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Abstract—In this paper, we propose and address the problem
of supervisor obfuscation against actuator enablement attack, in
a common setting where the actuator attacker can eavesdrop the
control commands issued by the supervisor. We propose a method
to obfuscate an (insecure) supervisor to make it resilient against
actuator enablement attack in such a way that the behavior of the
original closed-loop system is preserved. An additional feature of
the obfuscated supervisor, if it exists, is that it has exactly the
minimum number of states among the set of all the resilient and
behavior-preserving supervisors. Our approach involves a simple
combination of two basic ideas: 1) a formulation of the problem
of computing behavior-preserving supervisors as the problem of
computing separating finite state automata under controllability
and observability constraints, which can be efficiently tackled by
using modern SAT solvers, and 2) the use of a recently proposed
technique for the verification of attackability in our setting, with
a normality assumption imposed on both the actuator attackers
and supervisors.

Index Terms – cyber-physical systems, discrete-event sys-
tems, actuator attack, supervisory control

I. INTRODUCTION

Recently, cyber-physical systems have drawn a lot of atten-
tion from the supervisory control and formal methods research
communities (see, for example, [1], [2], [3], [4], [5], [6], [7]).
The supervisory control theory of discrete-event systems1 [18]
has been proposed as a general approach for the synthesis of
correct-by-construction supervisors that ensure both safety and
progress properties on the closed-loop systems. However, the
correctness guarantee is implicitly based upon the assumption
that the system has been fully and correctly modelled. In the
presence of unmodeled adversarial attackers, the synthesized
supervisor cannot guarantee safety any more. Thus, one is then
required to synthesize resilient supervisors against adversarial
attacks. In view of the importance and prevalence of cyber-
physical systems in modern society [8], [9], [10], researchers
in supervisory control theory have suggested various frame-
works and techniques (see [1], [2], [6], [7]) for the design of
mitigation and resilient control mechanisms against adversarial
attacks. In this work, we follow the setup of [11] and consider
the problem of synthesis of resilient supervisors against actu-
ator enablement attack, with a normality assumption imposed
on both the actuator attackers and supervisors.
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1In this work, we focus on the class of cyber-physical systems that can be
modelled using discrete-event systems.

In [11], a formal formulation of the supervisor (augmented
with a monitoring mechanism), the actuator enablement at-
tacker, the attacked closed-loop system and resilient supervisor
has been provided. The attacker is assumed to observe no
more than the supervisor does on the execution of the plant.
However, the attacker can eavesdrop the control commands
issued by the supervisor. In this common setting, the control
commands issued by the supervisor could be used to refine
the knowledge of the attacker about the execution of the plant.
The attacker can modify each control command on a specified
subset of attackable events. The attack principle of the actuator
attacker is to remain covert until it can establish a successful
attack and lead the attacked closed-loop system into generating
certain damaging strings. In [11], a notion of attackability has
been identified as a characterizing condition for the existence
of a successful actuator enablement attacker, under a normality
assumption imposed on the actuator attackers and supervisors;
an algorithm for the verification of attackability has also been
provided [11]. However, in [11], the problem of synthesis of
resilient supervisors against actuator enablement attacks has
not been addressed.

Instead of directly synthesizing a supervisor that is resilient
against actuator enablement attacks, it is possible to obfuscate
an insecure supervisor to make it resilient, while preserving the
behavior of the original closed-loop system. This is motivated
by the following simple observation. The attacker can observe
information from both the execution of the closed-loop system
and the control commands issued by the supervisor. For any
behavior-preserving supervisor, it cannot influence2 what the
actuator attacker will observe from the execution of the closed-
loop system but can partially determine what information the
attacker can obtain3 from the control commands it issued. In
order to be secure, a supervisor should leak as few information
as possible in its issued control commands to any potential
attacker.

The main contributions of this paper are as follows.
1) We propose the problem of synthesis of resilient and

behavior-preserving supervisors, i.e., the supervisor ob-
fuscation problem, in the setting where there is a control
command eavesdropping actuator enablement attacker.
The supervisor that is provided as input to our problem
may have been synthesized conforming to different
kinds of complicated specifications and by using ad-
vanced synthesis techniques, but is insecure against ac-
tuator attack. Our approach avoids starting from scratch
and developing a new resilient supervisor synthesis
algorithm for each type of specification. An application

2For any behavior-preserving supervisor, by definition the behavior of the
closed-loop system stays the same.

3The supervisor is required to be behavior-preserving and thus cannot issue
arbitrary control commands.
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of this approach is to first synthesize a supervisor that
takes care of all the safety specifications, except for the
resilience property; the insecure supervisor can then be
obfuscated to become resilient, if it exists.

2) The problem of computing behavior-preserving supervi-
sor is formulated as the problem of computing separating
finite state automata [12], but with additional constraints
such as controllability and observability, which can be
efficiently reduced to the boolean satisfiability problem
(SAT) and efficiently solved using modern SAT solvers.

3) The algorithmic solution for the problem of computing
behavior-preserving supervisors is used as a subroutine
for the supervisor obfuscation problem. The obfuscated
supervisor computed using our algorithm, if it exists, has
exactly the minimum number of states among the set of
all the resilient and behavior-preserving supervisors.

The problem of computing behavior-preserving supervisors
is essentially a flexible version of the supervisor reduction
problem [13], [14], [15], the only differences being that there
is no requirement on the state size of the computed supervisor
and the control constraint of the computed supervisor does
not have to be the same as that of the original supervisor.
In this sense, the problem of computing behavior-preserving
supervisors is a simple generalization of the supervisor reduc-
tion problem4. The current implementation of the supervisor
reduction procedure is not flexible and well tuned enough
to be used as a solution to our problem, compared with the
SAT-based approach. Apart from the SAT-solving technique,
automaton learning and SMT solving [12], [16] can also be
adopted to solve the problem. This work is mainly inspired
by the work of [12] on computing minimal separating finite
state automata and the reduction technique developed in [12]
is adapted for solving the supervisor obfuscation problem.

The paper is organized as follows. Section II is devoted
to the general preliminaries; in addition, we recall the attack
architecture, system formulation and definition of attackability
provided in [11]. Then, in Section III, we propose the problem
of synthesis of resilient and behavior-preserving supervisors,
i.e., the supervisor obfuscation problem, and then provide an
algorithm to solve it. Finally, in Section IV, we conclude the
paper and discuss some future research directions.

II. PRELIMINARIES

In this section, we shall provide the basic preliminaries that
are necessary to understand our paper. We assume the reader to
be familiar with the basic theories of formal languages, finite
automata and supervisory control [18], [19]. Some additional
notations and terminologies are introduced in the following.
After that, we recall the attack architecture, system formulation
and the definition of attackability in [11] that are specific to
our setting.

Let A and B be any two sets. We write A\B to denote
their set-theoretic difference, i.e., A\B := {x ∈ A | x /∈ B}.
Let A × B denote their Cartesian product. We write |A| to

4However, the plants and supervisors used in this work are non-marking.
The technique developed in this work can be easily extended to the marking
case, which can be used for solving the standard supervisor reduction problem.

denote the cardinality of A. A partial finite state automaton
G over alphabet Σ is a 5-tuple (Q,Σ, δ, q0, Qm), where Q
is the finite set of states, δ : Q × Σ −→ Q the partial
transition function5, q0 ∈ Q the initial state and Qm the
set of marked states. G is said to be a complete finite state
automaton if δ : Q × Σ −→ Q is a total function. Let L(G)
(respectively, Lm(G)) denote the closed-behavior and the
marked-behavior of G, respectively. When Qm = Q, we also
write G = (Q,Σ, δ, q0) for simplicity, in which case we have
Lm(G) = L(G). In this work, whenever we talk about a plant,
we mean a partial finite state automaton G = (Q,Σ, δ, q0).
G is said to be n-bounded if |Q| ≤ n. For two finite state
automata G1 = (X1,Σ1, δ1, x1,0), G2 = (X2,Σ2, δ2, x2,0),
we write G := G1‖G2 to denote their synchronous product.
Then, G = (X := X1×X2,Σ := Σ1∪Σ2, δ = δ1× δ2, x0 :=
(x1,0, x2,0)) where the (partial) transition map δ is defined as
follows. (∀x = (x1, x2) ∈ X)(∀σ ∈ Σ)δ(x, σ)

:=

 (δ1(x1, σ), x2), if σ ∈ Σ1\Σ2

(x1, δ2(x2, σ)), if σ ∈ Σ2\Σ1

(δ1(x1, σ), δ2(x2, σ)), if σ ∈ Σ1 ∩ Σ2

Propositional formulas φ [12] [17] are constructed from
(Boolean) variables by using logical connectives (∧,∨,→,¬).
The truth value of a propositional formula is determined by
the variables’ truth value. A literal is a variable or its negation.
A clause is a disjunction l1 ∨ . . . ∨ ln of literals. A formula
in conjunctive normal form (CNF) is conjunction of clauses.
Each propositional formula can be converted into an equivalent
formula that is in conjunctive normal form. Let V ar(φ) denote
the set of variables (Boolean variables x0, . . . , xn) occurring
in φ; A model of φ is a mapping M: V ar(φ) → {0, 1}
(0 representing False, 1 representing True) such that φ is
evaluated to be True if all variables xi in φ are substituted
by M(xi).

A control constraint A over Σ is a tuple (Σc,Σo), where
Σc ⊆ Σ denotes the subset of controllable events and Σo ⊆ Σ
denotes the subset of observable events. Let Σuo := Σ\Σo
denote the subset of unobservable events and Σuc := Σ\Σc the
subset of uncontrollable events. For each sub-alphabet Σ′ ⊆ Σ,
the natural projection P : Σ∗ → Σ′∗ is defined and naturally
extended to a mapping between languages [18].

Attack Architecture: We consider the architecture for
actuator attack shown in Fig. 2. The plant G is under the
control of a partially observing supervisor V w.r.t. (Σc,Σo).
In addition, there exists an actuator attacker A that can
observe the execution of the plant and eavesdrop the control
commands issued by the supervisor. We assume that each
time when the supervisor observes an event (and makes a
state transition), it issues a new control command that can
be intercepted by the attacker. It can modify the control
command γ issued by the supervisor on a designated subset
of attackable events Σc,A ⊆ Σc, each time when it intercepts
a control command. The plant G follows the modified control
command γ′ instead of γ. The attacker can observe events
in Σo,A ⊆ Σo in the execution of the plant. (Σc,A,Σo,A) is
said to be an attack constraint over Σ. We assume Σc ⊆ Σo

5As usual, δ can also be viewed as a relation δ ⊆ Q× Σ×Q.



and Σc,A ⊆ Σo,A. That is, both the actuator attackers and
supervisors are assumed to be normal [11]. The supervisor
is augmented with a monitoring mechanism that monitors
the execution of the closed-loop system (under attack). The
supervisor has a mechanism for halting the execution of
the closed-loop system after discovering an actuator attack.
The goal of the attacker is to drive the attacked closed-loop
system into executing specific damaging strings outside the
controlled behavior, without risking itself being discovered by
the supervisor before it causes damages.

Figure 1: The architecture for actuator attack

System Formulation:
1) Supervisor: A supervisor6 V on G w.r.t. (Σc,Σo) is

effectively a map V : Po(L(V/G))→ Γ, where Γ = {γ ⊆ Σ |
Σuc ⊆ γ} and L(V/G) is the closed behavior of the closed-
loop system V/G [18]. Once any string w /∈ Po(L(V/G))
is observed by the supervisor, the closed-loop system is
immediately halted, since an attack has been discovered by
the supervisor. For any w ∈ Po(L(V/G)), we have V (w) ⊇
Σuc ⊇ Σuo by the definition of Γ and since Σc ⊆ Σo.
A supervisor V (on G) w.r.t. control constraint (Σc,Σo) is
realized by a partial finite state automaton S = (X,Σ, ξ, x0)
that satisfies the controllability and observability constraints
[23]:

C) (controllability) for any state x ∈ X and any uncontrol-
lable event σ ∈ Σuc, ξ(x, σ)!,

O) (observability) for any state x ∈ X and any unobserv-
able event σ ∈ Σuo, ξ(x, σ)! implies ξ(x, σ) = x,

where we have L(V/G) = L(S ‖ G) and, for any s ∈ L(G)
such that Po(s) ∈ Po(L(V/G)), V (Po(s)) = {σ ∈ Σ |
ξ(ξ(x0, s0), σ)!, s0 ∈ L(S) ∩ P−1

o Po(s)}. For a normal su-
pervisor S w.r.t. control constraint (Σc,Σo), the observability
constraint is then reduced to: for any state x ∈ X and any
unobservable event σ ∈ Σuo, ξ(x, σ) = x.

2) Damage-inflicting set: The goal of the actuator attacker
is to drive the attacked closed-loop system into executing
certain damaging strings. Let Ldmg ⊆ L(G) be some regular
language over Σ that denotes a so-called “damage-inflicting

6The standard definition of a supervisor V : Po(L(G))→ Γ requires that
the supervisor shall also apply control for those strings w ∈ Po(L(G)) −
Po(L(V/G)) that cannot be observed in the normal execution of the closed-
loop system. From the point of view of the supervisor, it will conclude the
existence of an (actuator) attacker and then halt the execution of the closed-
loop system the first time when it observes some string w /∈ Po(L(V/G)).
Under this interpretation, the supervisor is augmented with a monitoring
mechanism for the detection of actuator attack and does not control outside
Po(L(V/G)). The renewed definition of V is not circular. See [11] for more
detailed explanation.

set”, where each string is a damaging string. We require that7

Ldmg ∩ L(V/G) = ∅, that is, no string in L(V/G) could be
damaging. Then, we have that Ldmg ⊆ L(G)− L(V/G). We
remark that Ldmg is a general device for specifying what are
damaging strings and may not correspond to the specification
that is used for synthesizing V . Ldmg is given by the damage
automaton H = (Z,Σ, η, z0, Zm), i.e., Ldmg = Lm(H). We
require H to be a complete automaton and thus L(H) = Σ∗.

3) Actuator Attacker: The attacker’s observation sequence
is simply a string in ((Σo,A∪{ε})×Γ)∗. The attacker’s obser-
vation sequence solely depends on the supervisors observation
sequence Po(s) ∈ Po(L(V/G)), including the observation on
the execution of the plant and the control commands issued
by the supervisor. P̂Vo,A : Po(L(V/G))→ ((Σo,A∪{ε})×Γ)∗

is a function that maps supervisor’s observation sequences
to attacker’s observation sequences, where, for any w =
σ1σ2 . . . σn ∈ Po(L(V/G)), P̂Vo,A(w) is defined to be

(Po,A(σ1), V (σ1))(Po,A(σ2), V (σ1σ2)) . . .
(Po,A(σn), V (σ1σ2 . . . σn)) ∈ ((Σo,A ∪ {ε})× Γ)∗.

An attacker on (G,V ) w.r.t. attack constraint (Σc,A,Σo,A) is a
function A : P̂Vo,A(Po(L(V/G))) → ∆Γ, where ∆Γ = 2Σc,A .
Here, ∆Γ denotes the set of all the possible attack decisions
that can be made by the attacker on the set Σc,A of attackable
events. Intuitively, each ∆γ ∈ ∆Γ denotes the set of enabled
attackable events that are determined by the attacker. For any
Po(s) ∈ Po(L(V/G)), the attacker determines the set ∆γ =
A(P̂Vo,A(Po(s))) of attackable events to be enabled based on
its observation P̂Vo,A(Po(s)).

Now, given the supervisor V and the actuator attacker A,
we could lump them together into an equivalent (attacked)
supervisor VA : Po(L(V/G)) → Γ such that, for any string
w ∈ Po(L(V/G)) observed by the attacked supervisor, the
control command issued by VA is VA(w) = (V (w)−Σc,A)∪
A(P̂Vo,A(w)). The plant G follows the control command issued
by the attacked supervisor VA and the attacked closed-loop
system is denoted by VA/G. The definition of the (attacked)
closed-behavior L(VA/G) of VA/G is inductively defined as
follows.

1) ε ∈ L(VA/G),
2) if s ∈ L(VA/G), Po(s) ∈ Po(L(V/G)), σ ∈ VA(Po(s))

and sσ ∈ L(G), then sσ ∈ L(VA/G),
3) no other strings belong to L(VA/G).

The goal of the actuator attacker is formulated as follows:
L(VA/G) ∩ Ldmg 6= ∅, i.e., at least some damaging string
can be generated before the execution of the closed-loop
system is halted. If the goal is achieved, then we say A is
a successful actuator attacker on (G,V ) w.r.t. (Σc,A,Σo,A)
and Ldmg . Under the normality assumption, without loss of
generality, we can assume A is an enablement attacker [11],
i.e., A(P̂Vo,A(w)) ⊇ V (w) ∩ Σc,A, for any w ∈ Po(L(V/G)).

Attackability: We now recall the definition of attackability,
which plays an important role in characterizing the existence
of a successful actuator attacker.

7This is not restrictive at all, as we can easily constrain V in its synthesis
such that L(V/G) ⊆ Lc

dmg .



Definition 1. (G,V ) is said to be attackable w.r.t.
(Σc,A,Σo,A) and Ldmg if there exists a string s ∈ L(V/G)
and an attackable event σ ∈ Σc,A, such that

1) sσ ∈ Ldmg
2) for any s′ ∈ L(V/G), P̂Vo,A(Po(s)) = P̂Vo,A(Po(s

′)) and
s′σ ∈ L(G) together implies s′σ ∈ Ldmg .

We recall the following result [11].

Theorem 1. There exists a successful actuator attacker on
(G,V ) w.r.t. (Σc,A,Σo,A) and Ldmg iff (G,V ) is attackable
w.r.t (Σc,A,Σo,A) and Ldmg .

An algorithm for (non-)attackability verification is available
in [11].

III. SUPERVISOR OBFUSCATION PROBLEM

In this section, we shall propose and address the problem
of supervisor obfuscation, which is an approach for the syn-
thesis of resilient supervisors against actuator attackers, while
preserving desired behavior of the original closed-loop system.

A. Problem Formulation

A supervisor V ′ is said to be an obfuscation of V (against
actuator attacks) on G w.r.t. (Σc,A,Σo,A) and Ldmg if the
following two conditions are satisfied: 1) there is no successful
actuator attacker on (G,V ′) w.r.t. (Σc,A,Σo,A) and Ldmg , and
2) L(V/G) = L(V ′/G). In general, we do not require V ′ to
be over the same control constraint as V and, in practice, V is
insecure (for us to be interested in the supervisor obfuscation
problem). It is worth noting that L(V ′/G) = L(V/G) does
not imply the equi-attackability of (G,V ) and (G,V ′) because
in general V 6= V ′ and then P̂Vo,A 6= P̂V

′

o,A (c.f. Definition 1).
This shall be illustrated by the next example.

Example 1. We shall provide a simple supervisor obfuscation
example below. Let us consider the plant G and the supervisor
S shown in Fig. 2. The colored state 8 is the only bad
state to avoid. Σ = {a, b, c, d, a′},Σo = {a, c, d, a′},Σc =
Σo,Σc,A = {a′},Σo,A = {c, a′}. We can check that S
has ensured safety, without the presence of an attacker. The
damage automaton H (with the dump state and the corre-
sponding transitions being omitted) is also shown in Fig.
2, where state 8 is the only marked state. However, (G,S)
can be attacked w.r.t. (Σc,A,Σo,A) and H . When the plant
generates string ω = acd, the supervisor knows the current
state is exactly state 6. However, event d is unobservable to
the attacker; before the execution of event d. the attacker will
firstly estimate the current state should be state 5 or state
6. Then, with the eavesdropped control command information
from the supervisor after d is executed, it can know that event
d has occurred because V (ac) = {a, b, d} in supervisor state
3 while V (acd) = {b} in supervisor state 4. Then, it knows
the plant is in state 6 and thus an attack on event a′ can be
established.

We have also shown another supervisor S′ in Figure 2,
which also has ensured the safety of the closed-loop system.
We can easily check that L(S‖G) = L(S′‖G) and thus S′

is behavior-preserving. To prevent the attacker from detecting

the occurrence of event d, compared with S, the supervisor
S′ self-loops event d at state 3 instead and thus V ′(ac) =
V ′(acd) = {a, b, d}. Effectively, the attacker cannot determine
whether it is event d or a that occurs, even if it eavesdrops
a control command and knows that a transition has occurred.
Therefore, the attacker will not take the risk to carry out the
attack and (G,S′) is not attackable w.r.t. (Σc,A,Σo,A) and H .

Figure 2: The plant G, the damage automaton H , the
original supervisor S and the obfuscated supervisor S′

In the rest, we implicitly fix the alphabet Σ and use automata
representations as problem inputs. We are now ready to state
the main problems.

Problem 1. Given a plant G, a supervisor S, a control
constraint A = (Σc,Σo), an attack constraint (Σc,A,Σo,A),
a damage automaton H and a positive integer n, does
there exist an n-bounded supervisor S′ over A such that 1)
L(S′ ‖ G) = L(S ‖ G) and 2) (G,S′) is not attackable w.r.t.
(Σc,A,Σo,A) and H .

Problem 1 asks whether there exists a resilient and behavior-
preserving supervisor over A of state size no more than n. The
optimization version of Problem 1, which is given as Problem
2, is the supervisor obfuscation problem that we intend to
solve.

Problem 2. Given a plant G, a supervisor S, a control
constraint A = (Σc,Σo), an attack constraint (Σc,A,Σo,A),
a damage automaton H , compute a supervisor S′ over A, if
it exists, such that 1) L(S′ ‖ G) = L(S ‖ G), 2) (G,S′) is
not attackable w.r.t. (Σc,A,Σo,A) and H , and 3) S′ has the
minimum number of states among the set of all the supervisors
over A that satisfy both 1) and 2).

We shall develop an algorithmic solution in Section III-B
that can be used for solving both Problem 1 and Problem 2.
We have the following remark.



Remark 1. Since S and G are given, we can compute K =
L(S‖G). Thus, we do not need to know the control constraint
of the original supervisor S and the computed supervisor S′

can be over a different control constraint than that of S.

B. Algorithm for Supervisor Obfuscation

Our proposed solution for solving the supervisor obfusca-
tion problem is given in Algorithm 1. In particular, Algorithm
SUPBP(G,S,A, n) is used to generate the stack I of all
the supervisors that are behavior-preserving with respect to
S and have state size n. This procedure can be completed
efficiently with the help of an ALL-SAT solver [20], [21].
Algorithm NA(G,S,H) is used to verify the non-attackability
of (G,S′) w.r.t. (Σc,A,Σo,A) and H . The details of Algorithm
SUPBP(G,S,A, n) and Algorithm NA(G,S′, H) will be ex-
plained in the following subsections.

The algorithm for supervisor obfuscation starts by searching
for behavior-preserving supervisors of state size n = 1. If there
is no such behavior-preserving supervisor, then we increment
state size n and redo the search. If there is a behavior-
preserving supervisor of state size n, then we store the set
of all behavior-preserving supervisors of state size n in stack
I , obtained by using Algorithm SUPBP(G,S,A, n). For each
behavior-preserving supervisor in the stack, we check the
non-attackability of the closed-loop system using Algorithm
NA(G,S,H). If there exists a behavior-preserving supervisor
in the stack so that the closed-loop system is non-attackable,
we have found a resilient and behavior-preserving supervisor,
which is guaranteed to be of the minimum number of states.
If the closed-loop system associated with each behavior-
preserving supervisor in the stack is attackable, then we
increment n and redo the search. To prevent the algorithm
from searching infinitely (by increasing n indefinitely), we
can impose a bound on the largest n that we would like to
search. Typically, we choose the largest n to be |X| (that is,
we would like to synthesize a resilient and behavior-preserving
supervisor S′ of smaller state size than that of S) or some
small multiples of |X|. We remark that the bisection method
can be used to improve the performance of the searching
process.

The formula φG↓S,An used in Algorithm SUPBP(G,S,A, n)
states the existence of an n-bounded supervisor over A that is
behavior-preserving w.r.t. S over G. A satisfying assignment
M of φG↓S,An can be easily converted to an n-bounded
behavior-preserving supervisor S′M on G over A. Only when
the set of reachable states of S′M is of cardinality n, we can
then add S′M to the stack I , in Algorithm SUPBP(G,S,A, n),
to ensure that I only has behavior-preserving supervisors of
state size exactly n. This avoids repetition of non-attackability
verification carried out in Step 7 of Algorithm 1, as supervisors
found by solving φG↓S,An are only guaranteed to be n-bounded.

Computing Behavior-Preserving Supervisors: We now
show that the problem of computing behavior-preserving su-
pervisors, which is given below, is equivalent to the problem of
computing separating finite state automata under controllabil-
ity and observability constraints. This shall allow us to borrow
the technique developed for computing minimal separating

Algorithm 1 Algorithm for supervisor obfuscation
Input Plant G = (Q,Σ, δ, q0), supervisor S =

(X,Σ, ξ, x0), control constraint A, attack constraint (Σc,A,
Σo,A), damage automaton H = (Z,Σ, η, z0, Zm).

Output Supervisor S′ = (X ′,Σ, ξ′, x′0)

1: n := 1
2: Compute the stack of behavior-preserving supervisors I =

SUPBP(G,S,A, n) of state size n
3: If I = ∅
4: n := n+ 1, goto step 2
5: While I 6= ∅
6: Let S′ = I.pop()
7: Compute NA(G,S′, H)
8: If NA(G,S′, H) = TRUE
9: return S′

10: n := n+ 1, goto step 2

Algorithm 2 Algorithm SUPBP(G,S,A, n)
Input: Plant G = (Q,Σ, δ, q0), control constraint A,

supervisor S = (X,Σ, ξ, x0) and a positive integer n
Output: Stack I of behavior-preserving supervisors of

state size n over A.
1: Construct the boolean formula φG↓S,An

2: Let I = ∅
3: If φG↓S,An is satisfiable
4: for each satisfying assignment M of φG↓S,An

5: Construct the supervisor S′M that corresponds to M
6: If S′M is of state size n
7: Let I := I.push(S′M)
8: return I

finite state automata to solve our problem. Essentially, for any
given plant G, supervisor S and control constraint A, we shall
construct boolean formulas φG↓S,An that state the existence of
an n-bounded supervisor over A that is behavior-preserving
w.r.t. S over G.

Problem 3 (Existence of n-Bounded Behavior-Preserving
Supervisors). Given a plant G, a control constraint A =

Algorithm 3 Algorithm NA(G,S′, H)
Input: Plant G = (Q,Σ, δ, q0), control constraint A,

supervisor S′ = (X ′,Σ, ξ′, x′o), damage automaton H =
(Z,Σ, η, z0, Zm)

Output: TRUE or FALSE
1: Compute the annotated supervisor S′A of S′

2: Compute the general synchronous product
GP (G,S′

A
, H) of G, S′A and H

3: Compute the automaton SUB(GP (G,S′A, H)) with a
labeling function Lf

4: If for every reachable state y in SUB(GP (G,S′A, H)) it
holds that Lf(y) = ∅

5: return TRUE
6: else
7: return FALSE



(Σc,Σo) and a supervisor S, determine the existence of an n-
bounded supervisor S′ over A such that L(S‖G) = L(S′‖G).

We shall now introduce the well-known notion of a sepa-
rating finite state automaton [12], which works in the context
of complete finite state automata.

Definition 2 (Separating Finite State Automaton). Given any
(complete) finite state automaton C and any two languages
L1, L2, if L1 ⊆ Lm(C) and Lm(C)∩L2 = ∅, then C is said
to be a separating finite state automaton for the pair (L1, L2).

Intuitively, C is a witness of the disjointness of L1 and L2.
We make a simple observation in Lemma 1, which relates the
notion of a behavior-perserving supervisor with the notion of
a separating finite state automaton. In order to relate these two
notions, we need to convert the plant and the supervisor8, to a
complete finite state automaton by adding a dump state, so that
a partial finite state automaton P = (W,Σ, π, w0) becomes a
complete finite state automaton P = (W∪{wd},Σ, π, w0,W ),
where the subscript d is always used with dump state and π =

π ∪ ({wd} × Σ× {wd}) ∪ {(w, σ,wd) | π(w, σ) is
undefined, w ∈W,σ ∈ Σ}

After the above completion process, we have L(P ) = Lm(P ).
It is also straightforward to recover P from P , by removing the
dump state (and the corresponding transitions). In the rest, we
shall work on G, S and S′ instead. In particular, G and S can
be obtained from G and S by the above completion process;
S′ is the behavior-preserving supervisor that we would like to
compute and we only need to obtain S′ first and then remove
the unique dump state of S′ to recover S′. Then, our goal is
to compute S′ in the following.

Based on the above discussion, we need to ensure Lm(G)∩
Lm(S′) = Lm(G) ∩ Lm(S), which is equivalent to L(G) ∩
L(S′) = L(G)∩L(S). Now, we are ready to state Lemma 1.

Lemma 1. Let G,S and S′ be any given complete finite state
automata. Lm(G) ∩ Lm(S′) = Lm(G) ∩ Lm(S) if and only
if

1) Lm(G) ∩ Lm(S) ⊆ Lm(S′)
2) Lm(S′) ∩ (Lm(G)\Lm(S)) = ∅

According to the above result and discussion, to solve
Problem 3 we shall compute an (n + 1)-bounded S′ (since
S′ is n-bounded) that satisfies the following conditions:

1) S′ separates (Lm(G) ∩ Lm(S), Lm(G)\Lm(S));
2) The S′ part of S′ satisfies constraints (C) and (O).
We recall that G = (Q,Σ, δ, q0) and S = (X,Σ, ξ, x0).

It is straightforward to encode in a “generalized” complete
finite state automaton the two languages Lm(G)∩Lm(S) and
Lm(G)\Lm(S), by using two different kinds of markings.
Let G ↓ S = (Y,Σ, ρ, y0, YA, YB) denote such a generalized
(complete) finite state automaton with two kinds of marking
states YA and YB . The set YA ⊆ Y of marking states is
used to recognize Lm(G) ∩ Lm(S) and the set YB ⊆ Y of
marking states is used to recognize Lm(G)\Lm(S). G ↓ S

8We assume the non-degenerate and practically relevant case where both
supervisors and plants are strictly partial finite state automata. The degenerate
case can also be treated in a similar fashion.

can be obtained by computing the synchronous product of G
and S, with YA = Q×X and YB = Q× {xd}.

We adopt the technique of [12] and provide a polynomial-
time reduction from Problem 3 to the SAT problem; it then
follows that a SAT solver could be deployed to solve Problem
3. In the high level, the idea of the reduction proceeds as
follows: for any given instance of Problem 3 with input
G, S and control constraint A, we produce a propositional
formula φG↓S,An such that φG↓S,An is satisfiable if and only
if there exists an (n + 1)-bounded S′ such that S′ separates
(Lm(G)∩Lm(S), Lm(G)\Lm(S)). Moreover, each model of
the formula φG↓S,An can be directly translated to an (n + 1)-
bounded S′ (correspondingly, an n-bounded S′) that solves
the given instance.

Let S′ = (X ′,Σ, ξ′, x′0) be an n-bounded finite state super-
visor over A, where X ′ := {x′0, x′1, . . . , x′n−1} consists of n
states, x′0 ∈ X ′ is the initial state; the partial transition function
ξ′ : X ′ × Σ −→ X ′ is the only parameter that needs to be
determined to ensure that S′ is a solution of the given instance,
if a solution exists. Then, we know that S′ is given by the 5-
tuple ({x′0, x′1, . . . , x′n−1, x

′
d},Σ, ξ′, x′0, {x′0, x′1, . . . , x′n−1})

and we need to determine ξ′. There are constraints on ξ′ that
can be used to reduce the search space of S′. First of all,
ξ′(x′d, σ) = x′d for any σ ∈ Σ. Secondly, our setting assumes
normality on the supervisors. For a normal supervisor S′ w.r.t.
control constraint (Σc,Σo), the observability constraint is then
reduced to: for any state x′ ∈ X ′ and any unobservable event
σ ∈ Σuo, ξ′(x′, σ) = x′. This translates to: for any state
x′ ∈ X ′ and any unobservable event σ ∈ Σuo, ξ′(x′, σ) = x′.
For convenience, we let x′n = x′d. We introduce the boolean
variables tx′

i,σ,x
′
j
, where x′i, x

′
j ∈ X ′ ∪ {x′n}, and σ ∈ Σ, in

the encoding of S′ with the interpretation that tx′
i,σ,x

′
j

is true
if and only if ξ′(x′i, σ) = x′j .

We encode the fact that ξ′ is a transition function using the
following constraints.

1) ¬tx′
i,σ,x

′
j
∨¬tx′

i,σ,x
′
k

for each i ∈ [0, n−1], each σ ∈ Σo
and each j 6= k ∈ [0, n]

2)
∨
j∈[0,n] tx′

i,σ,x
′
j

for each i ∈ [0, n−1] and each σ ∈ Σo

We remark that Constraints (1) are imposed to ensure that ξ′
is a partial function, and Constraints (2) are imposed to ensure
that ξ′ is total. Together, they will ensure that ξ′ is a transition
function and thus S′ is a complete finite state automaton. Then,

φfsan =
∧
i∈[0,n−1],σ∈Σo,j 6=k∈[0,n](¬tx′

i,σ,x
′
j
∨ ¬tx′

i,σ,x
′
k
) ∧∧

i∈[0,n−1],σ∈Σo
(
∨
j∈[0,n] tx′

i,σ,x
′
j
)

shall denote the resultant formula after combining Constraints
(1) and (2).

With the above constraints, we can now encode the fact
that S′ is a finite state supervisor over A = (Σc,Σo) using
the following extra constraints.

3)
∨
j∈[0,n−1] tx′

i,σ,x
′
j

for each i ∈ [0, n− 1] and each σ ∈
Σuc − Σuo

In particular, Constraint (3) is imposed to ensure controllability
(C). We do not need to care about unobservable events
σ ∈ Σuo, which surely lead to self-loops, and we do not
need to care about observability, which has been taken care



of. We shall note that the range of the index j in (3), does not
contain n, since x′n is the dump state and thus not relevant for
controllability (C). Then,

φconn =
∧
i∈[0,n−1],σ∈Σuc−Σuo

(
∨
j∈[0,n−1] tx′

i,σ,x
′
j
)

shall denote the resultant formula ensuring controllability.
The above constraints only guarantee that S′ is a fi-

nite state supervisor over A, and we still need to encode
the fact that S′ is a separating finite state automaton for
(Lm(G) ∩ Lm(S), Lm(G)\Lm(S)). That is, we need to en-
code the fact that Lm(G) ∩ Lm(S) ⊆ Lm(S′), Lm(S′) ∩
(Lm(G)\Lm(S)) = ∅. We recall that

G ↓ S = (Y,Σ, ρ, y0, YA, YB),
where YA, YB are used to recognize the two different kinds of
languages Lm(G)∩Lm(S) and Lm(G)\Lm(S), respectively.
The remaining constraints are formulated based on S′ and
G ↓ S.

Language inclusion and emptiness of language intersection
can be checked by using the synchronous product operation,
we only need to track the reachable states in the synchronous
product of S′ and G ↓ S. We now introduce, as in [12],
auxiliary Boolean variables rx′,y , where x′ ∈ X ′ ∪ {x′n} and
y ∈ Y , with the interpretation that if state (x′, y) is reachable
from the initial state (x′0, y0) in the synchronization of S′ and
G ↓ S, then rx′,y is True. We have the following constraints.

5) rx′
0,y0

6) rx′
i,y1
∧ tx′

i,σ,x
′
j

=⇒ rx′
j ,y2

, for each i, j ∈ [0, n], each
y1 ∈ Y , each σ ∈ Σ and for each y2 ∈ Y such that
y2 = ρ(y1, σ)

7) ¬rx′
n,y , for each y ∈ YA

8)
∧
i∈[0,n−1] ¬rx′

i,y
, for each y ∈ YB

In particular, Constraints (5) and (6) are used to propogate
the constraints on rx′,y , based on the synchronous product
construction and the inductive definition of reachability. Based
on Constraints (5) and (6), Constraints (7) are used to ensure
Lm(G)∩Lm(S) ⊆ Lm(S′); Constraints (8) are used to ensure
Lm(S′) ∩ (Lm(G)\Lm(S)) = ∅.

Let the conjunction of Constraints (5), (6), (7) and (8) be
denoted by formula φsepn , which enforces the separating finite
state automaton constraint. We have

φsepn = rx′
0,y0
∧
∧
i,j∈[0,n],y1∈Y,σ∈Σ,y2=ρ(y1,σ)(¬rx′

i,y1
∨

¬tx′
i,σ,x

′
j
∨ rx′

j ,y2
) ∧

∧
y∈YA

¬rx′
n,y
∧
∧
y∈YB ,i∈[0,n−1] ¬rx′

i,y
,

which has been converted to CNF.
Let φG↓S,An := φdfan ∧φconn ∧φsepn . It is clear that φG↓S,An is

in CNF. We note that Constraints (3) implies Constraints (2)
on the part where σ ∈ Σo ∩Σuc, making Constraint (2) partly
redundant. By solving φG↓S,An using a SAT solver [17], we
can get S′ by interpreting the Boolean variables tx′

i,σ,x
′
j

on
ξ′, which can be used to recover S′. We have the following
result.

Theorem 2. The formula φG↓S,An is correct. That is, there
exists an n-bounded finite state supervisor S′ that solves the
instance with plant G, supervisor S and control constraint A
if and only if φG↓S,An is satisfiable.

After obtaining S′, we shall perform the non-attackability
verification. This is explained in the next subsection (see [11]
for more details).

Attackability Verification: We here recall the steps used in
the algorithm for verifying non-attackability, i.e., Algorithm 3.

1. Annotation of the Supervisor
Given the supervisor S = (X,Σ, ζ, x0), we produce the

annotated supervisor

SA = (X,Σo × Γ ∪ Σuo, ζ
A, x0),

where ζA : X×(Σo×Γ∪Σuo) −→ X is the partial transition
function, which is defined as follows:

1) For any x, x′ ∈ X , σ ∈ Σo, γ ∈ Γ, ζA(x, (σ, γ)) = x′

iff ζ(x, σ) = x′ and γ = {σ ∈ Σ | ζ(x′, σ)!}.
2) For any x, x′ ∈ X , σ ∈ Σuo, ζA(x, σ) = x′ iff ζ(x, σ) =

x′.
2. Generalized Synchronous Product:
Given the plant G = (Q,Σ, δ, q0), the annotated supervisor

SA = (X,Σo × Γ ∪ Σuo, ζ
A, x0) and the damage automa-

ton H = (Z,Σ, η, z0), the generalized synchronous product
GP (G,SA, H) of G, SA and H is given by

(Q×X × Z ∪ {⊥,>},ΣGP , δGP , (q0, x0, z0)),

Where, the state ⊥ indicates a failed attack, while the state >
indicates a successful attack. ⊥,> are two new states that are
different from the states in Q×X×Z, ΣGP = Σo× ((Σo,A∪
{ε})×Γ)∪Σuo×{ε}∪Σc,A and the partial transition function

δGP : (Q×X×Z∪{⊥,>})×ΣGP −→ Q×X×Z∪{⊥,>}

is defined as follows.
1) For any q, q′ ∈ Q, x, x′ ∈ X , z, z′ ∈ Z, γ ∈ Γ,

σ ∈ Σo,A, δGP ((q, x, z), (σ, (σ, γ))) = (q′, x′, z′) iff
δ(q, σ) = q′, ζA(x, (σ, γ)) = x′ and η(z, σ) = z′.

2) For any q, q′ ∈ Q, x, x′ ∈ X , z, z′ ∈ Z, γ ∈ Γ, σ ∈
Σo − Σo,A, δGP ((q, x, z), (σ, (ε, γ))) = (q′, x′, z′) iff
δ(q, σ) = q′, ζA(x, (σ, γ)) = x′ and η(z, σ) = z′.

3) For any q, q′ ∈ Q, x, x′ ∈ X , z, z′ ∈ Z, σ ∈ Σuo,
δGP ((q, x, z), (σ, ε)) = (q′, x′, z′) iff δ(q, σ) = q′,
ζA(x, σ) = x′ and η(z, σ) = z′.

4) For any q ∈ Q, x ∈ X , z ∈ Z, σ ∈ Σc,A,
δGP ((q, x, z), σ) = > iff δ(q, σ)!, ¬ζ(x, σ)! and
η(z, σ) ∈ Zm.

5) For any q ∈ Q, x ∈ X , z ∈ Z, σ ∈ Σc,A,
δGP ((q, x, z), σ) = ⊥ iff δ(q, σ)!, ¬ζ(x, σ)! and
η(z, σ) /∈ Zm.

3. Subset Construction w.r.t. the Attacker’s Observation
Alphabet:

Given GP (G,SA, H), we shall now perform a subset
construction on GP (G,SA, H), with respect to the attacker’s
observation alphabet.

Let GPS(G,SA, H) denote the sub-automaton
of GP (G,SA, H) with state space restricted to
Q × X × Z. The alphabet of GPS(G,SA, H) is
ΣGPS = Σo × ((Σo,A ∪ {ε}) × Γ) ∪ Σuo × {ε}.
Let GPS2(G,SA, H) denote the automaton that is
obtained from GPS(G,SA, H) by projecting out the
first component of the event of each transition. Let



SUB(GP (G,SA, H)) denote the the automaton that is
obtained from GPS2(G,SA, H) by determinization. In
addition, we augment SUB(GP (G,SA, H)) with a labeling
function Lf : Y 7→ 2Σc,A , which is defined such that for any
y ∈ Y and any σ ∈ Σc,A, σ ∈ Lf(y) iff there exists some
v ∈ y such that, 1) δGP (v, σ) = > and 2) for any v′ ∈ y,
v′ 6= v implies δGP (v′, σ) 6= ⊥.

We here recall the following result [11], which states that
Algorithm NA(G,S′, H) is correct.

Theorem 3. Let the plant G and the normal supervisor
S be given. Then, (G,S) is unattackable with respect to
(Σc,A,Σo,A) and Ldmg iff for every reachable state y in
SUB(GP (G,SA, H)) it holds that Lf(y) = ∅.

IV. CONCLUSION

In this paper, we have proposed and addressed the problem
of supervisor obfuscation in actuator enablement attack sce-
nario, in the setting where the attacker is able to eavesdrop the
control commands issued by the supervisor and under a nor-
mality assumption on the actuator attackers and supervisors.

The algorithm proposed in this paper for solving the super-
visor obfuscation problem relies on an SAT solver for com-
puting behavior-preserving supervisors; a behavior-preserving
supervisor is accepted as a solution of the problem only when
it passes the non-attackability verification. The method used
in this paper enumerates each possible behavior-preserving su-
pervisor and then verifies its non-attackability. Although SAT
solver is relatively efficient in computing behavior-preserving
supervisors, the enumeration process is still causing massive
degradation on the performance of the overall algorithm. In fu-
ture work, we intend to develop more efficient algorithms that
can be used for directly searching for obfuscated supervisors.
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