i-1)T (i-1)T
< 22TPpy (15)

For the[mT,t] interval, and from the boundedness property

in Lemma 1 (i.e,|f(y)| < 2¢u), we have

’ tT fly,m)dr| < 2puT (16)
Using (15) and 2116), we have that,
€ /t fly,m)dr| < 22mT?py + 20T (17)
’ < 2eNTFT oy + 2ep T (18)
< e(er(T) + ea(T)) = ecs(T) (19)

with Cl(T) = 2/\TFT(pM, CQ(T) = 2QDA4T, and Cg(T) =

c1(T) + c2(T). The second inequality comes from the fact

that the analysis is performed in the time interfak ¢ <
Tr /e, and henceynT <t < Tp/e.
Finally using (13) and (19) in (12), we get:
t
le(t)] < GA/ le(r)|dr + eca(T)

0

and by the use of the Gronwall-Bellman lemma, we get
le(t)| < ecs(T)eM < ecs(T)e T = ec(T)

edness (Theorem 1) hold for each considered time interval
Ly, = [mTTIv (mtl)TI]'

In addition to the exact solutiom(¢), and the averaged
solution y(t), let consider the solutiorn;(¢), of the "reset-
averaged”(or switched) system, with initial conditions reset
at the beginning of each interval,, such that they coincide

with the real solution, see Fig. 5,

) =

’ITLT]

T
mer z(—),Ym eN
€

2(t) = efan(z), 2(

€

A

Time

(m+‘1)Q

€

Fig. 5. Schematization of the 3 solutions: the reél), the averaged(t),
and the reset-averagedt) under:z(0) = y(0), andz(™IL) = x(@).

€

In virtue of Theorem 1, we have

|z(t) —z(t)] < c(T)e=d(e), Vtel,

From the triangle inequality, we g&t < I,,,

() —y()] < fe() = 2(O)] + |y(t) — 2(1)]

< 3(6) + ly(t) — (1) (20)

From Lemma 7, and considering large enough interyals
the term|y(t) — z(t)| can easily be shown to be contractive
at the boundaries dof,,, i.e.

[Yma1 — Zma1| < klym — 2zm|, 0<k<1

where for simplicity of notation we usg,, = z(mTTI), Ym =
y(=F).



Evaluating inequality (20) at = , we get

(m +El ) Tr [3]

[Tm+1 = Ymr1l < 0(€) + [Ym+1 — Zmt1l "
< 0(€) + klym — zm|
< 5(€) + k|ym — zm| [5]

The second line is obtained using the contractivity propert [6]
and the last line comes from the fact that = z,,.
By recursion, and using the limit of a power law, we get [7]

|Zm41 = Ymi1| < 0(€) Z K+ k™ |yo — ol (8]

§=0
Finally, by taking the limitm — oo,
[10]
|[Tm41 = Ym1| < d(€) T—% (11]
the result is proved, witl'(T') = ¢(T) 1. [12]

V. CONCLUSIONS

In this paper we have presented an average study betwd&H
the signalizedl-periodic Link Transmission Model (LTM), [14]
and its averaged version. We have formalized the mathematic
sense in which the solutions of the periodic signalized LTS
model approximate the solutions of its averaged version. We
have shown that the error norm between the solutions of the
signalized and the averaged models can be bounded, in bt
finite and infinite time-intervals, by a constant proporéibn
to the ratio between the light cyclE and the road segment [17]
length L. (18]

For the sake of simplicity, and the clarity of the anal-
ysis and exposition of the main results, the analysis has
been carried out under some simplified hypothesis. Tho&E!
assumptions may be relaxed at the price of a more involved
analysis. For instance, it may be possible to extend tHeo]
result to: different control inputs at each intersectiamet
varying boundary demands and supply, and networks with
multiple cells. However, we feel that the main formal featur
confirming the natural intuition that the precision of the
averaged models improves with small traffic light periods
and large link road lengths, are captured by the proposed
analysis even under some simplified hypothesis.
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