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Abstract—1In the last few years, smartphone usage has been
unanimously considered to be one of the most dangerous driving
habit, leading to numerous road accidents. In the context
of insurance telematics, the online estimation of the driving
style is of utmost importance to offer personalized policies
and to evaluate riskiness levels. Smartphones can be used to
gather dynamics measures needed to build riskiness indicators
to evaluate drivers’ behaviour. Being able to recognize phone
usage is of paramount importance. This work deals with the
problem of detecting the use of the phone during a trip. To do
this in a fully automatic fashion, we propose a new cepstrum-
based classification method based on time series analysis. The
resulting performance is tested on experimental data and
compared with those obtained with another method, based on
hand-crafted features, showing that the new approach yields
fully comparable performance while significantly increasing the
automation level of the classification process.

I. INTRODUCTION

It is nowadays widely acknowledged that the use of mobile
devices while driving contributes to a significant amount
of fatalities [1]. Because smartphone usage is strongly cor-
related with the occurrence of accidents, clearly insurance
companies are very much interested in being able to estimate
this condition, in order to shape their policy offers based
on this trait of their clients, [2], [3]. In turn, being offered
discounts from the insurance companies in exchange for
phone-free driving could be a really persuasive means to help
spreading this desirable habit. To do this, detecting whether
and how often a phone is used when actively driving is
central.

It is worth noting that, differently from what happens
for traditional driving style profiling for safety-oriented pur-
poses, where vehicle’s dynamic variables (e.g., speed and
acceleration) are monitored for the final assessment, [4], [5],
in this case one must gather information on the smartphone
motion itself. In the existing literature, little or no effort has
been devoted up to now to detect the use of the phone while
driving, which can be due to texting, making a phone call
or simply accessing the Internet.

To the best of our knowledge, such problem has been
considered only in few contributions. In [3], phone usage
recognition is accomplished in a quite naive fashion, i.e., by
simply looking if significant acceleration or angular velocity
changes are sensed by the phone sensors within a short
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time-window. This enables checking if a pick-up or drop-
off of the phone occurred, but not if the device has been
really used in between. In [6], integrated inertial sensors are
employed, detecting the simultaneous occurrence of driving
and texting in real-time, by mining a well defined pattern. In
[7], the phone usage detection system leverages the existing
car stereo infrastructure, in particular the speakers and the
bluetooth network. The same problem has been analyzed also
by [8], [9], where the detection of the phone is obtained by
the fusion of the smartphone built-in sensors and external
devices.

We have started considering this problem in [10], where
we approached it as a binary classification task on the time
series measured by the smartphone’s sensors, solved using a
Support Vector Machine (SVM) method. A similar attempt
to classify instances of distracted driving due to smartphone
usage is presented in [11]. In this paper, significant features
are extracted from smartphone sensors and classified by
means of a random-forest-based algorithm. The limitation of
this study, which ours overcomes, is that all the experiments
were conducted in a closed simulation environment, where,
for example, real roads effects and other practical issues are
not considered.

Even though the method we presented in [10] was indeed
based on experimental data and proved feasible with good
performance, it heavily relied on a strong knowledge of the
application domain (as all the other mentioned approaches
do), and it entailed a pre-processing phase and a feature
selection method resting on subjective reasoning, which is
terribly time-consuming. Therefore, to offer a full automation
of the classification task, in this work we propose a novel
approach for the smartphone usage detection, based on the
computation of cepstrum coefficients. Although the cepstrum
was first defined in 1963 [12], its use for time series
clustering and modeling in dynamical systems has been only
recently prompted by De Moor and coauthors, see, e.g., the
recent [13].

Specifically, the classification is solved using the time
series measured by the smartphone IMU and the results com-
pared to those obtained with the previously mentioned SVM-
based classifier presented in [10]. To our best knowledge, this
is the first work where cepstrum-based signal processing is
used for activity detection via classification. The paper shows
that the cepstrum-based approach yields results which are
definitely comparable to the best SVM classifier, with the
significant advantage of avoiding the subjective and time-
consuming classifier design phase (Fig. 1).

The paper is organized as follows: Section II defines the



problem and the experimental setup, while III presents the
cepstrum-based classification approach. Section IV illustrates
the results obtained on the considered application, showing
the effectiveness of the proposed solution.

II. PROBLEM STATEMENT AND EXPERIMENTAL SETUP

In this paper, a cepstrum-based smartphone use mode de-
tection algorithm is proposed. The purpose of the algorithm
is to detect whether a driver is using the phone while driving,
based only on the phone’s sensors measures. The algorithm
is automatically activated and deactivated when the driver is
inside the vehicle, thanks to a Bluetooth beacon placed under
the steering wheel. In presence of multiple smartphones, the
beacon activates only the closest device. A fine detection
whether the activated phone belongs to the driver or to a
passenger is out of the scope of this work.

The smartphone is considered in-use when the driver
performs one of the most common activities (e.g., handling,
texting, scrolling, browsing, calling etc.) and not in-use when
the phone is on the phone holder or on the passenger seat.

The experimental setup is composed of a smartphone —
equipped with a tri-axial gyroscope unit — and the activating
beacon. Data are recorded at the maximum sampling fre-
quency of 120 Hz. The designed classifier performs a high
rate classification. However, as the phone detection is used
for profiling the tendency to use the phone while driving, the
final output will be averaged, reducing the classification to
1 Hz.

III. CEPSTRUM BASED CLASSIFICATION

In the proposed contribution, a cepstrum-based classifier
for detecting the use of the smartphone is presented. The
methodology and the theoretical background are introduced
and briefly discussed in this section.

A. What is the cepstrum?

According to [12], the fathers of cepstrum defined it as
“the power spectrum of the logarithm of the power spec-
trum”. In fact, given a signal s(t), its cepstrum coefficients ¢
are defined as the inverse Fourier transform of the logarithm
of the spectrum ®, [15], as

cs(k) = F [log ()]
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The denomination cepstrum was introduced by the authors
of [12], paraphrasing terms like spectrum (cepstrum), fre-
quency (quefrency) - and many more - in order to avoid
confusion with the meaning of the original ones, as described
in [16].

Cepstrum coefficients have been widely used for time
series clustering. In time series clustering, it is not obvious
how to find similarities in temporal data. With cepstrum,
time series are grouped based on their similar dynamics,
making the clustering process effective. Clusters are formed
comparing the cepstrum coefficients by means of suitable
metrics and grouping together instances that are neighbors.

Numerous cepstrum-based metrics have been proposed to
solve this problem, [13]. However, the most used is the so-
called Martin distance [17]: given two time series generated
by two different single input-single output (SISO) linear
time-invariant (LTI) autoregressive-moving average (ARMA)
models M, Ms,, the Martin distance is defined as

d(Ml,MQ) = Z lel(k) — CQ(k)‘Q, (2)
k=0

where ¢y, cy are the cepstrum coefficients associated to
output of the models M; and Mo, respectively. This metric
has become widely popular because it is easy to calculate and
significantly reduces the computational effort with respect to
other ones [13].

B. Training and classification algorithms

In the proposed work, cepstrum coeffiecients are employed
in order to solve a classification problem, thanks to their
high capabilities to discriminate similar patterns based on
the differences in the time series spectra, as shown in [18],
[19]. In this subsection, the training (run once offline) and
classification (which can be run both offline and in real-time)
algorithms are described, separately.

1) Training: Training is performed on the set of time se-
ries recorded during the tests. More specifically, as illustrated
in Section II, smartphone’s sensors measure three angular
rates. To generalize the patterns and being robust with respect
to the orientation of the smartphone, the Euclidean angular
rates norm is derived

wll = /w2 + w2 + w2, 3)

so that a single inclusive signal represents the intensity of
all the angular rates together. The choice of using (3) is not
random, but it proved to be the most informative signal for
this application in a previous work of the authors [10].

Each time series contains a different pattern to be mined.
Eventually, multiple patterns may belong to the same class
(e.g., in this application, on passenger seat and on phone
holder belong to the same not in use class).

Goal of the training phase is to create a database of known
dynamics that are used for comparison during classifica-
tion. This means that, for each time series, the cepstrum
coefficients are computed. To this end, given Yel,» & time
series p belonging to class cl, its spectrum @, is computed
on a sliding window of dimension N = # - where o
is the dimension of the window expressed in seconds and
T, is the sampling time - by means of the Fast Fourier
Transform (FFT). The sliding window is needed to regularize
the spectrum and to compute the cepstrum coefficients with
the same framework used in the classification phase, which
has to be run real-time with an incoming stream of data in
a limited size buffer. Mathematically, this corresponds to:

T
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Pet, = ; B (1), 4)
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Fig. 1: A schematic of the learning process of many applications: measured signals measured are initially preprocessed; then,
features are extracted and combined maximizing the classification performance. These steps may require deep knowledge
of the problem and, eventually, time-consuming calibration. Can this process be automated instead?

Fig. 2: The experimental setup: the smartphone (a OnePlus
One [14]) and the Bluetooth beacon, pleaced under the
steering wheel.

in which T is the length of the time series vector. Cepstrum
coefficients are then evaluated on the logarithm of the
regularized spectrum @Clp through the Inverse Fast Fourier
Transform (IFFT).

This set of operations is repeated for all the time series
available for learning. The obtained coefficients are used to
create the set of learned patterns.

2) Classification: Classification is performed on data
buffered in a sliding window, with the same length of the
training one. At each time step, the spectrum and then,
consequently, the cepstrum coefficients are computed, as
shown in Fig. 3.

The computed coefficients are used to compare the dynam-
ics of the current data with respect to the learned baseline
by means of the Martin distance. However, the coefficients
vector is not infinitively long and, more importantly, decays
to zero rapidly (Fig. 3), as proved also by [20]. Furthermore,
the estimation of high-order cepstrum coefficients may be
difficult and easily corrupted by noise, as it is widely
known for the autocovariance case [15]. For this reason,
computing the Martin distance on infinite terms (or even
with a great number of them) is impractical or results may
be unacceptable. In this paper, we propose to evaluate the
metric only on the first N, coefficients, modifying (2) as
follows

Ncep

Z k‘conline(k) - Cclp (k)|27 (5)

k=0

d(conlin67 Ccl,p) =

in which N, can be chosen based on prior knowledge
on the dynamic behavior of the system or, like in this
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Fig. 3: Given a moving window, the spectrum of the signal is
computed on the buffered data. Then, cepstrum coefficients
are evaluated from the computed spectrum.

application, as a tuning parameter; instead, Coniine and ce,p
are, respectively, the cepstrum vectors of the online data and
of the training data of a specific time series p belonging to
class cl.

The predicted class Y is the one minimizing the distance
in (5):
? = i i online, Ccly )5
arg CIlIélcr}: gélg d(cont Cely) 6)
with CL the set of classes and P the set of patterns for each
class in CL. An example of one step of classification is shown
in Fig. 4, in which the algorithm performs the classification
on a previously recorded stream of data.

IV. APPLICATION AND RESULTS

In this context, the classifier is binary (classes in-use and
not in-use), meaning |CL| = 2. On the contrary, |P| = 1 for
class in-use and |P| = 2 for class not in-use (scenarios on
phone holder and on passenger seat).

In Fig. 5, the spectra of ||w]|| in three different scenarios is
analyzed, both when the vehicle is in motion and standing
still. The spectrum of using is quite different from on
passenger seat and on phone holder over the all frequency
range. This difference is even more accentuated when the
vehicle is standing still because measurements are no longer
influenced by the vehicle dynamics, as when the vehicle is
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Fig. 4: An example of the classification process. Top: the
Martin distance computed for all the classes involved. Bot-
tom: the predicted output based on the computed distance.
The classification transients are noted with Ty, and T}

in motion, with peaks in the magnitude up to 3 Hz. These
differences in the spectra can be used as a signature to
discriminate when the driver is using the phone, which can
be easily captured computing the cepstrum coefficients of
the time series associated to these events.
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Fig. 5: Spectra of the analyzed scenarios when the vehicle
is in motion (on the top) and standing still (bottom plot).
In using, the magnitude of the spectrum is greater than
otherwise, in both the driving conditions.

The classification algorithm presented in the previous
section is tested against data collected during an experimental
campaign conducted in mixed driving conditions (i.e., mixed
urban and highway) in which the phone has been used
according to the real behavior of the user (i.e., mixed in-
use and not-in-use scenarios of different temporal length).

Since the proposed classification algorithm has two tuning
parameters (N..p, the maximum cepstrum order, and «,
the window length), a sensitivity analysis on the validation
dataset is performed, in terms of accuracy, specificity and
sensitivity (Fig. 6) indexes computed as in [21]. The most

sensitive parameter is «. In fact, after an initial increase of
accuracy for small windows (o < 5 s), the performance
index shows a significant drop for larger ones. Why? The
value of o affects how long the transient' is: with a greater
window, more time is required to detect a change of class in
the input. According to the specificity and sensitivity trends,
the effect of the transients is more evident in detecting when
the driver stops using the phone than the dual condition. This
is rather intuitive: When the user stops using the phone, the
signal stored in the buffer is still influenced by the previous
instants in which the signal contains more high frequency
components, as shown in Fig. 5; the buffer needs to empty
those harmonics to be able to detect the right pattern. In
the dual condition, the classification algorithm is prompt at
detecting those as soon as the buffer gets filled of enough
discriminating components. In fact, with great values of «,
the FFT becomes finer, leading to an increment of sensitivity,
which allows to obtain a more accurate classification than
when the driver starts using the phone. Furthermore, although
less relevant, another positive effect of a wider window
consists in a finer classification in terms of spikes. Spikes
can be defined as very short-time outliers in the classification,
too short to be realistic according to the involved dynamics
(e.g., in this application, spikes are false positives and false
negatives shorter than 0.2 s, usually not longer than few
samples — it is very unlikely to be able to robustly detect
such a short use of the phone). As shown in Fig. 6, the
number of spikes is decreasing for longer windows. Instead,
the order of the cepstrum coefficients (/N..,) proves to be a
less critic parameter for small values, but performance drops
significantly for N, > 5, according to all the performance
indexes.

In our case, a good trade-off in the classification per-
formance is obtained with @ = 5 s and Ng, = 3.
With these parameters, the classifier achieves an accuracy
of 95.6%, sensitivity reaches 97.68%, specificity is 90.68%,
and 83 spikes are counted. However, for a fair performance
evaluation, the tuned classifier is tested against a different
dataset. The test dataset is chosen to be different from the
validation one, with a shorter, but more frequent, use of the
phone. In this case, classification performance slightly drops
in terms of accuracy (which is now 91.96%) and specificity
(which reaches 74.52%); a limited variation is registered for
sensitivity (97.15%) and in the count of the spikes (122).

To understand this performance drop, the effect of tran-
sients on the classification is analyzed. Steady denotes the
mean time between the variation of the label and when
the output reaches a steady classification, an index of the
averaged duration of transients. As shown in Fig. 7, the
classifier is generally faster at detecting when the user
begins to use the phone (denoted as rise time) than the dual
condition (termed fall time), no matter the cepstrum order
used. This is consistent with what we already discovered

A transient is the classification inertia in detecting a change of class. In
case of static data, since they do not have transients, the classification do
not show any inertia. On the contrary, when dynamic, the effect of time on
data is not negligible and influences the classification and its performance.
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Fig. 6: Sensitivity analysis of the performance during val-
idation based on the two tuning parameters: o and Necy,.
Accuracy and specificity drop for windows longer than 5 s
due to the long transients (top), while the number of spikes
decreases (bottom). Performance drops both with N, =1
and with N, > 5.

analyzing the sensitivity and specificity trends. Moreover,
this proves that the effect of the transients is only due to
the parameter o, which must be necessarily tuned according
to the involved dynamics.

By removing the averaged transients from data and recom-
puting the performance indexes, the classifier is analyzed as it
were constantly at steady state, when the buffer does not store
data of two patterns and, then, the values of cepstrum are
more consistent. Not surprisingly, the classifier outperforms
the previous case (Fig. 8). The classifier found during the
sensitivity analysis (with a« = 5 and N, = 3) is still
the best performing also at steady state. In fact, accuracy
reaches 98.67%, sensitivity is 98.39% and specificity jumps
to 99.43%. A significant increase of the performance is found
also in testing: accuracy moves from 91.96% to 96.93%,
though sensitivity is almost constant (reaches 97.52%, when
it is 97.15% in the nominal condition). The great im-
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Fig. 7: The averages length of the transients is evaluated

for different values of o and N,.,. Results prove that the

classifier is not influenced by the tuning values at detecting

when the driver begins to use the phone; instead, transients

of the dual scenario are influenced by the window length.

provement in accuracy is due to the significantly better
specificity, which is 94.46%, almost 20 points more from
74.52%. Moreover, the classifier improves its performance
for greater values of «, proving once more that the drop
of accuracy and specificity was only due to the presence of
the transients, and larger windows provide a more accurate
classification. Transients are indeed a negative side effect of
the classification which cannot be compensated otherwise,
no matter what classification algorithm is used, as proved in
a previous work of the authors [10].

In Table I, obtained results are compared with the different
approach proposed in [10], in which an SVM algorithm was
used. As shown, the cepstrum-based algorithm, compared to
SVM, provides satisfying results, though less performing.
However, the presented classification algorithm significantly
reduces the data preprocessing and feature extraction phases,
which can be time-consuming, as no general guidelines are
available. Thus, this algorithm is recommended for all the
applications in which the user does not have prior knowledge
on the system or calibration effort is required to be minimal.

Furthermore, exactly as many other learning algorithms,
also SVM has a parameter to be tuned. This is known as
the capacity constant, which has to be properly tuned in
order to avoid overfitting. In this application, for high values
of the capacity constant, algorithm performance are settled
and can be used as a benchmark to evaluate the proposed
algorithm. However, when the parameter is chosen to be
small enough, the training phase does not converge with that
set of features, making the most performing classifier not
usable and the comparison between SVM and the proposed
algorithm unfeasible. Thus, the cepstrum-based classification
allows to automate the part of the algorithm subject to
manual design and tuning, with benefits also in the classifier
tuning phase.
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Fig. 8: Sensitivity analysis of the performance during vali-
dation at steady state: v and Nc.p. A finer and more robust
classification is obtained with higher values of «, though
performance settle for o > 5, proving how detrimental the
effect on transients is on the classification performance.

V. CONCLUDING REMARKS

This paper showed how a cepstrum-based approach can
be effectively used to solve a classification problem using
time-series data. This is done in a real application context,
in which data coming from the inertial measurement unit
on board of a smartphone are used as inputs. The obtained
results favorably witness the promising performance of the
approach, comparing it to a more classical SVM-based
classification.
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