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Practical differentiation using ultrasensitive molecular circuits

Christian Cuba Samaniego1, Giulia Giordano2 and Elisa Franco3

Abstract— Biological systems compute spatial and temporal
gradients with a variety of mechanisms, some of which have
been shown to include integral feedback. In traditional engi-
neering fields, it is well known that integral components within
a negative feedback loop can be used to perform a derivative
action. In this paper, we define the concept of a practical
differentiator that is inspired by this design principle. We
then consider three simple biological circuit examples in which
we prove that feedback combined with ultrasensitive, quasi-
integral components yields a practical differential network
under some assumptions. These examples include phosphory-
lation/dephosphorylation cycles, and two networks relying on
molecular sequestration.

I. INTRODUCTION AND MOTIVATION

Living organisms must respond to time varying environ-
mental inputs to survive: for example, through the well-
known mechanism of chemotaxis, many bacteria can sense
and respond not only to the presence of nutrients but also to
nutrient gradients [1]. To sense temporal or spatial gradients,
cells compute an empirical derivative. Thus, a natural ques-
tion for synthetic biologists is to identify minimal molecular
mechanisms for derivative computation, useful to build more
powerful and precise molecular sensors and controllers. Yet,
few studies, such as [2] in a nonlinear setting, have focused
on the synthesis of derivative molecular components. The
linearized dynamics of a rapid buffering process have been
shown to be mathematically equivalent to derivative negative
feedback and improve stability of a closed loop system with
limited sensitivity to molecular noise [3]. An approximate
derivative component for PID controllers was computation-
ally considered in [4] by operating near saturation a two node
network that achieves perfect adaptation [5], [6], [7], [8]. A
model for genetic differentiation that combines two genetic
elements tracking positive and negative slopes of an input,
and computes their difference via molecular sequestration,
was also proposed and numerically studied in [9].

In traditional engineering fields, it is well known that an
ideal integral block within a negative feedback loop can
compute the derivative of the input (see block diagram in
Fig. 1A); this idea was used to build the artificial genetic
differentiator model described in [9]. This principle has also
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been identified in some natural biological networks underly-
ing gradient computation, although their complexity makes
it difficult to identify the essential reactions required. This is
well illustrated by the chemotaxis example [10], [11], where
the presence of a “hidden” integrator within a feedback
loop enables the network adaptive properties [1], [6], [12].
Here, we propose that molecular gradient computation can be
achieved in the presence of an ultrasensitive reaction network
within a feedback loop.

Our idea is supported by the example of chemotaxis,
illustrated in Fig. 1B. The chemical stimulus U binds to
specialized receptors (MCPs), forming a stable complex with
proteins CheW, not shown in the schematic, and CheA. The
phosphorylated kinase CheA-P (active state) phosphorylates
two downstream proteins CheY and CheB (both are constitu-
tively inactive). As U increases, it generates CheA-P, marked
as the output Y of the gray box, and indirectly increases the
concentration of both CheY-P and CheB-P. In turn, CheY-P
promotes tumbling by binding to the flagellar motor (CheY-
P is dephosphorylated by CheZ). At the same time, CheB-
P demethylates the MCPs, which take their inactive form
MCPs*, introducing negative feedback. CheR, marked as
the input R to the orange box, has an oppositive effect
and methylates the receptor MCPs*. When CheR works at
saturation and CheB works only on the active form of MCPs,
the system achieves robust adaptation [1]. Because of its
saturated operation, there is an ultrasensitive relationship
between CheA-P (Y) and the fraction of active MCPs[13],
[14], [15]. The ultrasensitive map is also tunable: when the
concentration of CheR (R) changes, the threshold of the
ultrasensitive input-output map is shifted [14].

Building on this example, we ask whether a network like
the block diagram in Fig. 1C can be used as a general motif
for gradient computation. Orange and gray blocks in Fig. 1A,
B, and C map qualitatively similar components. Our idea
is also motivated by our recent work, in which we showed
that ultrasensitive networks can achieve quasi-integral action
within a negative feedback loop [16]; here, we examine their
capacity to achieve gradient computation.

We define the concept of a practical differentiator, and we
examine three ultrasensitive reaction motifs that, when used
within a feedback loop, operate as practical differentiators.
These motifs include few species and reactions: in particular
they rely on molecular sequestration and on enzymatic acti-
vation/deactivation cycles, which are very common reactions
in nature. Thus, we envision that an experimental implemen-
tation of the proposed mechanisms is feasible. We support
our analytical findings with numerical simulations that use
biologically plausible parameters and concentrations.
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Fig. 1. Networks that achieve derivative action Orange and gray blocks identify network components having similar function in each example. A) An
integral element within a negative feedback loop is a well known approach to achieve derivative action in linear systems. B) Bacterial chemotaxis computes
a chemical gradient and allows cells to move toward sources of nutrients. The subnetwork marked in orange has an ultrasensitive behavior when mapping
the relation between CheA-P (Y ) and MCPs. C) We propose a motif for computation of molecular gradients that relies on ultrasensitive components within
a negative feedback loop. The ultrasensitive network element is expected to have a function similar to the integrator in panel A (orange block).

II. DIFFERENTIATOR MOTIFS: MODELS AND ANALYSIS

We present different biomolecular network motifs that
implement a practical differentiator system: in ideal condi-
tions, the concentration of the output species is directly
proportional to the time derivative of the input species.

We denote chemical species with uppercase letters, their
concentrations with the corresponding lowercase letter; the
corresponding uppercase letter also denotes the Laplace
transform of a time signal, but the dependency on the Laplace
variable s is then specified to avoid ambiguities.

Both first order [9] and second order low-pass filters
are commonly used for practical differentiation. Low-pass
filters of an arbitrary order could be adopted: the higher the
order, the better the attenuation at high frequencies, which
improves disturbance rejection. Second order low-pass filters
are typically chosen as a compromise between simplicity
and disturbance-rejecting cutoff frequency, hence we define
a practical differentiator as follows.

Definition 1: A linear system with output y(t) and input
u(t) is a practical differentiator if, denoting by Y (s) and
U(s) the Laplace-transformed output and input, respectively
(and setting all other inputs to zero), their ratio is described
by a transfer function of the form

Y (s)

U(s)
=

ks

s2 + hs+ g
, (1)

where k, h and g are strictly positive numbers. �
Since in the transfer function (1) all the coefficients of

the second-degree denominator polynomial are positive, both
poles must have a negative real part and stability is guaran-
teed. The zero at s = 0 ensures that (1) can approximate
very well a derivative action for low enough frequencies.

Next, we discuss three biomolecular network motifs that
can behave as practical differentiators.

A. Post-translation enzymatic modification cycle

Consider a biomolecular network representing a generic
post-translation enzymatic modification cycle; many proteins

require covalent modifications to become functional, and
these modifications are mediated by other proteins or
enzymes. A well-known example is given by phosphorylation
and dephosphorylation cycles, ubiquitous in eukaryotes. We
show that, in combination with a negative feedback loop, this
network can operate as a practical differentiator.

The core of the network is a molecular species that
can be either active, Z, or inactive, Z∗, and whose total
concentration is constant: z + z∗ = ztot. For example,
activation of Z may occur through phosphorylation, and
its inactivation through dephosphorylation. Species R, for
example a kinase, binds to Z∗ with a dissociation constant
κ∗ > 0, thus producing Z at a constant rate α > 0. Species
Y , for instance a phosphatase, yields Z∗ at a constant rate
θ > 0 by binding to Z with a dissociation constant κ > 0.
Additionally, both Z and Z∗ degrade at rate ξ ≥ 0. The
active species Z drives a downstream process that produces
Y at a constant rate β > 0, species U produces Y at a
constant rate ρ > 0, while Y self-degrades at a constant rate
δ > 0. The schematic is visualised in Fig. 2 and the resulting
dynamical model is

ż = α
rz∗

z∗ + κ∗
− θ yz

z + κ
− ξz, (2)

ẏ = βz + ρu− δy, (3)

where z∗ = ztot−z. The phosphorylation/dephosphorylation
model we consider is consistent with previous examples in
the literature [17].

We assume that the enzymes work in the saturation
regime, resulting in an ultrasensitive steady-state response
of equation (2) (input Y and output Z) [18].

Assumption 1: In system (2)–(3), κ
∗

z∗ ,
κ
z � 1. �

Under Assumption 1, the additive terms κ and κ∗ in the
denominators of the fractional functions in (2) are negligible
and the equations (2)–(3) above can be rewritten as

ż = αr − θy − ξz (4)
ẏ = βz + ρu− δy (5)



Fig. 2. Post-translation modification cycle for gradient computation A)
Schematic of the network with inputs R and U and output Y . The network
inside the orange box is an ideal integral controller when ξ = 0. B) Ramp
response, u(t) = At, results in a constant output, where A = 20 nM/h . C)
The input response of a polynomial, u(t) = A(3T/2−t)t2 with derivative
of a second order u̇(t) = 3At(T − t), where A = 1.67 nM, T = 6h. D)
Input response to a period input, u(t) = 0.5A(1 + sin(2πt/T − π/2)),
and derivative, u̇(t) = Aπ/T cos(2πt/T−π/2), where A = 50 nM, T =
3h. We normalized y(t) by subtracting the reference input r = 500 nM; u̇
was normalized by dividing it by either its maximum value or by its steady
state amplitude.

When the modification rates are faster than degradation
rate ξ, the ultrasensitive steady-state behavior of equation (2)
is enhanced [18]. In our case, given the order of magnitude of
biologically reasonable parameters, α, θ � ξ, we can make
the following assumption.

Assumption 2: In system (2)–(3), ξ = 0. �
We can now prove that, under Assumptions 1 and 2, the

network implements a molecular differentiator.
Proposition 1: If Assumption 2 holds, the linear system

(4)–(5), with output y(t) and input u(t), is a practical
differentiator network according to Definition 1. �
Proof. To show that y(t) is a function of u̇(t), it is convenient
to take the Laplace transform of the equations (4)–(5) and
write Y (s) as a function of R(s) and U(s). The resulting
transfer function is:

Y (s) =
αβ

s2 + (δ + ξ)s+ βθ + δξ
R(s)

+
ρ(s+ ξ)

s2 + (δ + ξ)s+ βθ + δξ
U(s),

where the first term depends on the “molecular reference”
R(s), while the second term depends on the input U(s).
Since all its coefficients are positive, the second-degree char-
acteristic polynomial is Hurwitz, as required. In the presence
of degradation, the system is not a practical differentiator:
the second term includes both a derivative and a proportional
action. However, under Assumption 2, ξ = 0 and the transfer
function becomes

Y (s) =
αβ

s2 + δs+ βθ
R(s) +

ρs

s2 + δs+ βθ
U(s), (6)

where all the coefficients of the characteristic polynomial are

Fig. 3. Frequency Analysis Bode diagram (magnitude and phase) of
an ideal derivative transfer function (black) and of FU(s)→Y (s) with ξ
proportional to 0, 10−3, 10−2, 10−1 times its nominal value (left) and
θ proportional to 10−3, 10−2, 10−1, 1 times its nominal value (right),
increasing from yellow to red. Decreasing ξ increases the frequency range
where the system works as a practical differentiator (left), since the lower
frequency bound for working conditions is decreased. Also, increasing θ
leads to an increase in the upper frequency bound for working conditions
(right).

positive, hence the relation between Y (s) and U(s) matches
that in Definition 1. �

As discussed in the proof, both the transfer functions
FR(s)→Y (s) and FU(s)→Y (s) are stable (regardless of ξ being
strictly positive or being zero). When r(t) ≡ r is assumed
to be constant and u(t) is a generic signal, in the ideal
case when ξ = 0 (no degradation), the network output y(t)
corresponds to the derivative u̇(t), suitably shifted depending
on r. As Fig. 3 shows, when ξ = 0, for a large low-
frequency range the transfer function FU(s)→Y (s) behaves
exactly as an ideal differentiator, as expected: its magnitude
increases with slope 20 dB/dec and its phase is π/2. As
stated in Assumption 2, the rates α and θ are much larger
than the other parameters. This allows the transfer function
to be comparable to an ideal differentiator for a larger range
of frequencies: indeed when ξ = 0, as shown in Fig. 3
(right), the larger θ, the broader the interval in which the
magnitude increases with slope 20 dB/dec and the phase is
π/2: increasing θ increases the upper frequency bound for
the system to work as a practical differentiator. Conversely,
in the presence of a degradation ξ 6= 0, then the transfer
function from U(s) to Y (s) does not include just a derivative
action, but also a proportional action, which leads to a
different outcome for low frequencies, as can be seen in
Fig. 3 (left). Hence, decreasing ξ increases the frequency
range for the system to work as a practical differentiator, by
decreasing the lower frequency bound.

B. Molecular sequestration

Here we study a network for practical differentiation
that is based on molecular sequestration (or titration). In
biology, sequestration is a versatile mechanism that can
enable ultrasensitivity [19], [20]. This type of reaction oper-
ates in a manner similar to an electronic diode with a
tunable threshold, and helps extracting the minimum of two



Fig. 4. Molecular sequestration network for gradient computation
A) Schematic of the molecular sequestration network. B) Ramp response,
u(t) = At, results in a constant output, where A = 20 nM/h. C) The
input response of a polynomial, u(t) = A(3T/2− t)t2 with derivative of
a second order u̇(t) = 3At(T − t), where A = 1.67 nM, T = 6h. D)
Input response to a period input, u(t) = 0.5A(1 + sin(2πt/T − π/2)),
and derivative, u̇(t) = Aπ/T cos(2πt/T−π/2), where A = 50 nM, T =
3h. We normalized y(t) by subtracting the reference input r = 500 nM; u̇
was normalized by dividing it by either its maximum value or by its steady
state amplitude.

inputs [21] and compute errors [22], [21]. Sequestration can
generally compute the difference between signals [23], and
was previously exploited to propose a model for a genetic
differentiator [9].

Our model ultrasensitive network is built around two
chemical species, Z1 and Z2, which are produced at constant
rates α and θ by species R and Y , respectively, and degrade
at a constant rate ξ. Species Z1 and Z2 sequester each
other at a constant titration rate γ: they bind to form a
waste complex. Species Z1 drives a downstream process that
produces at a constant rate β species Y , which degrades at
a constant rate δ. Also U produces Y at a constant rate ρ.
The network schematic is in Fig. 4, and the resulting system
of ordinary differential equations is

ż1 = αr − γz1z2 − ξz1 (7)
ż2 = θy − γz1z2 − ξz2 (8)
ẏ = βz1 + ρu− δy. (9)

If the titration rate γ is large, the input Y to output Z1

steady state mapping of equations (7) and (8) is ultrasensi-
tive, and the static gain is proportional to the ratio between
production and degradation rate constants [19], [20]. In view
of the order of magnitude of biologically reasonable param-
eters, α, θ, γ � ξ, we can make the following assumption.

Assumption 3: In system (7)–(9), ξ = 0. �
If the decay rate ξ = 0, it has been shown that molec-
ular sequestration can be used to build an ideal integral
controller, also known as Antithetic Integral Controller (AIC)
[24]. (Quasi-integral behavior and steady-state ultrasensivitiy
can be achieved when the production rates are larger than
degradation [25], [16].)

If the titration rate γ is very large, and the amount of Z1 is
much larger than that of Z2, then z2 converges very quickly
to its steady-state value, hence ż2 = 0 [26], [27].

Assumption 4: In system (7)–(9), ż2 = 0. �
Proposition 2: Under Assumptions 3 and 4, the system

(7)–(9), with output y(t) and input u(t), is a practical
differentiator network according to Definition 1. �
Proof. When ξ = 0 according to Assumption 3 and ż2 = 0
according to Assumption 4, then system (7)–(9) becomes a
linear system:

ż1 = αr − γz1z2 = αr − θy (10)
0 = θy − γz1z2 (11)
ẏ = βz1 + ρu− δy. (12)

To show that y(t) is a function of u̇(t), we take the Laplace
transform of the equations:

Y (s) =
αβ

s2 + δs+ βθ
R(s) +

ρs

s2 + δs+ βθ
U(s), (13)

where all the coefficients of the characteristic polynomial
are positive (which guarantees stability), hence the relation
between Y (s) and U(s) matches that in Definition 1. �

Note that (13) has exactly the same form as (6), hence the
same considerations as in the previous case apply.

However, the relations in the non-ideal case (in which
Assumption 2 does not hold for the post-translational
network discussed previously, and Assumptions 3 and 4
do not hold for the molecular sequestration network) are
different: in the case of the sequestration network, there is
an additional term introducing an offset that depends on Z2.

C. A synthetic, tunable ultrasensitive network

Here we study a biomolecular network that combines the
two reaction motifs examined in the previous sections, the
post-translational cycle motif and molecular sequestration.
We note that when these motifs are combined, it is no longer
necessary to require that the post-translational cycle motif
operates at saturation to achieve an ultrasensitive steady-
state input-output map. Networks with a similar structure
are very versatile and can be tuned to generate bistable
dynamics [28], [29], oscillations [30], [31], and molecular
quasi-integral controllers [16], [32]. Here we show that,
under certain assumptions, this motif can also serve as a
practical differentiator.

The first component of the network is the sequestration
motif, which is composed of two chemical species, Z1 and
Z2; these species are produced at constant rates α and θ
by species R and Y , respectively, and degrade at a constant
rate φ. These two species Z1 and Z2 can sequester each
other at a constant rate γ and form a waste complex. The
second component of the network is an enzymatic cycle: a
species can be present both in an active state, Z, and an
inactive state, Z∗, while its total concentration is constant:
z + z∗ = ztot. Species Z1 can activate Z∗ at a constant
rate κ, while species Z2 can inactivate Z at the same rate.
Species Z and Z∗ degrade at a constant rate ξ; Z (active
state) drives a downstream process that produces at a constant



rate β species Y , which also degrades at a constant rate δ.
Species U produces Y at a constant rate ρ. The network
is sketched in Fig. 5, and the resulting system of ordinary
differential equations is

ż1 = αr − γz1z2 − κz1z∗ − φz1 (14)
ż2 = θy − γz1z2 − κz2z − φz2 (15)
ż = κz1z

∗ − κz2z − ξz (16)
ẏ = βz + ρu− δy. (17)

Fig. 5. Ultrasensitive network for gradient computation A) Schematic
of the Brink network. B) Ramp response, u(t) = At, results in a
constant output, where A = 0.6 nM/h. C) The input response of a
polynomial, u(t) = A(3T/2 − t)t2 with derivative of a second order
u̇(t) = 3At(T − t), where A = 1.67 nM, T = 6h. D) Input response
to a period input, u(t) = 0.5A(1 + sin(2πt/T − π/2)), and derivative,
u̇(t) = Aπ/T cos(2πt/T − π/2), where A = 50 nM, T = 3h. We
normalized y(t) by subtracting the reference input r = 500 nM; u̇ was
normalized by dividing it by either its maximum value or by its steady
state amplitude.

The subnetwork comprised of equations (14), (15)
and (16), exhibits an ultrasensitive input-output behaviour
(input Y , output Z) when κ and γ are very large [16], [33].
We focus our analysis on this regime. Since κ� ξ, we can
assume the following.

Assumption 5: In system (14)–(17), ξ = 0. �
Also, when γ � φ, φ can be neglected. Moreover, if γ is

very large, molecular sequestration between Z1 and Z2 is fast
and these species reach their steady-state concentration very
quickly. Hence, in view of time-scale separation arguments,
we can assume that ż1 and ż2 are zero.

Assumption 6: In system (14)–(17), φ = 0, and also ż1 =
ż2 = 0. �

Proposition 3: Under Assumptions 5 and 6, the system
(14)–(17), with output y(t) and input u(t), is a practical
differentiator network according to Definition 1. �

Proof. When φ = 0 and ż1 = ż2 = 0 according to
Assumption 6 and ξ = 0 according to Assumption 5, then

system (14)–(17) becomes a linear system:

0 = αr − γz1z2 − κz1z∗ (18)
0 = θy − γz1z2 − κz2z (19)
ż = κz1z

∗ − κz2z = αr − θy (20)
ẏ = βz + ρu− δy (21)

Hence, the Laplace transform yields

Y (s) =
αβ

s2 + δs+ βθ
R(s) +

ρs

s2 + δs+ βθ
U(s), (22)

where all the coefficients of the characteristic polynomial
are positive (which guarantees stability), hence the relation
between Y (s) and U(s) matches that in Definition 1. �

Note again that, although in the non-ideal case the rela-
tions for all the systems considered so far are different
(here there is an additional term depending on z1 − z2 that
introduces another offset), the ideal relation is the same: (22)
has exactly the same form as (6) and (13), hence the same
considerations as in the previous cases apply.

III. NUMERICAL SIMULATIONS

Throughout the paper, deterministic simulations were done
by integrating ODE models using MATLAB, using the
parameters listed in Table I.

TABLE I
NOMINAL SIMULATION PARAMETERS OF THE CONTROLLED SYSTEM

Parameter Description Value Other studies

α, θ, β, ρ (/s) Production 9.5.10−4 2.710−4 − 1
[34], [35]
[36], [37]

γ (/M/s) Titration 2.1 · 105 104 − 106

[38], [39]
φ, δ, ξ (/s) Degradation 1.2 · 10−3 10−4 − 10−3

[40].

IV. CONCLUSION

We have presented a strategy to build molecular networks
that operate as practical differentiators; the strategy relies
on the use of an ultrasensitive element within a negative
feedback loop. We provide three implementation examples,
in which we use ultrasensitive components that are common
in synthetic biology. We discuss critical assumptions on the
network parameters to achieve ultrasensitivity, and we report
numerical simulations supporting our proofs. Two of the
network motifs we examined include molecular sequestra-
tion, which has been previously exploited to compute the
difference between signals [23], [9].

Gradient computation is essential for the survival of
biological organisms; our design principle takes direct inspi-
ration from the classical example of chemotaxis, which
allows bacteria to search regions in which nutrients are
more abundant. We believe that simple, general principles
for designing gradient computation will help advance the
capabilities of spatial and temporal control of engineered
molecular networks in natural and synthetic cells.
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