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Restart FISTA with Global Linear Convergence

Teodoro Alamo, Pablo Krupa and Daniel Limon

Abstract— Fast Iterative Shrinking-Threshold Algorithm
(FISTA) is a popular fast gradient descent method (FGM) in the
field of large scale convex optimization problems. However, it
can exhibit undesirable periodic oscillatory behaviour in some
applications that slows its convergence. Restart schemes seek
to improve the convergence of FGM algorithms by suppressing
the oscillatory behaviour. Recently, a restart scheme for FGM
has been proposed that provides linear convergence for non
strongly convex optimization problems that satisfy a quadratic
functional growth condition. However, the proposed algorithm
requires prior knowledge of the optimal value of the objective
function or of the quadratic functional growth parameter. In
this paper we present a restart scheme for FISTA algorithm,
with global linear convergence, for non strongly convex opti-
mization problems that satisfy the quadratic growth condition
without requiring the aforementioned values. We present some
numerical simulations that suggest that the proposed approach
outperforms other restart FISTA schemes.

Keywords: Fast gradient method, restart FISTA, convex

optimization, linear convergence, quadratic functional growth

condition.

I. INTRODUCTION

Fast gradient methods (FGM) were introduced by Yurii

Nesterov in [3], [4], where it was shown that these methods

provide a convergence rate O(1/k2) for smooth convex

optimization problems with non strongly convex objective

functions [4], where k is the iteration counter. These methods

were generalized to composite non smooth convex optimiza-

tion problems in [5], [6], [7]. The resulting algorithm is

commonly known as FISTA algorithm [5]. Because of its

complexity certification, it is often used in the context of

embedded model predictive control [8], [9], [10]. Another

possibility to address composite convex optimization prob-

lems is to use splitting methods like ADMM [11], [12], [13].

FISTA algorithms can be applied in a primal setting (as in

the Lasso problem [5]), or in a dual one [14], [15]. They can

be thought of as a momentum method, since the linearization

point at each iteration depends on the previous iterations.

Since the momentum grows with the iteration counter, the

algorithm can exhibit undesirable periodic oscillating behav-

ior for certain applications, which slows the convergence rate.

To mitigate this, restart schemes have been proposed in the

literature which stop the algorithm when a certain criteria

is met. It is then restarted using the last value provided by

T. Alamo, P. Krupa and D. Limon are at the Systems Engineer-
ing and Automation Department, University of Seville, Spain. E-mail:
{talamo,pkrupa,dlm}@us.es

The authors acknowledge MINERCO and FEDER funds for funding
project DPI2016-76493-C3-1-R, and MCIU and FSE for the FPI-2017 grant.

This paper constitutes an extended and revised version of [1]. Some of
the technical results presented in this paper are used in [2].

the stopped algorithm as the new initial condition [16], [17],

[18].

In [16] two heuristic restart schemes for FGM are pro-

posed which exhibit improved convergence rates over non-

restart FGM schemes. These restart schemes reset the mo-

mentum of the FGM in order to eliminate the undesirable

oscillations whenever the periodical behavior is detected. A

restart scheme similar to the ones in [16] with O(1/k2) con-

vergence rate for smooth convex optimization is presented in

[18]. In [19], an algorithm is proposed that uses the restart

schemes from [16]. Numerical results show improvements

over previous restart schemes for FGM, but no theoretical

results on convergence rates are provided.

Recently, linear convergence rate has been derived for

several first order methods applied to convex optimization

problems with non strongly convex objective functions that

satisfy a relaxation of the strong convexity known as the

quadratic functional growth [20].

In [20, Subsection 5.2.2] a restarting scheme of FGM is

presented with global linear convergence rate for convex

optimization problems that satisfy the functional growth

condition with parameter µ. However, in order to implement

this strategy, prior knowledge is needed of either the optimal

value of the objective function or the value of µ, which can

be challenging to compute.

In this paper we propose a novel restart scheme for FISTA

algorithm applied to solving convex constrained problems.

We show that the algorithm guarantees global linear con-

vergence rate O(1/
√
µ) for convex optimization problems

with non strongly convex objective functions that satisfy

the quadratic functional growth condition with parameter µ.

The proposed algorithm does not require prior knowledge

of the value of µ or of the optimal value of the objective

function. We provide theoretical upper bounds on the number

of iterations of the algorithm needed to achieve a given

accuracy.

Additionally, we show numerical results comparing the

proposed algorithm with the heuristic restart schemes from

[16] and the restart scheme from [20] for Lasso problems.

In Section II we introduce the problem formulation. Sec-

tion III presents FISTA algorithm and some restart schemes.

The convergence rate of non restart FISTA algorithm under

the satisfaction of the quadratic functional growth condition

is presented in Section IV. In Section V we present the

proposed restart scheme for FISTA and state its global lin-

ear convergence. Numerical results comparing the proposed

algorithm with other restart schemes applied to FISTA are

shown in Section VI. Finally, conclusions are presented in

Section VII.
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Notation: Given vectors x and y, we denote by 〈x, y〉
their scalar product, i.e. 〈x, y〉 .

= x⊤y. Given vector x,

‖x‖2 denotes its Euclidean norm (‖x‖2 .
=

√
x⊤x), and

‖ · ‖1 denotes its l1-norm (sum of the absolute values of

the components of x). Given R ≻ 0 we denote by ‖ · ‖R
the weighted Euclidean norm ‖x‖R .

=
√
x⊤Rx, and by

‖x‖∗ .
= ‖x‖R−1 its dual norm. ln(·) is the natural logarithm

and e is Euler’s number. ⌊x⌋ denotes the largest integer

smaller than or equal to x; ⌈x⌉ denotes the smallest integer

greater than or equal to x. Given a set X ⊆ IRn we denote

by IX its indicator function. That is, IX (x) = 0 if x ∈ X ,

and IX (x) = ∞ if x 6∈ X . The relative interior of set X
is denoted by ri(X ). Given the extended real valued func-

tion f : IRn → (−∞,∞] we denote by dom(f) its effec-

tive domain. That is, dom(f)
.
= { x ∈ IRn : f(x) < ∞ }.

We denote by epi(f) the epigraph of f . That is,

epi(f)
.
= { (x, t) ∈ IRn × IR : f(x) ≤ t }. We say that

function f : IRn → (−∞,∞] is closed if its epigraph is a

closed set. We say that f : IRn → (−∞,∞] is proper if its

effective domain is not empty. That is, if f is not identically

equal to ∞. We say that a vector d ∈ IRn is a subgradient

of f at a point x ∈ dom(f) if f(y) ≥ f(x) + 〈d, y − x〉,
∀y ∈ IRn. The set of all subgradients of f at x is called

the subdifferential of f at x and is denoted by ∂f(x).

II. PROBLEM FORMULATION

We address the problem of solving the composite convex

minimization problem

f∗ = min
x∈X

f(x) = min
x∈X

Ψ(x) + h(x), (1)

under the following assumption.

Assumption 1. We assume that

(i) h : IRn → IR is a smooth differentiable convex

function. That is, there is R ≻ 0 such that the

inequality

h(x) ≤ h(y) + 〈∇h(y), x− y〉+ 1

2
‖x− y‖2R, (2)

is satisfied for every x ∈ IRn and y ∈ IRn.

(ii) Ψ : IRn → (−∞,∞] is a closed convex function and

X ⊆ IRn is a closed convex set.

(iii) Denote f
.
= Ψ+ h. The minimization problem

min
x∈X

f(x)

is solvable. That is, there is x∗ ∈ X ⋂

dom(Ψ) such

that f∗ = f(x∗) = inf
x∈X

f(x).

We notice that it is standard to write down the first point

of Assumption 1 as

h(x) ≤ h(y) + 〈∇h(y), x− y〉+ L

2
‖x− y‖2S, (3)

where parameter L serves to characterize the smoothness of

h and S is a positive definite matrix. Constant L provides

a bound on the Lipschitz constant of the gradient ∇h(·) [4,

Subsection 2.1]. Since

L

2
‖x− y‖2S =

1

2
‖x− y‖2LS,

we have that (3) implies (2) if we take R = LS. This

simplifies the algebraic expressions needed to analyze the

convergence of the proposed algorithm.

We notice that Assumption 1 guarantees that the minimiza-

tion problem (1) is solvable. The optimal set Ω is defined

as

Ω
.
= { x : x ∈ X , f(x) = f∗ }.

This set is a singleton if f(x) is strictly convex. Given

x ∈ IRn we will denote x̄ its closest element in the optimal

set Ω (with respect to the norm ‖ · ‖R). That is,

x̄
.
= argmin

z∈Ω
‖x− z‖R. (4)

Given y ∈ IRn, one could use the local information given by

∇h(y) to minimize the value of f = Ψ+h around y. Under

Assumption 1, this can be done obtaining the minimizer of

the strictly convex optimization problem

min
x∈X

Ψ(x) + 〈∇h(y), x− y〉+ 1

2
‖x− y‖2R.

It is well known that this problem is solvable and has a

unique solution if Assumption 1 holds (see, for example,

Subsection 6.1 in [21] for an analogous result). For com-

pleteness we provide a proof of this statement in Appendix

A (see Property 5).

The solution to this optimization problem leads to the

notion of composite gradient mapping [6], which constitutes

a generalization of the gradient mapping that can be found

in [4, Subsection 2.2] for the particular case Ψ(·) = 0. See

also [5] for the particular case X = IRn.

Definition 1 (Composite Gradient Mapping g(y)).
Under Assumption 1, and given y ∈ IRn, we define

y+
.
= argmin

x∈X
Ψ(x) + 〈∇h(y), x− y〉+ 1

2
‖x− y‖2R,

g(y)
.
= R(y − y+).

We notice that the composite gradient mapping is closely

related to the notion of proximal operator [22], [21, Chapter

6]. For example, one could state, after some manipulations,

the computation of the composite gradient mapping as the

computation of a proximal operator. In the context of optimal

gradient methods, it is assumed that the computation of y+

is cheap. This is the case when X is a simple set (box,

IRn, etc.), R diagonal, and Ψ(·) a separable function. For

example, in the well known Lasso optimization problem,

the computation of y+ resorts to the computation of the

shrinkage operator [5]. See [23], Section 6 of [22], Chapter

28 in [24], or Chapter 6 in [21], for numerous examples in

which the computation of the composite gradient mapping

is simple.

The following property gathers well-known properties of

the composite gradient mapping g(y) and its dual norm

2



‖g(y)‖∗ = ‖g(y)‖R−1 [5], [6]. For completeness, we include

the proof in Appendix B.

Property 1. Suppose that Assumption 1 holds. Then,

(i) For every y ∈ IRn and x ∈ X :

f(y+)− f(x) ≤ 〈g(y), y+ − x〉+ 1

2
‖g(y)‖2∗

= 〈g(y), y − x〉 − 1

2
‖g(y)‖2∗

= −1

2
‖y+ − x‖2R +

1

2
‖y − x‖2R.

(ii) For every y ∈ X :

1

2
‖g(y)‖2∗ ≤ f(y)− f(y+) ≤ f(y)− f∗.

The composite gradient serves to characterize optimality

[6]. That is, under Assumption 1 we have the following

equivalence

y ∈ Ω ⇔ g(y) = 0.

This fact is proved in Appendix C.

III. RESTART FISTA SCHEMES

For a given initial condition z ∈ IRn, a minimum number

of iterations kmin ≥ 0, and an exit condition Ec, the non

restart FISTA algorithm [5] is shown in Algorithm 1. This

algorithm solves min
x∈X

h(x) + Ψ(x) under Assumption 1.

Algorithm 1: FISTA

Require: z ∈ IRn, kmin ≥ 0, Ec

1 y0 = x0 = z+, t0 = 1, k = 0
2 repeat

3 k = k + 1
4 xk = y+k−1

5 tk =
1

2

(

1 +
√

1 + 4t2k−1

)

6 yk = xk +
tk−1 − 1

tk
(xk − xk−1)

7 Compute exit condition Ec

8 until Ec and k ≥ kmin

Output: r = xk, n = k

Since the optimality of xk is equivalent to g(xk) = 0 (see

Property 7 in Appendix C), a typical choice for non restart

FISTA schemes is to choose kmin equal to zero and codify

the exit condition

‖g(xk)‖∗ ≤ ǫ,

where ǫ > 0 is an accuracy parameter. It is also common

to use the exit condition ‖g(yk−1)‖∗ ≤ ǫ, since this exit

condition requires y+k−1, which has already been computed

in step 4 of the algorithm.

It is well known that under Assumption 1, see also (3),

the iterations of non-restart FISTA satisfy [5], [6],

f(xk)− f∗ ≤ 2

(k + 1)2
‖x0 − x̄0‖2R, ∀k ≥ 1, (5)

where x̄0 represents the point in the optimal set Ω closest

to the initial condition x0 of the algorithm (see (4)). For the

sake of completeness, we present a detailed proof of this

claim in Appendix D. We also prove in the same appendix

that the sequence {yk} generated by Algorithm 1 (FISTA)

satisfies

‖g(yk)‖∗ ≤ 4‖x0 − x̄0‖R
k + 2

, ∀k ≥ 0.

In restart schemes, one invokes several times FISTA

algorithm with a relaxed exit condition. Typical choices are

(see [16]),

(i) Function scheme:

Ef
c = True ⇔ f(xk) ≥ f(xk−1). (6)

(ii) Gradient scheme:

Eg
c = True ⇔ 〈g(yk−1), xk−1 − xk〉 ≤ 0. (7)

Given initial condition r0 ∈ X , a minimum number of

iterations kmin ≥ 0, an exit condition Ec, and an accuracy

parameter ǫ > 0, the standard restart FISTA algorithm is

shown in Algorithm 2.

Algorithm 2: Restart FISTA

Require: r0 ∈ X , kmin ≥ 0, ǫ > 0, Ec

1 j = 0
2 repeat

3 j = j + 1
4 rj = FISTA(rj−1, kmin, Ec)
5 until ||g(rj)||∗ ≤ ǫ

Output: x∗ = rj

The implementation of Algorithm 2 usually provides better

performance than the original non restart version [16], [18].

IV. CONVERGENCE OF RESTART FISTA UNDER A

QUADRATIC FUNCTIONAL GROWTH CONDITION

It has been recently shown in [20] that some relaxations

of the strong convexity conditions of the objective function

are sufficient for obtaining linear convergence for several

first order methods. In particular, the following relaxation of

strong convexity suffices to guarantee linear convergence of

different gradient optimization schemes for smooth functions

(Ψ(·) = 0). See [20, Subsection 5.2.2].

Assumption 2 (Quadratic Functional Growth). We assume

that the optimization problem

f∗ = min
x∈X

f(x)

is solvable and satisfies the following quadratic functional

growth condition with parameter µ > 0:

f(x)− f∗ ≥ µ

2
‖x− x̄‖2R, ∀x ∈ X ,

where x̄ denotes the closest element to x in the optimal set

Ω (see (4)).
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As can be seen in [20, Subsection 3.4], strong convexity

implies quadratic functional growth. This means that the

quadratic functional growth setting encompasses a broad

family of convex functions.

It is also shown in [20, Subsection 5.2.2] that if the value

of f∗ is known and Ψ(·) = 0, then a restart FISTA based on

the exit condition

E∗
c = True ⇔ f(xk)− f∗ ≤ f(x0)− f∗

e2
, (8)

exhibits global linear convergence. This exit condition is

easily implementable if the optimal value f∗ is known. This

is the case, for example, in some formulations of feasibility

optimization problems, in which the optimal value f∗ is

equal to zero for every feasible solution. This restart scheme

corresponds to an optimal restart rate of 2e√
µ

[20, Subsection

5.2.2].

We present now a novel result that further characterizes the

convergence properties of the non restart FISTA algorithm

under Assumption 2.

Property 2. Under Assumptions 1 and 2, the iterations of

FISTA algorithm satisfy

(i) f(xk)− f∗ ≤ 4(f(x0)− f∗)

µ(k + 1)2
, for all k ≥ 1.

(ii) f(xk) ≤ f(x0), for all k ≥
⌊

2√
µ

⌋

.

(iii) f(xk)− f∗ ≤ f(x0)− f(xk)

e
, for all k ≥

⌊

2
√
e+1√
µ

⌋

.

Proof. See Appendix F.

V. RESTART FISTA WITH GLOBAL LINEAR

CONVERGENCE

In this section we propose a novel restart FISTA algorithm

(Algorithm 3) that exhibits global linear convergence under

the quadratic functional growth condition. The algorithm

uses exit condition El
c, which is defined to be true if the

following two conditions are satisfied,

El
c = True ⇔







f(xm)− f(xk) ≤
f(x0)− f(xm)

e
f(xk) ≤ f(x0),

(9a)

(9b)

with m = ⌊k
2 ⌋+ 1.

Inequality (9b) guarantees that the output of the FISTA

algorithm is no larger than the one corresponding to its initial

condition.

As it is stated in the following property, one of the

main features of the proposed algorithm is that the num-

ber of iterations nj required at each FISTA iteration

[rj , nj ] = FISTA(rj−1, nj−1, E
l
c) is upper bounded by

4
√
e+1√
µ

≈ 7.72√
µ

. Moreover, the number of iterations required

by the proposed algorithm to attain a given accuracy ǫ is

upper bounded by

16√
µ

⌈

ln

(

1 +
2(f(r0)− f∗)

ǫ2

)⌉

.

Algorithm 3: Linearly Convergent Restart FISTA (LCR-

FISTA)

Require: r0 ∈ X , ǫ > 0
1 n0 = 0, j = 1
2 [r1, n1] = FISTA(r0, n0, E

l
c)

3 repeat

4 j = j + 1
5 [rj , nj ] = FISTA(rj−1, nj−1, E

l
c)

6 if f(rj−1)− f(rj) >
1

e
(f(rj−2)− f(rj−1)) then

7 nj = 2nj−1

8 end if

9 until ||g(rj)||∗ ≤ ǫ
Output: r∗ = rj

Property 3. Suppose that Assumptions 1 and 2 hold. Then,

the sequences {rj}, {nj} provided by Algorithm 3 satisfy

(i)
1

2
‖g(rj−1)‖2∗ ≤ f(rj−1)− f(rj), ∀j ≥ 1.

(ii) nj ≤
4
√
e+ 1√
µ

, ∀j ≥ 0.

(iii) The number of iterations (
j
∑

i=0

ni) required to guarantee

‖g(rj)‖∗ ≤ ǫ is no larger than

16√
µ

⌈

ln

(

1 +
2(f(r0)− f∗)

ǫ2

)⌉

.

Proof. See Appendix G.

We notice that the factor 16 in the worst case complexity

analysis is conservative. The authors claim that a better factor

might be obtained at the expense of a more involved proof.

VI. NUMERICAL RESULTS

We consider a weighted Lasso problem of the form

min
x

1

2N
‖Ax− b‖22 + ‖Wx‖1, (10)

where x ∈ R
n, A ∈ R

N×n is sparse with an average of 90%
of its entries being zero (sparsity was generated by setting

a 0.9 probability for each element of the matrix to be 0),

n > N , and b ∈ R
N . Each nonzero element in A and b is

obtained from a Gaussian distribution with zero mean and

covariance 1. W ∈ R
n×n is a diagonal matrix with elements

obtained from a uniform distribution on the interval [0, α].
We note that Lasso problems (10) can be reformulated in

such a way that they satisfy the quadratic growth condition

[20, Section 6.3]. For this problem, inequality (2) of As-

sumption 1 is satisfied, for instance, for a matrix R chosen

as

Ri,i =

n
∑

j=1

|Hi,j |,

with H = 1
N
A⊤A. This is due to the Gershgorin Circle

Theorem [25, Subsection 7.2]. See also [6, Section 6].
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We show the results of applying algorithms 2 and 3 with

an accuracy parameter ǫ = 10−11 using different restart

schemes and values of N , n and α. We take r0 = 0.

The restart schemes shown are Ef
c (6) and Eg

c (7) from

[16], restart condition E∗
c (8) [20], and the restart condition

El
c (9) proposed in this paper (using Algorithm 3). Addi-

tionally, we show the results of applying FISTA algorithm

without using a restart scheme. In order to provide a fair

comparison between the performance of the restart schemes,

the algorithms are exited as soon as a value of yk that

satisfies ‖g(yk−1)‖∗ ≤ ǫ is found. We note that, in order

to implement the restart scheme based on E∗
c , we had to

previously compute the optimal value f∗, which was done

by using Algorithm 3 with ǫ = 10−12.

Tables I to III show results of performing 100 tests

with different randomized problems (10) that share common

values of parameters N , n and α. Tables show the average,

median, maximum and minimum number of iterations.

TABLE I

TEST 1. COMPARISON BETWEEN RESTART SCHEMES

Exit Cond. El
c No restart Ef

c Eg
c E∗

c

Avg. Iter. 670.6 8207.2 1648.7 687.5 1569.5

Median Iter. 676 8241 1608.5 666.5 1571

Max. Iter. 783 10109 2156 930 2053

Min. Iter. 570 6737 1192 567 917

Results of 100 tests with N = 600, n = 800, α = 0.01, ǫ = 10−11.

TABLE II

TEST 2. COMPARISON BETWEEN RESTART SCHEMES

Exit Cond. El
c No restart Ef

c Eg
c E∗

c

Avg. Iter. 1683.7 34116.4 7743.3 1606.7 4601.9

Median Iter. 1659 33127.5 7242 1594 4503

Max. Iter. 2162 51201 14080 2201 7266

Min. Iter. 1406 24539 3894 1306 2499

Results for 100 tests with N = 600, n = 800, α = 0.003, ǫ = 10−11.

TABLE III

TEST 3. COMPARISON BETWEEN RESTART SCHEMES

Exit Cond. El
c No restart Ef

c Eg
c E∗

c

Avg. Iter. 705.9 8379.5 1786.3 686 1709.4

Median Iter. 704.5 8135.5 1773 680.5 1703

Max. Iter. 873 12055 3218 892 2512

Min. Iter. 547 5943 987 529 1042

Results for 100 tests with N = 300, n = 400, α = 0.01, ǫ = 10−11.

Figures 1 to 3 show the value of ‖g(xk)‖∗ for a randomly

selected problem out of the randomized problems used to

compute the results shown in tables I to III, respectively.

Figure 4 shows the value of nj at each iteration j of

Algorithm 3 for the three examples whose results are shown

in Figures 1 to 3. Note that the final value of nj is lower than
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Fig. 1. Value of ‖g(yk)‖∗ for a problem (10) of Test 1.
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Fig. 2. Value of ‖g(yk)‖∗ for a problem (10) of Test 2.

the previous one in all three instances due to the algorithm

exiting as soon as the condition ‖g(yk−1)‖∗ ≤ ǫ is satisfied.

VII. CONCLUSIONS

In this paper we have presented a novel restart scheme

with guaranteed global linear convergence. The algorithm

relies on a quadratic functional growth condition. One of

the advantages of the proposed algorithm is that it does not

require the knowledge of the parameter µ that characterizes

the quadratic functional growth condition, or the optimal

value of the minimization problem. We provide an upper

bound of the required number of iterations equal to

16√
µ

⌈

ln

(

1 +
2(f(r0)− f∗)

ǫ2

)⌉

.

We have presented numerical evidence of the good perfor-

mance of the algorithm when compared with other restarts

schemes. It outperforms the restart scheme based on the

knowledge of the optimal value f∗.
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APPENDIX

A. Existence and Uniqueness of Composite Gradient

We present in this appendix some well known facts about

convex analysis that are required to analyze the properties of

the composite gradient.

Property 4. Suppose that

(i) Ψ : IRn → (−∞,∞] is a closed convex function.

(ii) X ⊆ IRn is a closed convex set.

(iii) The set dom(Ψ)
⋂X is non empty.

(iv) IX : IRn → {0,∞} is the indicator function of X .

That is,

IX (x) =

{

0 if x ∈ X
∞ otherwise.

(v) The function ΨX : IRn → (−∞,∞] is defined as

ΨX (x)
.
= Ψ(x) + IX (x), ∀x ∈ IRn.

Then

(i) The function ΨX is proper, closed, and convex.

(ii) The relative interior of dom(ΨX ) is non empty.

(iii) There is z ∈ X and d ∈ IRn such that ΨX (z) < ∞
and

ΨX (x) ≥ ΨX (z) + 〈d, x− z〉, ∀x ∈ IRn.

Proof. From dom(Ψ)
⋂X 6= ∅ we have that both dom(Ψ)

and X are non empty. The epigraph of the indicator function

IX is, by definition,

epi(IX ) = { (x, t) ∈ IRn × IR : IX (x) ≤ t }
= { (x, t) ∈ IRn × IR : x ∈ X , 0 ≤ t }.

Since X and T .
= { t ∈ IR : t ≥ 0 } are non empty

closed sets, epi(IX ) = X × T is also a non empty closed

convex set. Thus, by definition, IX : IRn → {0,∞} is a

closed convex function. Since both Ψ and IX are closed

convex functions, ΨX
.
= Ψ+ IX is also a closed convex

function (the sum of closed convex functions provides

closed convex functions [26, Proposition 1.1.5]). Since
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dom(ΨX ) = dom(Ψ)
⋂X 6= ∅, we infer that the domain

of ΨX is non empty. This implies that ΨX is not iden-

tically equal to ∞. Moreover, since Ψ : IRn → (−∞,∞]
we have that ΨX : IRn → (−∞,∞]. We conclude that

ΨX (x) > −∞ for every x ∈ IRn. From this and the fact

that ΨX is not identically equal to ∞ we have that ΨX is

proper.

Since dom(ΨX ) is a non empty convex set, it has a non

empty relative interior ri(dom(ΨX )) (see [26, Proposition

1.3.2]).

It is a well know fact from convex analysis that the

subdifferential of a proper convex function at a point in the

relative interior of its domain is non empty [26, Proposition

5.4.1]. Suppose now that z ∈ ri(dom(ΨX )). Since ΨX is a

proper convex function we have that the subdifferential of

ΨX at z is non empty. This means, by definition, that there

is d ∈ IRn such that

ΨX (x) ≥ ΨX (z) + 〈d, x− z〉, ∀x ∈ IRn.

Property 5. Suppose that Assumption 1 holds. Given any

y ∈ IRn, consider the quadratic function hy : IRn → IR
defined as

hy(x)
.
= 〈∇h(y), x− y〉+ 1

2
‖x− y‖2R.

Then, the minimization problem

min
x∈X

Ψ(x) + hy(x) (11)

is solvable and has a unique solution. That is, there exists a

unique point y+ ∈ X such that

Ψ(y+) + hy(y
+) = inf

x∈X
Ψ(x) + hy(x) < ∞.

Proof. Notice that the minimization problem (11) is equiva-

lent to

min
x∈ IRn

Ψ(x) + IX (x) + hy(x),

where IX is the indicator function of X . If we define

ΨX
.
= Ψ+ IX we can rewrite the original problem (11) as

min
x∈ IRn

ΨX (x) + hy(x).

We notice that the assumptions of Property 4 are satisfied

if Assumption 1 holds. Thus, we infer from Property 4 that

ΨX : IRn → (−∞,∞] is a proper closed convex function.

We also have that the quadratic function hy : IRn → IR is

also proper and closed because it is a real valued continuous

function (see [26, Proposition 1.1.3]). Since the sum of

closed functions is closed (see [26, Proposition 1.1.5]), we

infer that Fy
.
= ΨX+hy is a closed function. Moreover, from

Property 4 we also have that there is z ∈ X and d ∈ IRn

such that

(i) ΨX (z) < ∞.

(ii) ΨX (x) ≥ ΨX (z) + 〈d, x− z〉, ∀x ∈ IRn.

Therefore,

Fy(z) = ΨX (z) + hy(z) = γz < ∞,

Fy(x) = ΨX (x) + hy(x)

≥ ΨX (z) + 〈d, x− z〉+ hy(x), ∀x ∈ IRn.

(12)

We infer from (12) that the closed function

Fy : IRn → (−∞,∞] is not identically equal to ∞
and therefore, proper. We conclude that Fy is a proper

closed convex function. From Weiertrasss’ Theorem (see

Proposition 3.2.1 in [26]) we have that the set of minima

of Fy over IRn is nonempty and compact if there is a

scalar γ̄ such that the level set Φ(γ̄) = { x : Fy(x) ≤ γ̄ }
is nonempty and bounded. From (12) we have that Φ(γz)
is nonempty. Moreover, we also infer from (12) that Φ(γz)
is a bounded set because Fy is lower bounded by a strictly

convex quadratic function of x. We conclude that

min
x∈X

Ψ(x) + hy(x) = min
x∈ IRn

ΨX (x) + hy(x)

= min
x∈ IRn

Fy(x) ≤ γz < ∞.

is a solvable optimization problem. That is, there is y+ ∈ X
such that

Ψ(y+) + hy(y
+) = inf

x∈X
Ψ(x) + hy(x) < ∞.

The set of minimizers consists of a single element y+

because of the strictly convex nature of Fy (hy is a strictly

convex function).

B. Proof of Property 1.

We prove in this appendix Property 1, which is rewritten

here for the reader’s convenience.

Property 6. Suppose that Assumption 1 holds. Then,

(i) For every y ∈ IRn and x ∈ X :

f(y+)− f(x) ≤ 〈g(y), y+ − x〉 + 1

2
‖g(y)‖2∗

= 〈g(y), y − x〉 − 1

2
‖g(y)‖2∗

= −1

2
‖y+ − x‖2R +

1

2
‖y − x‖2R.

(13a)

(13b)

(13c)

(ii) For every y ∈ X :

1

2
‖g(y)‖2∗ ≤ f(y)− f(y+) ≤ f(y)− f∗.

Proof. From Property 5 we have that there is a (unique)

y+ ∈ X such that

Ψ(y+) + hy(y
+) ≤ Ψ(x) + hy(x), ∀x ∈ X , (14)

where hy(x)
.
= 〈∇h(y), x − y〉 + 1

2‖x − y‖2R. Denote now

ΨX = Ψ + IX , where IX : IRn → {0,∞} is the indicator

function of X . Since y+ ∈ X we have IX (y+) = 0.

Therefore, inequality (14) implies

ΨX (y+) + hy(y
+) ≤ ΨX (x) + hy(x), ∀x ∈ IRn.

Denote now Fy = ΨX + hy . From last inequality we have

Fy(y
+) ≤ Fy(x), ∀x ∈ IRn.
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By definition of subdifferential at a point, we have that the

previous inequality implies

0 ∈ ∂Fy(y
+). (15)

We have that ΨX is a proper closed function and

ri(dom(ΨX )) 6= ∅ (see the first two claims of Property 4).

The domain of the quadratic function hy : IRn → IR is IRn.

Since hy is a continuous real value function in IRn, it is also

closed (see Proposition 1.1.3 in [26]). We have that

ri(dom(ΨX ))
⋂

ri(dom(hy)) = ri(dom(ΨX ))
⋂

IRn

= ri(dom(ΨX )) 6= ∅.
Since Fy = ΨX + hy is equal to the sum of two closed

convex functions and

ri(dom(ΨX ))
⋂

ri(dom(hy)) 6= ∅,

we have ∂Fy(y
+) = ∂ΨX (y+) + ∂hy(y

+) (see Proposition

5.4.6 in [26]). The subdifferential of the differentiable func-

tion hy at y+ is ∇hy(y
+) = ∇h(y) +R(y+ − y). Thus, we

obtain from (15)

0 ∈ ∂Fy(y
+) = ∂ΨX (y+) + ∂hy(y

+)

= ∂ΨX (y+) +∇h(y) +R(y+ − y).

Since g(y) is defined as R(y − y+) we obtain

g(y)−∇h(y) ∈ ∂ΨX (y
+).

By definition of ∂ΨX (·) we have

ΨX (x) ≥ ΨX (y+) + 〈g(y)−∇h(y), x− y+〉, ∀x ∈ IRn.

Obviously, since X ⊆ IRn, this implies

ΨX (x) ≥ ΨX (y+) + 〈g(y)−∇h(y), x− y+〉, ∀x ∈ X .

Since y+ ∈ X and ΨX = Ψ for every x ∈ X , we obtain

Ψ(x) ≥ Ψ(y+) + 〈g(y)−∇h(y), x− y+〉, ∀x ∈ X . (16)

The convexity of h(·) implies

h(x) ≥ h(y) + 〈∇h(y), x− y〉, ∀x ∈ X .

Adding this inequality to (16) yields

f(x) = Ψ(x) + h(x)

≥Ψ(y+) + 〈g(y)−∇h(y), x− y+〉
+h(y) + 〈∇h(y), x− y〉

=Ψ(y+) + 〈g(y), x− y+〉
+h(y) + 〈∇h(y), y+ − y〉, ∀x ∈ X . (17)

From Assumption 1 we have

h(y) ≥ h(y+)− 〈∇h(y), y+ − y〉 − 1

2
‖y+ − y‖2R

= h(y+)− 〈∇h(y), y+ − y〉 − 1

2
‖R−1g(y)‖2R

= h(y+)− 〈∇h(y), y+ − y〉 − 1

2
‖g(y)‖2∗.

Adding this inequality to (17) yields

f(x) ≥ Ψ(y+) + h(y+) + 〈g(y), x− y+〉 − 1

2
‖g(y)‖2∗

= f(y+) + 〈g(y), x− y+〉 − 1

2
‖g(y)‖2∗, ∀x ∈ X .

From this inequality we have

f(y+)− f(x) ≤ 〈g(y), y+ − x〉 + 1

2
‖g(y)‖2∗, ∀x ∈ X .

This proves (13a). We now prove (13b) and (13c) by means
of simple algebraic manipulations.

f(y+)− f(x) ≤ 〈g(y), y+ − x〉+ 1

2
‖g(y)‖2

∗

= 〈g(y), y − x+ y
+ − y〉+ 1

2
‖g(y)‖2

∗

= 〈g(y), y − x〉+ 〈g(y), y+ − y〉+ 1

2
‖g(y)‖2

∗

= 〈g(y), y − x〉+ 〈g(y),−R
−1

g(y)〉+ 1

2
‖g(y)‖2

∗

= 〈g(y), y − x〉 − ‖g(y)‖2
∗
+

1

2
‖g(y)‖2

∗

= 〈g(y), y − x〉 − 1

2
‖g(y)‖2

∗
, ∀x ∈ X . (18)

This proves (13b). From this inequality, and the definition of

g(y), we obtain

f(y+)− f(x) ≤ 〈R(y − y+), y − x〉 − 1

2
‖R(y − y+)‖2∗

= −〈R(y − y+), x− y〉 − 1

2
‖y − y+‖2R

= −1

2
‖y − y+ + x− y‖2R +

1

2
‖x− y‖2R

= −1

2
‖y+ − x‖2R +

1

2
‖y − x‖2R, ∀x ∈ X .

This proves (13c). Suppose now that y ∈ X . Particularizing

inequality (18) to x = y yields

1

2
‖g(y)‖2∗ ≤ f(y)− f(y+), ∀y ∈ X .

The inequality f(y) − f(y+) ≤ f(y) − f∗ trivially follows

from f∗ ≤ f(y+).

C. Characterization of optimality

The following property serves to characterize the optimal-

ity of a given point y ∈ IRn.

Property 7. Suppose that Assumption 1 holds. Then y ∈ IRn

belongs to the optimal set

Ω = { x : x ∈ X , f(x) = f∗ }
if and only if g(y) = 0.

Proof. We first show that g(y) = 0 implies y ∈ Ω. Since

R ≻ 0, we infer from equality g(y) = R(y − y+) that

g(y) = 0 is equivalent to y = y+. Suppose that x∗ ∈ Ω ⊆ X .

Then, we obtain from g(y) = 0, y = y+ ∈ X , and the first

claim of Property 1, the following inequality

f(x∗) ≥ f(y+)− 〈g(y), y+ − x∗〉 − 1

2
‖g(y)‖2∗

= f(y+) = f(y).

8



That is, f∗ = f(x∗) ≥ f(y). Since y = y+ ∈ X , this is

possible only if y is also optimal (f(y) = f∗). This proves

that g(y) = 0 implies y ∈ Ω. We now prove that y ∈ Ω
implies g(y) = 0. Suppose that y ∈ Ω. Then, f(y) = f∗ and

we obtain from the second claim of Property 1

1

2
‖g(y)‖2∗ ≤ f(y)− f∗ = 0.

This implies g(y) = 0.

D. Convergence of non restart FISTA

Property 8. Suppose that Assumption 1 holds. Then, the

sequences {xk} and {yk} generated by Algorithm 1 (FISTA)

satisfy

(i) f(xk)− f∗ ≤ 2‖x0 − x̄0‖2R
(k + 1)2

, for all k ≥ 1,

(ii) ‖g(yk)‖∗ ≤ 4‖x0 − x̄0‖R
k + 2

, for all k ≥ 0,

where x̄0 represents the point in the optimal set Ω closest to

the initial condition x0 of the algorithm.

Proof. First claim:

We denote gk
.
= g(yk), ∀k ≥ 0. Additionally, we recall

that ‖ · ‖∗ .
= ‖ · ‖R−1 .

From step 4 of FISTA algorithm we have

xk = y+k−1, ∀k ≥ 1. (19)

This implies that

gk = R(yk − y+k ) = R(yk − xk+1), ∀k ≥ 0.

Particularizing inequality (13c) of the first claim of Property

6 to y = y0 ∈ IRn, and x = x̄0 ∈ Ω ⊆ X , we obtain

f(y+0 )− f(x̄0) ≤ −1

2
‖y+0 − x̄0‖2R +

1

2
‖y0 − x̄0‖2R.

By construction we have that x0 = y0 and x1 = y+0 .

Furthermore, by definition of x̄0, we have f(x̄0) = f∗.

Therefore we can rewrite previous inequality as

f(x1)− f∗ ≤ −1

2
‖x1 − x̄0‖2R +

1

2
‖x0 − x̄0‖2R

≤ 1

2
‖x0 − x̄0‖2R.

(20)

This proves the claim of the property for k = 1. We now

proceed to prove the claim for k ≥ 2. From equality (19) we

have

xk+1 = y+k , ∀k ≥ 1.

Therefore, from inequality (13b) of Property 6 we obtain that

for every x ∈ X and every k ≥ 1

f(x) ≥ f(xk+1) +
1

2
‖gk‖2∗ − 〈gk, yk − x〉.

We notice that, by construction, xk ∈ X , k ≥ 1. Particular-

izing at xk and x̄0, we obtain from last inequality

f(xk) ≥ f(xk+1) +
1

2
‖gk‖2∗ − 〈gk, yk − xk〉, ∀k ≥ 1,

f(x̄0) ≥ f(xk+1) +
1

2
‖gk‖2∗ − 〈gk, yk − x̄0〉, ∀k ≥ 1.

(21a)

(21b)

In order to write down the proof in a compact way, we

introduce the following incremental notation, valid for all

k ≥ 0,
δfk

.
= f(xk)− f∗,

δxk
.
= xk − x̄0,

δyk
.
= yk − x̄0, .

Inequalities (21a) and (21b) in an incremental notation, are

δfk − δfk+1 ≥ 1

2
‖gk‖2∗ − 〈gk, δyk − δxk〉, ∀k ≥ 1,

−δfk+1 ≥ 1

2
‖gk‖2∗ − 〈gk, δyk〉, ∀k ≥ 1.

(22a)

(22b)

We introduce now the auxiliary variable Γk, defined as

Γk
.
= t2k−1δfk − t2kδfk+1, ∀k ≥ 1.

From Property 9 in appendix E we have

t2k−1 = t2k − tk, ∀k ≥ 1.

We now use this identity to obtain

Γk = (t2k − tk)δfk − t2kδfk+1

= (t2k − tk)(δfk − δfk+1)− tkδfk+1, ∀k ≥ 1. (23)

In view of Property 9, tk ≥ 1, ∀k ≥ 0. This implies that we

can replace, in inequality (23), δfk − δfk+1 and −δfk+1 by

the lower bounds given by inequalities (22a) and (22b). In

this way we obtain

Γk ≥ (t2k − tk)

(

1

2
‖gk‖2∗ − 〈gk, δyk − δxk〉

)

+tk

(

1

2
‖gk‖2∗ − 〈gk, δyk〉

)

=
t2k
2
‖gk‖2∗ − 〈gk, t2k(δyk − δxk) + tkδxk〉, ∀k ≥ 1.(24)

From step 6 of the algorithm we have for all k ≥ 1 that

yk = xk +
tk−1 − 1

tk
(xk − xk−1). This can be rewritten in

incremental notation as

δyk − δxk =
tk−1 − 1

tk
(δxk − δxk−1), ∀k ≥ 1. (25)

We now define, for every k ≥ 1

sk
.
= δxk−1 + tk−1(δxk − δxk−1). (26)

From the definition of sk and (25) we obtain

sk − δxk = δxk−1 + tk−1(δxk − δxk−1)− δxk

= (tk−1 − 1)(δxk − δxk−1)

= tk(δyk − δxk), ∀k ≥ 1. (27)

From (24) and (27) we obtain

Γk ≥ 1

2
‖tkgk‖2∗ − 〈gk, tk(sk − δxk) + tkδxk〉

=
1

2
‖tkgk‖2∗ − 〈tkgk, sk〉, ∀k ≥ 1. (28)

9



Using (26) and (27) we now show that gk can be written in

terms of sk and sk+1.

tkgk = tkR(yk − xk+1) = tkR(δyk − δxk+1)

= tkR(δyk − δxk + δxk − δxk+1)

= R(sk − δxk + tk(δxk − δxk+1))

= R(sk − sk+1), ∀k ≥ 1. (29)

With this expression for tkgk we obtain from (28)

Γk ≥ 1

2
‖R(sk − sk+1)‖2∗ − 〈R(sk − sk+1), sk〉

=
1

2
‖sk+1 − sk‖2R + 〈R(sk+1 − sk), sk〉

=
1

2
‖(sk+1 − sk) + sk‖2R − 1

2
‖sk‖2R

=
1

2
‖sk+1‖2R − 1

2
‖sk‖2R, ∀k ≥ 1.

Thus, for every k ≥ 1,

Γk = t2k−1δfk − t2kδfk+1 ≥ 1

2
‖sk+1‖2R − 1

2
‖sk‖2R.

Equivalently

t2kδfk+1 +
1

2
‖sk+1‖2R ≤ t2k−1δfk +

1

2
‖sk‖2R, ∀k ≥ 1.

Since this inequality holds for every k ≥ 1 we can apply it

in a recursive way to obtain

t2kδfk+1 +
1

2
‖sk+1‖2R ≤ t20δf1 +

1

2
‖s1‖2R

= δf1 +
1

2
‖δx0 + t0(δx1 − δx0)‖2R

= δf1 +
1

2
‖x1 − x̄0‖2R, ∀k ≥ 1.

From (20) we have

f(x1)− f∗ +
1

2
‖x1 − x̄0‖2R ≤ 1

2
‖x0 − x̄0‖2R.

Thus,

t2kδfk+1 +
1

2
‖sk+1‖2R ≤ 1

2
‖x0 − x̄0‖2R, ∀k ≥ 1. (30)

Therefore,

t2k(f(xk+1)− f∗) +
1

2
‖sk+1‖2R ≤ 1

2
‖x0 − x̄0‖2R, ∀k ≥ 1.

From this inequality, and taking now into account that

tk ≥ k + 2

2
for all k ≥ 0 (second claim of Property 9), we

conclude

f(xk+1)− f∗ ≤ ‖x0 − x̄0‖2R
2t2k

≤ 2‖x0 − x̄0‖2R
(k + 2)2

, ∀k ≥ 1.

That is,

f(xk)− f∗ ≤ 2‖x0 − x̄0‖2R
(k + 1)2

, ∀k ≥ 2.

Second claim:

We first prove the claim for k = 0.

‖g(y0)‖∗ = ‖R(y0 − y+0 )‖∗ = ‖y0 − y+0 ‖R
= ‖x0 − x1‖R = ‖x0 − x̄0 + x̄0 − x1‖R
≤ ‖x0 − x̄0‖R + ‖x1 − x̄0‖R.

From (20) we derive

‖x1 − x̄0‖R ≤ ‖x0 − x̄0‖R. (31)

Thus,

‖g(y0)‖∗ ≤ ‖x0 − x̄0‖R + ‖x1 − x̄0‖R ≤ 2‖x0 − x̄0‖R.
We now prove the claim for k > 0. From (30) we also have

‖sk+1‖R ≤ ‖x0 − x̄0‖R, ∀k ≥ 1. (32)

We also have that

s1 = δx0 + t0(δx1 − δx0) = x1 − x̄0. (33)

From (31) we derive ‖s1‖R = ‖x1 − x̄0‖R ≤ ‖x0 − x̄0‖R.

From this and (32) we obtain

‖sk‖R ≤ ‖x0 − x̄0‖R, ∀k ≥ 1. (34)

From here we derive, for every k ≥ 1,

‖sk+1 − sk‖R ≤ ‖sk+1‖R + ‖sk‖R
≤ ‖x0 − x̄0‖R + ‖x0 − x̄0‖R = 2‖x0 − x̄0‖R.

From (29) we have

gk =
1

tk
R(sk − sk+1), ∀k ≥ 1.

Therefore, for every k ≥ 1

‖gk‖∗ =
1

tk
‖sk − sk+1‖R

≤ 2

tk
‖x0 − x̄0‖R

≤ 4

k + 2
‖x0 − x̄0‖R.

We notice that the last inequality is due to the second claim

of Property 9. This proves the second claim of the property.

E. Properties of the sequence {tk}
Property 9. Let us suppose that t0 = 1 and that

tk
.
=

1

2

(

1 +
√

1 + 4t2k−1

)

, ∀k ≥ 1.

Then

(i) t2k−1 = t2k − tk, for all k ≥ 1.

(ii) tk ≥ k + 2

2
≥ 1, for all k ≥ 0.

Proof.

(i) For every k ≥ 1, tk is defined as one of the roots of

t2k − tk − t2k−1 = 0.

Therefore we obtain t2k−1 = t2k − tk.

(ii) The claim is trivially satisfied for k equal to 0. We

now show that if the claim is satisfied for k − 1 then

it is also satisfied for k.

tk =
1

2

(

1 +
√

1 + 4t2k−1

)

≥ 1

2

(

1 +
√

4t2k−1

)

=
1

2
+ tk−1.
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Since the claim is assumed to be satisfied for k−1 we

have tk−1 ≥ k+1
2 and consequently

tk ≥ 1

2
+

k + 1

2
=

k + 2

2
.

F. Proof of Property 2

From equation (5) we have

f(xk)− f∗ ≤ 2

(k + 1)2
‖x0 − x̄0‖2R, ∀k ≥ 1.

Due to Assumption 2 we also have

µ

2
‖x0 − x̄0‖2R ≤ f(x0)− f∗.

Therefore,

f(xk)− f∗ ≤ 4

µ(k + 1)2
(f(x0)− f∗), ∀k ≥ 1. (35)

This proves the first claim. Denote

αk
.
=

4

µ(k + 1)2
, ∀k ≥ 1.

With this notation we rewrite (35) as

f(xk)− f∗ ≤ αk(f(x0)− f∗), ∀k ≥ 1. (36)

Suppose now that k ≥
⌊

2√
µ

⌋

. Then,

αk =
4

µ(k + 1)2
≤ 4

µ

(⌊

2√
µ

⌋

+ 1

)2
<

4

µ

(

2√
µ

)2
= 1.

Therefore,

αk ∈ (0, 1), ∀k ≥
⌊

2√
µ

⌋

. (37)

This, along with inequality (36), yields

f(xk)− f∗ ≤ f(x0)− f∗, ∀k ≥
⌊

2√
µ

⌋

.

Equivalently,

f(xk) ≤ f(x0), ∀k ≥
⌊

2√
µ

⌋

.

This proves the second claim of the property. In view of

inequality (36) we have

f(xk)− f∗ ≤ αk(f(x0)− f∗)

= αk(f(x0)− f(xk) + f(xk)− f∗)

= αk(f(x0)− f(xk)) + αk(f(xk)− f∗).

Therefore,

(1 − αk)(f(xk)− f∗) ≤ αk(f(x0)− f(xk)). (38)

Suppose now that k ≥
⌊

2
√
e+1√
µ

⌋

. This implies k ≥
⌊

2√
µ

⌋

and consequently 1−αk > 0 (see (37)). Dividing both terms

of inequality (38) by 1− αk, we get

f(xk)− f∗ ≤ αk

1− αk

(f(x0)− f(xk))

=

4
µ(k+1)2

1− 4
µ(k+1)2

(f(x0)− f(xk))

=
4(f(x0)− f(xk))

µ(k + 1)2 − 4

≤ 4(f(x0)− f(xk))

µ(
⌊

2
√
e+1√
µ

⌋

+ 1)2 − 4

≤ 4(f(x0)− f(xk))

µ(2
√
e+1√
µ

)2 − 4

=
4(f(x0)− f(xk))

4(e+ 1)− 4
=

f(x0)− f(xk)

e
.

G. Proof of Property 3

By construction, rj−1 ∈ X , for all j ≥ 1. Therefore, we

have from the second claim of Property 1, that

1

2
‖g(rj−1)‖2∗ ≤ f(rj−1)− f(r+j−1), ∀j ≥ 1. (39)

We also notice that rj is computed invoking FISTA algorithm

using rj−1 as initial condition (z = rj−1). That is,

[rj , nj ] = FISTA(rj−1, nj−1, E
l
c).

Since the output value f(rj) is forced to be no larger

than the one corresponding to x0 = z+ = r+j−1, we have

f(rj) ≤ f(r+j−1). Therefore, we obtain from inequality (39)

that
1

2
‖g(rj−1)‖2∗ ≤ f(rj−1)− f(r+j−1)

≤ f(rj−1)− f(rj).

This proves the first claim of the property. We now show

that if nj−1 ≤ 4
√
e+1√
µ

, then the value nj obtained from

[rj , nj ] = FISTA(rj−1, nj−1, E
l
c),

also satisfies

nj ≤
4
√
e+ 1√
µ

. (40)

Denote

m̄ =

⌊

2
√
e+ 1√
µ

⌋

.

Since m̄ ≥
⌊

2
√
e+1√
µ

⌋

, we infer, from the third claim of

Property 2, that

f(xm̄)− f∗ ≤ f(x0)− f(xm̄)

e
.

From this inequality, we obtain

f(xm̄)− f(xk) ≤ f(xm̄)− f∗ ≤ f(x0)− f(xm̄)

e
.
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Therefore, the first exit condition is satisfied for m = m̄.

Since m = ⌊k
2 ⌋ + 1 we have m ≥ k

2 . This means that for

m = m̄, the corresponding value for k is no larger than

2m̄ = 2

⌊

2
√
e + 1√
µ

⌋

≤ 4(
√
e+ 1)√
µ

.

We also notice that, in view of the second claim of Property

2, the additional exit condition f(xk) ≤ f(x0) is satisfied

for every

k ≥
⌊

2√
µ

⌋

.

Therefore, nj−1 ≤ 4
√
e+1√
µ

implies that nj , obtained from

[rj , nj ] = FISTA(rj−1, nj−1, E
l
c), also satisfies (40). We

now prove, by reduction to the absurd, that nj cannot be

larger than 4
√
e+1√
µ

. Suppose that

nj >
4
√
e+ 1√
µ

. (41)

Because of the previous discussion, the previous inequality

could be forced only by the doubling step nj = 2nj−1 of the

algorithm. That is, inequality (41) is possible only if there is

s such that ns−1 > 2
√
e+1√
µ

and

f(rs−1)− f(rs) >
f(rs−2)− f(rs−1)

e
.

Since

[rs−1, ns−1] = FISTA(rs−2, ns−2, E
l
c),

we have that rs−1 is obtained from rs−2 applying

ns−1 >
2
√
e+ 1√
µ

iterations of FISTA algorithm. However, we have from the

third claim of Property 2 that this number of iterations

implies

f(rs−1)− f(rs) ≤ f(rs−1)− f∗ ≤ f(r+s−2)− f(rs−1)

e
.

From the second claim of Property 1 we also have

f(r+s−2) ≤ f(rs−2). Thus,

f(rs−1)− f(rs) ≤
f(rs−2)− f(rs−1)

e
.

That is, there is no doubling step if ns−1 ≥ 2
√
e+1√
µ

. This

proves the second claim of the property.

We now show that there is a doubling step at least every

T
.
=

⌈

ln

(

1 +
2(f(r0)− f∗)

ǫ2

)⌉

steps of the algorithm. Suppose that there is no doubling step

from iteration j = s+1 to j = s+T , where s ≥ 1. That is,

f(rj−1)− f(rj) ≤
f(rj−2)− f(rj−1)

e
, ∀j ∈ [s+1, s+T ].

From this, and the first claim of the property, we obtain the
following sequence of inequalities

1

2
‖g(rs+T−1)‖2∗ ≤ f(rs+T−1)− f(rs+T )

≤ f(rs+T−2)− f(rs+T−1)

e
≤
(

1

e

)T

(f(rs−1)− f(rs))

≤
(

1

e

)T

(f(rs−1)− f
∗) ≤

(

1

e

)T

(f(r0)− f
∗)

=

(

1

e

)

⌈

ln

(

1+
2(f(r0)−f∗)

ǫ2

)⌉

(f(r0)− f
∗)

≤
(

1

e

)ln

(

1+
2(f(r0)−f∗)

ǫ2

)

(f(r0)− f
∗)

=

(

1

1 + 2(f(r0)−f∗)

ǫ2

)

(f(r0)− f
∗) ≤ ǫ2

2
.

We conclude that T consecutive iterations without dou-

bling step implies that the exit condition is satisfied

(‖g(rs+T−1)‖∗ ≤ ǫ). We conclude that there must be at least

one doubling step every T iterations. This implies that there

exist j ∈ [s+ 1, s+ T ] such that

f(rj−1)− f(rj) >
f(rj−2)− f(rj−1)

e
.

Therefore, nj = 2nj−1. Moreover, since {nj} is a non

decreasing sequence, we get ns+T ≥ nj = 2nj−1 ≥ 2ns,

∀s ≥ 1. That is,

ns ≤
ns+T

2
, ∀s ≥ 1. (42)

Suppose that j is rewritten as j = m+nT , where 0 ≤ m < T
and n ≥ 0. From the non decreasing nature of {nj},

j
∑

i=0

ni =

m+nT
∑

i=0

ni =

m
∑

i=0

ni +

n−1
∑

ℓ=0

T
∑

i=1

nm+i+ℓT

≤Tnm + T

n
∑

ℓ=1

nm+ℓT = T

n
∑

ℓ=0

nm+ℓT = T

n
∑

ℓ=0

nj−ℓT .

(43)

Also, from inequality (42), we have nj−T ≤ nj

2 . Using this

inequality in a recursive manner we obtain

nj−ℓT ≤
(

1

2

)ℓ

nj , ℓ = 0, . . . , n.

This, allows us to infer from (43) that

j
∑

i=0

ni ≤ T

n
∑

ℓ=0

(

1

2

)ℓ

nj ≤ T

∞
∑

ℓ=0

(

1

2

)ℓ

nj = 2Tnj.

The last claim of the property follows directly from this one

and the bound nj ≤ 4
√
e+1√
µ

of the second claim. That is, if

j denotes the first index for which ‖g(rj)‖∗ ≤ ǫ, we get that

the number of total iterations is bounded by

j
∑

i=0

ni ≤ 2Tnj ≤
8T

√
e+ 1√
µ

≤ 16T√
µ

=
16√
µ

⌈

ln

(

1 +
2(f(r0)− f∗)

ǫ2

)⌉

.
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