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On the Stability of the Foschini-Miljanic Algorithm
with Uncertainty over Channel Gains

Giannis Moutsinas, Themistoklis Charalambous and Weisi Guo

Abstract— Distributed power control in wireless networks
faces challenges related to its stability. When perfect informa-
tion of channel states and transmitting agents are available,
previous work has shown that the stability conditions can
be known. When there is uncertainty over the parameter
space, stability is not well understood. In this work, we study
the impact of parameter uncertainty and network structure
on the stability and scalability of a well known distributed
power control, namely the Foschini-Miljanic algorithm. More
specifically, we derive probabilistic conditions with respect to
the parameters of the channel distributions for which the system
is stable. Furthermore, we study the effects of these parame-
ters for different node distribution on the plane. Numerical
examples validate our theoretical results.

Index Terms—Power control, uncertain channel conditions,
stability, scalability, Foschini-Miljanic algorithm.

I. INTRODUCTION

Transmit power in wireless networks is a key ingredient
in the management of interference, energy, and connectivity.
When a device unilaterally increases its transmit power
forsee successful transmissions over longer distances or
higher data rates. The increased transmit power, however,
result to co-channel interference to other transmitting devices
in the network. As a result, these devices increase their
power to maintain their connection and rate and, therefore,
the battery of the device drains faster without necessarily
any gain. Transmit power control in wireless networks has
been extensively studied, and some of the results have had
significant impact in wireless communication technology.

Early work in the field of power control for wireless net-
works [1], [2] proposed power balancing, which equalizes the
Signal-to-Interference Ratio (SIR) in all the wireless links.
These algorithms need global information about the network
setting. This capacity improvement initiated extensive re-
search on power control with focus on the design of dis-
tributed algorithms to meet a prefixed Signal-to-Interference-
and-Noise Ratio (SINR) target (hard constraint), determined
by the Quality of Service (QoS) requirements. Zander in
[3], assuming a linear model of interference and negligible
receiver noise, first proposed a distributed algorithm in
which the transmitters constituting the network update their
power levels in a distributed fashion to reach the greatest
achievable SIR. Subsequently, Foschini and Miljanic in [4]
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came up with a linear distributed algorithm, known as the
Foschini-Miljanic (FM) algorithm, for both the continuous-
and discrete-time systems, for the linear interference model
that considers the thermal noise as well and adjust their
power to reach a desired SINR.

The prefixed SINR target tracking ensures that a constant
transmission rate can be sustained. If a feasible solution
exists, then there exists a unique solution that minimizes
transmit power in a pareto sense. But, if not, then the per-
formance of the whole network degrades and the capacity is
deteriorated. The target tracking approach is suitable for real-
time, delay-sensitive applications like mobile phone services.
These works set forth the introduction of power control
algorithms in third generation (3G) CDMA-based cellular
networks. While in fourth generation (4G) technologies used
in wireless networks, they tried to avoid power control with
orthogonal multiple access schemes, interestingly, power
control has become essential to many candidate technologies
for fifth generation (5G) networks (e.g., massive multiple-
input multiple-output (MIMO) networks), since such net-
works consists of several small cells constituting a large
network, in which orthogonal interference suppression mech-
anisms result in a poor resource allocation.

The seminal work by Foschini and Miljanic in [4] excited
a furore of research for power control in both continuous-
(e.g., [5]-[8]) and discrete-time (e.g., [9]-[15]). While it
is assumed in the literature that power control operates in
the discrete-time domain, the continuous-time counterpart
has been widely studied as well, because it offers a simple
model for analysis in complex networks or when integrated
on advanced systems.

The aforementioned works mostly focus on power control
with fixed channels or channels with slow fading. However,
in several occasions, the channel experiences fast fading,
and even though communication systems are often adaptive
to such impairments, fading can change fast enough and
no adaptation can be achieved. For the discrete-time power
control case, there have been studies for power control with
time-varying channels. For example, in [16] it is shown
that the power control algorithms designed for fixed channel
conditions may not work properly, since they fail to capture
the dynamics of the time-varying channel. Additionally,
a distributed power control algorithm based on stochastic
approximation is proposed in [16] that eventually converges
to the optimal power allocation. Long- and short-term fading
wireless channel models are developed in [17], [18], in which
iterative distributed power control algorithms are proposed,



based on stochastic approximation; the FM algorithm consti-
tutes a special case of their proposed algorithm by keeping
a constant step size. The stability certificates of continuous-
time power control algorithms, such as the FM algorithm,
when there is uncertainty in the channel gains is underdevel-
oped. In [19], the authors propose a general framework for
continuous time-power control algorithm under time-varying
long term fading wireless channels and provide a sufficient
conditions on the channels’ attenuation coefficients for the
existence of an optimal power. In [20] the conditions for
which the FM algorithm is convergent are derived, even in
the presence of bounded time-varying communication delays,
and in the presence of topology changes arbitrarily between
a fixed number of different configurations. While all these
works aim at developing power control approaches, there are
limited works on probabilistic stability guarantees (e.g., [21],
[22]) and they do not discuss the scalability properties of the
overall system. In this work, we aim at closing this gap.

A. Contributions

In this paper, we study the impact of parameter uncertainty
and network structure on the stability and scalability of
the FM power control algorithm. More specifically, the
contributions of this work are as follows:

e we provide the stability certificates of the continuous- and
discrete-time FM algorithms in a network with Rayleigh
fading links. More specifically, we provide a probabilistic
expression for the overall system to be stable. Note
that this expression is similar to the probability density
function of the signal-to-interference ratio, first provided
in [21] and later in the seminal paper [22], in which the
authors study the problem of minimizing the worst-case
outage probability using power control.

e The effect of the parameters of the distributions of the
Rayleigh fading links is studied, accounting for the scala-
bility of the overall system for different node distributions
on the plane, giving insights on how the overall system
should be designed, such that the system remains stable
as it scales up.

e Numerical results demonstrate the validity of our results
and provide more insights on the robustness and scala-
bility of wireless networks with interfering channels.

B. Organization

The rest of the paper is organized as follows. In Section II,
we introduce the notation that will be used and review
some preliminaries that are useful for the development of
the results in this paper. In Section III, we give the system
model, consisting of the network model and the channel
model. Moreover, we review linear interference functions
and the conditions for existence of feasible power levels.
In Section IV, we review the FM algorithm. The main
results are given in Section V. The validity of our results
is justified by illustrative examples in Section VII. Finally,
concluding remarks and directions for future work are given
in Section VIIIL.

II. NOTATION AND PRELIMINARIES
A. Notation

Throughout the paper, vectors are written in bold lower
case letters and matrices in capital letters. A7 and A~!
denote the transpose and inverse of matrix A respectively.
By I we denote the identity of a squared matrix. |A| is the
elementwise absolute value of the matrix (i.e. |[A| £ [|A;|]),
A(<) < B is the (strict) element-wise inequality between
matrices A and B. A matrix whose elements are nonnegative,
called nonnegative matrix, is denoted by A > 0 and a
matrix whose elements are positive, called positive matrix,
is denoted by A > 0. A(A) denotes an eigenvalue of matrix
A, and p(A) denotes its spectral radius. diag(x;) the matrix
with elements z;, x5 , ... on the leading diagonal and zeros
elsewhere. We denote the probability density function (PDF)
of an Exponential(«) variable by fep (o, ).

B. Gershgorin circle theorem

Let A be a complex n x n matrix with entries a;;. For i =
{1,....n}let R; = ., |a;;| and let D; be the closed disk
of radius RR; centered at a;;. Such disc is called a Gershgorin
disk of matrix A.

Theorem 1 (Gershgorin [23]). Let o be an eigenvalue of
A, then there exists at least one i € {1,...,n} such that
a € D,

III. SYSTEM MODEL

The system model can be divided into two levels: level 1
describing the network as a whole; and level 2 describing
the channels. Thus, we have the network model and the
channel model. At the network level, the model concerns
the general topology of the nodes and their characteristics. At
the channel level, the model describes the assessment of the
link quality between communication pairs and the interaction
between the nodes in the network.

A. Network Model

Consider a network where 7 denotes the set of trans-
mitters and R denotes the set of receivers in the network.
The links are assumed to be unidirectional and each node is
supported by omnidirectional antennae. For a planar network
(easier to visualize without loss of generality), this can be
represented by a graph G = (N, £), where N is the set of
all nodes and L is the set of the active links in the network.
At each time instant, each node can act as a receiver or a
transmitter only due to the half-duplex nature of the wireless
transceiver. Each transmitter aims at communicating with a
single node (receiver) only.

B. Channel model

The signal received at a receiving node j from a trans-
mitting node ¢ is given by y; = hy;z; + w;, where x; is
the signal transmitted by node 4, h;; denotes the channel
coefficient for the link ¢« — 5 and captures the effects of path-
loss, shadowing and fading, and w; captures the effects of
receiver noise and other forms of interference at the receiving



node j. The quality of the wireless channels, h;;, is degraded
by Additive White Gaussian Noise (AWGN) and frequency
non-selective Rayleigh block fading according to a complex
Gaussian distribution with zero mean and variance U?j for
the link ¢ — j, i.e., h;; ~ Rayleigh(o;;). The channel gains
Gij £ |hij\2 are, therefore, exponentially distributed, i.e.,
Gij ~ Exp(afj2 /2). Hence, all the g;;’s are positive and can

take values in the range (0, 1].

C. Linear Interference Functions

The power level chosen by transmitter ¢ is denoted by
p; and the intended receiver is also indexed by i. The
interference power at the ith receiver consists of both the
interference caused by other transmitters in the network
> jer , 9jip; (Where T_; denotes all the transmitters j in the
network that interfere with transmitter’s ¢ communications,
ie. j # 4,7 € T), and the thermal noise v; in node 4’s
receiver. Therefore, the interference at the receiver i, I;, is
given by I;(p—;) = Zjeti gjip; + vi, where p_; is the
vector of powers levels of all transmitters except p;, i.e.,
p_i = [pl Di—1  Di+1 ...pm}. The link quality
is measured by the Signal-to-Interference-and-Noise Ratio
(SINR), given by

Fz(p) _ 9iiDi , (1)

ZjeT,i 9jiP; + Vi

where p is the vector of powers levels of all transmitters.
Due to the unreliability of the wireless links, it is necessary
to ensure QoS in terms of SINR in wireless networks. Hence,
independently of nodal distribution and traffic pattern, a
transmission from transmitter ¢ to its corresponding receiver
is successful (error free) if the SINR of the receiver is greater
or equal to ; (I';(p) > v:), called the capture ratio which
depends on the modulation and coding characteristics of the
radio. Therefore,

GiiDi
2jer ; 95iPi Vi
Inequality (2) which depicts the QoS requirement of a com-

munication pair ¢ while transmission takes place is equivalent
to the following condition:

E 2

9ji Vi
pizri| D> i+ — | 3)
j€T7L g’LZ g’L’L
In matrix form, for a network consisting of » communication
pairs, this can be written as

p>TGp+n, 4)
. T
where I' = diag(v), P = [p1 P2 - Pn] . M =
Yivi/gii and
0 ,ifi=j,
Gij =X g ...
7 {g]i: ,if i # 7.
Let C = I'G such that
0 ,if 1 =7,
Cii = 3 5
! {%-gj.;  if 0 # 7, )

then (4) can be written as
(I-C)p=n. (©6)

Matrix C' has strictly positive off diagonal elements and,
since we are not considering isolated group of links that
do not interfere with each other, it is reasonable to assume
that C' is irreducible [23]. By the Perron-Frobenius theorem
[23], the spectral radius of C is a simple eigenvalue and
its corresponding eigenvector is positive componentwise.
The necessary and sufficient condition for the existence of
a nonnegative solution to inequality (6) for every positive
vector 7 is that (I—C') ™! exists and is nonnegative. However,
(I-C)~! > 0if and only if p(C) < 1 [24, Theorem 2.5.3],
[25]. Therefore, the necessary and sufficient condition for (6)
to have a positive solution p* for a positive vector 7 is that
the Perron-Frobenius eigenvalue of the matrix C' is less than
1. Hence, a network described by matrix C' is feasible if and
only if p(C) < 1.

I'V. THE FOSCHINI-MILJANIC ALGORITHM

A. Continuous-time algorithm

The FM algorithm, defined by the following differential
equation [4], is given by

pilt) = ki [ —pi(t) +7i | D gl_ipj(t) + ;i (D

JET—'L g’LZ (%3

where k; € Ry denotes the proportionality constant and ~;
denotes the capture ratio. The power control algorithm (7)
can be written in matrix form as

p(t) = K(Hp(t) +n), ®)

where K = diag(k;) and H = I — C. For this differential
equation, it is proven that the overall system converges to
the optimal set of solutions, p* > 0, for any initial power
vector, p(0) > 0, provided p(C) < 1. Hence, the distributed
algorithm (7) for each communication pair, leads to global
stability of the system.

B. Discrete-time algorithm

In the case of discrete-time FM algorithm, we have the
difference equation

y
pi(t+1) = (1=ki)pi(t) +kivi Z%pi(t)-i-; .9
g#i It "

Taking all the nodes together, (9) can be written in matrix
form as

p(t+1)=({ - KH)p(t) + Kn, (10)

and as long as k; is chosen in the interval (0, 1] the iterative
algorithm (9) converges from any initial values for the power
levels of the individuals transmitters, provided again that
p(C) < 1.



V. PROBABILISTIC STABILITY CERTIFICATES

As mentioned in Section IV, both the continuous- and
discrete-time FM algorithms are globally asymptotically sta-
ble if and only if p(C') < 1. Since for non-negative matrices,
p(C) < ||C|c0» a sufficient (but more conservative) condi-
tion guaranteeing stability of the system without requiring
the knowledge of the whole matrix C is ||C||o < 1, i.e.,

95 >% Y, G VieT. (an
J#4,5€T

This condition is equivalent to H being a diagonally dom-
inant matrix with all main diagonal entries being positive,
which is equivalent to the Gershgorin circle theorem. Thus, it
provides an upper bound on the achievable target SINR levels
in a given network. We can, therefore use the Gershgorin
circle theorem to identify the probability of the worst case
scenario, i.e., when at least one eigenvalue has the possibility
to move to the unstable region for the FM algorithms (i.e.,
in the continuous-time the positive real half-plane, and in the
discrete-time the unit disc).

Since the channel conditions are time-varying, the goal of
this work is to characterize the conditions for stability (con-
vergence) of the FM power control algorithms in probability.
In Proposition 1, we give such a probabilistic condition that
holds under some assumptions.

Proposition 1. Consider n active connections where g;j ~
Exponential(8) when i # j and g; ~ Exponential(«).
Assume, without loss of generality, that ; has the same value
for everyone and that 0 < k; < 1 (important only for the
discrete time case). Under these assumptions, the probability
© £ P(2 < 0),z € R, that equation (11) holds is given by

1 n(n—1)
©- <1+va/ﬂ> '

Proof. Let w; = 3, , gi;. Since g;;’s are Exponential(/3)
random variables (RVs) and w; is the sum of n — 1 g;;’s,
then w; is a Gamma(n — 1, ) RV (and since n is an integer,
w is an Erlang(n — 1, 8) RV), i.e., the PDF of w; is

B Bn—l
@) = 5 =%
Let v; = yw;. We use the rule about transformation of RVs
and we get that v; is a Gamma(n — 2, 3/v) RV with PDF

_ (ﬁ/V)n_l n—2_—Bx/vy
fv(x)—mit 2P/,

Then, we define u; = v; — g;;. The PDF of z; is given by
o0
fulz) = / fo(x + 8) fexp(a, 8)ds.

Since both v; and g;; cannot be negative, the above relation
gets simplified to

/0 T e+ 8) foglcn 8)ds,

12)

n—2_—pBx

x (13)

(14)

5)

if x >0,

folx + 8) foxp(a, 8)ds, if x <O0.

—T

These integrals have known closed forms, so finally we get

>n—1 L(n—1,(a+B/v)z) eom:’ if £ > 07

B
@ (w% (n—2)!

n—1
/8 axr
@ (7&-&-5) e
where by I' we denote the upper incomplete gamma function
defined by T'(k,2) = [ sk~le~*ds. The probability that u;

is negative is ’
0 6 n—1
P(u; <0) = /_OO fulz)dz = (’YOZJrﬁ) . (1e6)

Finally, we define z = max{u1,...,uy}. The probability of
z being negative is equal to the probability of all u;’s being
negative, that is

B n(n—1) 1 n(n—1)
re<0-(553) () O

If z < 0, then we know that H is diagonally dominant and
all Gershgorin discs are contained in the negative real plane;
thus, the system is stable. If z > 0 then this means that at
least a part of one of the Gershgorin disks is in the positive
real plane (while the eigenvalues may still all have negative
real parts). However, notice that unlike the case z < 0, the
case z > 0 does not guarantee that the system is unstable.

fu(r) =

if z <0,

VI. EFFECT OF THE PARAMETERS

Equation (12) shows that the probability © = P(z < 0)
depends only on n and the ratio ¢ = vya/S5. When ¢ is a
constant then this probability goes to 0 as n grows. However,
in some application it may be reasonable to assume that ¢
is a function of n, see for example Section VI-A. Then, the
limit lim,,_, o, © depends on how fast ¢(n) decays. We have
the following proposition:

Proposition 2. Let ¢ > 0, ¢ > 0 and ¢p(n) = ecn=9+0(n~9)
for n € N, then we have the following cases:

1) If ¢ < 2, then lim,_,,, © = 0.

2) If ¢ =2, then lim,,_,,, © = e~

3) If ¢ > 2, then lim, .., © = 1.
Proof. Recall that ©(n) = (14 ¢(n)) ("= Tt is straight-
forward to check that x — 22 < log(1 + ) < z holds for all
|z| < 1/2. Let n be big enough so that ¢(n) < 1/2, then

¢(n) — ¢(n)* < log(1 + ¢(n)) < é(n).

By the assumption for ¢(n) we have that ¢(n)? = O(n=29)
which means that

¢(n) = d(n)* = en™7 + o(n™?).

We exponentiate the above inequality and we get

e o <1 4 g(n) < e oY),

Finally, we raise this relation to the power —n(n — 1). Thus,
for the lower bound we have
(14 ¢(n)) "D > g=(en® Ien!Tro(n1)

— e~ (e THo(n? "),



Similarly, for the upper bound we have

(1 + ¢(n))—n(ﬂ—1) < ef(cn27q+6n1’q+o(n2fq»
= 67(5n2_‘1+0(n2—q))

From the last two relation we see that there are 3 cases:

1) If ¢ < 2, then the exponent of n is positive, so
lim,, 00 (1 + ¢(n))~ =1 = 0.

2) If ¢ = 2, then the exponent of e becomes —c + o(1),
50 lim,, o0 (1 + ¢p(n)) 7= = ¢—c,

3) If ¢ > 2, then the exponent of n is negative, so
lim,, 00 (1 + ¢(n))"""=D = 1. O

A. Closest neighbour connections

Let us assume that that we have n transmitters and n
receivers. Each device aims to communicate with its closest
neighbour. We assume that the parameter « is inversely
proportional to a power of the distance, 7, the minimum
distance and the parameter [3 is inversely proportional to the
same power of the mean distance. It is known that 7 depends
on the environment and can be anything between 2 (in free
space) and 6; see, e.g., [26].

1) Nodes distributed normally on the plane: We assume
that each device is located on the plane and each coordinate
is a standard normal random variable. This means that each
receiver has n transmitters in its vicinity and it tries to listen
to its closest one. Let r; denote the distance between the
receiver and the ¢’th transmitter. We want to calculate the
expected mean distance and the expected minimum distance.

Lemma 2. We have

™

bl =15

Elmin({rs, ..., ra})] = V/2”;

This lemma implies that we expect for large n to have
#(n) = vya/B =~ c/n™/?. This means that if 7 < 4, the
probability that the Gershgorin discs are contained in the
negative real half plane as we increase n tends to zero.
However if 7 > 4 the probability that the system will remain
stable as we increase n tends to 1.

E[mean({r;, ..

and

Proof of Lemma 2. Let x1 and x5 be standard normal ran-
dom variables and define y = z; — 2. By following the
relation about the difference of random variables, we get
that f,(z) = \/ge_x2/2. Then, we get the PDF of z =
y? be using the relation for the transformation of random
variables with ¢(x) = 22 and we get f.(v) = f;%
If z; and z5 have the above PDF then we can find the
PDF of w = 21 + 22 by using the relation for the sum of
random variables and we get it is exponential with f,,(z) =
~””  We use again the relation for the transformation
of random variable to get the PDF of r = /w and we
get f.(x) = ze~*"/2. The cumulative distribution function
(CDF) of r is given by F,.(x) =1 — e~=°/2. Since all 73’8

€

are independent and expectation is a linear functional, we
have Elmean({r;,...,r,})] = E[r] = /7/2.
Let ¢ = min({r;,...,7,}), then we need to observe that

1-F,(z) =P(u > ) =P(min({r;,...,mn}) > )

=[[®0i>2) =0 -F. ()"
=1

Hence, we find Fj,(z) = 1 — (1 — F.(2))" = 1 —
e—n7%/2 4nd fu(z) = nze~"*"/2_ Finally, we have E[u] =

IS wfu(z)de = Vo O

2) Nodes distributed uniformly on the unit square: Let us
assume now that we distribute the devices uniformly in the
unit square. As before we choose a receiver and we define r;
to be the distance between it and the ¢’th transmitter. Then
for the expected mean and minimum distance we have the
following result:

Lemma 3. We have

Elmean({r;,...,rp})] =~ 0.5214

and for large n there exists C' > 0 such that

]~ 2

E[min({r, .. R~ N

As it is the case of normally distributed points, we see
that whether the system becomes unstable depends on 7.

Lemma 3. Let x1 and 25 be uniform [0, 1] random variables
and let y = |z1 — 2|, then the PDF of y is supported on [0, 1]
where it has the form f,(z) = 2 — 2z. We define 2z = y?
and we get f,(z) = %E — 1. If z; and z5 have the above
PDF, then the PDF of w = 21 + 25 is given by

/wfz(s)fz(:n—s)ds7 0<z<l1
fuw(z) = 01

/71 f2(8) f=(z — s)ds,
which simplifies to

T—4Vr+z 0<z<1

fuw(x) = ¢ 2arcese(y/z) + 4vx — 1 lez<?
+2arctan(y/r — 1) —x —2 =
We define r = \/w and we get
2x(m — 4o + 2?) ,0<z <1
(1) = . 7 _
T e T Ly aees v
By integration we can get the CDF:
ﬁxQ—%x?’—l—ix‘l ,0<x <1

§Va? —1(22% + 1)
+222 arcese(x)

<
—2x2 arctan(v/z2 — 1)) 1<z < V2

o] -3
TR

F.(x) =



Then, we have E[r] = fo\/i zfr(x)dzx = 0.5214.

Just like before, we define p = min({r;,...,r,}) and
it holds Fj,(z) = 1 — (1 — F.(z))", so we find f,(z) =
nfo(@)(1 — Fr(z)" and B[y = (Y2 f,(x)dz. This
integral does not have a simple closed form from which we
can deduce its asymptotic behaviour for large n. However
we can deduce the asymptotic behaviour by analyzing the
integrand. First we observe that the f,, goes exponentially
to 0 as we increase n for all x > 1. So for large n we can
write

B~ [ atle)ds = [ naf@) - F@) e

Then, we notice that the distribution is unimodal for all n.
This is due to the fact that (1 — F,.(z))""! =1 atx =0 and
converges to 0 exponentially as we increase n for all z > 0.
Moreover f,.(z) is unimodal, f-(0) = 0 and quadratically
flat at = 0. This means that there is only one maximum
that converges to 0 and as n increases and the width of the
peak decreases; see Fig. 1.

6,

o n=1

4t n=5

3 n=10
27 —n=20
1

012 0:4 06 08 1.0 12 14

Fig. 1: The graph of f, for several values of n. Notice that
when n =1, f, = fr.

This means that we only need to analyze the behaviour
for large n of f, close to 0. Notice that if we have already
n points on the plane, then the number of them that are in a
disk of a small radius R is equivalent to a 2d Poison point
process with parameter nmR2. So when we add another point
the probability of it being at a distance bigger than R from
any of the existing points is the Poisson distribution evaluated
at0,ie., P(u>R) ~ e—nTR? Thus, we find that for big n
and small z, f,(z) ~ 2rnze~ "R From this we can easily
deduce that Efu] =~ Ln, which recovers the asymptotic

2
behaviour of E[u] up to a multiplicative constant. O

VII. NUMERICAL EXAMPLES

We have checked numerically the validity of © in pre-
dicting the stability of the system. The results are shown
in Fig. 2. The numerical results were obtained by the Monte
Carlo method with 1000 trials. We notice that the probability
the system is stable, denoted here by II, which we calculate
from Monte Carlo is always higher than what © predicts
and this is because O is the probability that all Gershgorin
discs are contained in the negative real half-plane. Of course
this is a lower bound for II and this is exactly what we

—¢=10n2
— ¢=102r?)™"
¢ — p=10EmR)"
— ¢ =10(4m?)™"
— ¢=10(57)""
(b)
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Fig. 2: Probability of the system being stable for different
values of n is shown in the figures. Solid lines represent ©

and dots represent numerical values obtained by the Monte
Carlo method.

observe. Notice that when the exponent of n is not —2, II
and O have the same trend. Interestingly in the case of the
exponent being —2, © tends to some number between 0 and
1, but II increases towards 1.

We have also checked numerically the distribution of the
average and minimum distance between points on the plane.
For each trial we have generated n + 1 random points. The
last point generated was the one against which the distances
were measured. We have performed 10000 trials for each
n. Fig. 3 shows the average distance, the minimum distance
and the minimum distance multiplied by +/n. Notice that
the = axis denotes the value of n in thousands. We see that,
as expected, the average distance and the minimum distance
multiplied by /n are independent of n.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we studied the stability of the FM algorithm
when the channel gains are uncertain. More specifically,
we provided probabilistic conditions with respect to the



35 0.8;

3.0 &

25 0.6;’t A

2.0

150 . 0

1.0 02!

0.5

2 4 6 8 10 2 4 6 8 10
(a) (b)

(©) (d
20 1.5
15
1.0
10
0.5

(e) (®

Fig. 3: The first column shows the graphs for the average
and minimum distance in the case of normally distributed
points. The second column shows the graphs for the average
and minimum distance in the case of uniformly distributed
points. The numbers in the = axis corresponds to thousands.
In (a) and (b) the average distance with n neighbours is
plotted against n, in (c) and (d) the minimum distance with
n neighbours is plotted against » and in (e) and (f) the
minimum distance scaled by /n.

parameters of the channel distributions for which the sys-
tem is stable. Furthermore, we studied the effects of these
parameters for different node distribution on the plane. The
observations of this work open up the possibility of designing
the system such that it is always stable as it scales up. We
can do so by using localization algorithms to position the
devices that need to communicate more often closer and by
making sure that power of the interfering signals decay as
fast as possible; this can be achieved, for example in MIMO
systems, by using directional antennae.

Part of future work involves studying other distributions,
such as the Nakagami-m distribution.
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