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Abstract— In this paper, we address aircraft conflict detection
on a mid-term horizon. We adopt a probabilistic approach
and provide a simple method to estimate the probability of
two aircraft getting closer than some minimum predefined
distance, based on a commonly adopted Gaussian model of
the deviation from their planned trajectories. A key feature of
our method is that the probability estimate is accompanied
by a deterministic accuracy certificate. This is achieved by
adopting a geometric approach to conflict probability estimation
and jointly computing a lower and an upper bound on the
conflict probability. These bounds can be inspected and refined
if the resulting accuracy of the probability estimate is not
adequate. Successive refinements are guaranteed to lead to an
estimate with the desired accuracy. Numerical results show the
effectiveness of the proposed method.

I. INTRODUCTION

Demand for air transportation has increased during the
recent decades and air traffic is expected to further grow also
due to the introduction of unmanned aerial vehicles into the
civil airspace. The NextGen, SESAR and CARATS projects,
developed in the USA, Europe, and Japan, respectively, aim
at increasing airspace capacity through the introduction of
new operational concepts where aircraft are not constrained
anymore to fly along predefined airways, and through a
higher level of automation in the air traffic management
system (ATMS), [1], [2]. An essential part of this au-
tomation process is the development of effective methods
for avoiding that aircrafts get closer than some predefined
pairwise distance (conflict situation) or enter forbidden areas
of the airspace. Automated conflict detection and resolution
(CD&R) methods are then needed to timely issue an alert and
take appropriate resolution actions so that predicted conflicts
do not actually occur. The introduction of these support tools
will alleviate the tasks of the air traffic controllers that are
currently responsible for aircraft safety and have to detect
and solve conflicts on a mid-term prediction horizon of about
20 minutes.

This paper aims at improving the existing mid-term
conflict detection (CD) approaches by proposing a simple
method that guarantees the desired accuracy in conflict
prediction while requiring a low computational effort. In the
sequel, when referring to CD, we shall mean mid-term CD.
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Conflicts should be timely predicted with a certain accu-
racy so as to reduce false alarms and missed detections. One
of the difficulties in CD is that the aircraft motion is affected
by uncertainty, mainly due to wind, but also to other sources
of error related to tracking, navigation, and control.

CD methods can be classified into nominal, worst-case
and probabilistic ones [3], based on the approach adopted
for conflict prediction. In nominal CD methods, aircraft
are assumed to fly along their nominal trajectories and
uncertainty in their future position is neglected, which may
cause a large number of missed detections. In worst-case
CD methods, all possible future positions are considered
equally likely, thus resulting in a large number of false
alarms. Finally, probabilistic CD methods lead to a trade-
off between false alarms and missed detections since they
do account for uncertainty affecting the aircraft position but
weight it according to its likelihood [2]. In this paper, we
address CD through a probabilistic approach.

Our goal is to introduce a new method that is computation-
ally efficient and provides an estimate of the instantaneous
probability of conflict together with a deterministic bound
on its accuracy.

Similarly to most works in the literature on probabilistic
CD (see Section II), the uncertainty on the aircraft position
is characterized through its deviation from the nominal tra-
jectory and it is Gaussian and independent between aircraft.
An over- and under-estimate of the conflict probability is
calculated, and the estimate is taken to be their average.
The (a-posteriori) accuracy bound is then straightforward to
compute and, upon inspection, it can be decreased by refining
the under- and over-estimates until the desired accuracy level
is obtained.

The rest of the paper is organized as follows. In Section II
we provide a short review of methods for probabilistic CD.
We then formulate the problem of estimating the instanta-
neous probability of conflict in Section III. The proposed
method is described in Section IV. Section V shows some
numerical results where we compare our approach with
respect to competing ones in the literature. Some conclusions
are drawn in Section VI.

II. PROBABILISTIC METHODS FOR CD

Several probabilistic CD methods have been proposed in
the literature using analytical [4]–[6], numerical [2], [7]–
[10], and sample-based [11], [12] approaches.

In [4] a simple and fast analytic solution, called geometric
method, is proposed. A Gaussian model of the deviation of
the aircraft from the nominal trajectory is adopted for the



level flight case, motivated by a statistical analysis on real
air traffic data [13], [14]. Under independence assumption on
the two aircraft deviations, the distance between two aircraft
is also Gaussian. A conflict occurs if the random variable
modeling the aircraft distance enters a circle of radius equal
to the safety distance (conflict zone). First, a coordinate
transformation is used to convert the two-dimensional (2D)
Gaussian probability density function into the product of two
1D Gaussian probability density functions. Then, assuming
constant heading and velocity, the (transformed) elliptical
conflict zone is extended in one dimension and the integral of
the product of the 1D Gaussian densities is computed along
the extended conflict zone that models the aircraft encounter.
If the heading and velocity are not constant throughout the
encounter, then, those at the point of minimum distance are
considered. In [5] the approach in [4] is refined by taking the
maximum over the prediction horizon of the instantaneous
probability of conflict, which is computed by integrating
the 2D Gaussian probability density function modeling the
aircraft distance over a rectangular over-approximation of the
conflict zone. In this way, the two-dimensional integral of
the Gaussian density is decoupled into two one-dimensional
integrals that are easy to compute. Note that the obtained
estimate is an upper bound on the instantaneous probability
of conflict, given that an over-approximation of the conflict
zone is adopted. The method proposed in [5] for over-
estimating the instantaneous conflict probability is further
improved in [6] by covering the elliptical conflict zone with
a finite number of rectangular sets. The estimation error of
the geometric method is thus reduced. However, no accuracy
bound is provided for the estimation.

In [7], the accumulated risk of a conflict over the time
horizon of interest is considered for CD. This accumulated
risk is computed by dividing the prediction time horizon
[T0, Tf ] in time steps [tk, tk+1], k = 0, . . . ,M − 1, with
T0 = t0 < t1 < · · · < tk < tk+1 < · · · < tM = Tf , and
computing the risk of a conflict over each time step [tk, tk+1]
as the integral over the conflict zone of the probability
density function modeling the aircraft distance, conditional
to the fact that no conflict occurred in the previous time steps.
This involves propagating the conditional probability density
function through the dynamics of the two aircraft distance
over [tk, tk+1], and restricting the domain of the propagated
density to the conflict zone. Initialization at time t0 = T0
is provided by a 2D Gaussian probability density function
as in [4]. The accumulated risk is the sum of the risks
associated with the M time steps. Various approximations are
introduced even for a linear model of the dynamics governing
the two aircraft distance. In [8], the conflict probability over
a time interval for the Gaussian model in [4] is computed
based on its flow rate at the boundary of the conflict zone
(probability flow). Both the methods in [7] and [8] calculate
an upper bound on the conflict probability to reduce the
computation time. In [8] the uncertainty affecting the aircraft
motion is considered to be Gaussian over the whole reference
time horizon, which ease the computations with respect to
[7], where only the initial (unconditional) probability density

function of the aircraft relative position is assumed to be
Gaussian. The accuracy of both methods is degraded when
the conflict period is long, such as for parallel scenarios, or
when the conflict probability is not negligible, [2], which is
the case relevant to conflict detection. In [9], the probability
flow is still adopted but decomposed into two contributions,
a diffusion and a drift term, in order to ease the calculation
of the collision probability between two ships. Still, the same
issues of the method in [8] are present. Additionally, to obtain
accurate results, a parameter related to the diffusion term has
to be tuned. In [10], the cumulative distribution function of
the quadratic form of the distance is approximated using a
truncated Laurent series expansion, in order to provide an
estimate of the instantaneous probability of conflict which is
indeed the probability that the (Gaussian) aircraft distance
belongs to a circle. The accuracy of the method can be
improved by increasing the order of the truncated Laurent
series expansion. However, no error bound is provided.

In [11], a randomized algorithm is proposed to estimate the
maximum instantaneous conflict probability over a mid-term
horizon based on a piecewise linear stochastic differential
equation describing the aircraft motion between waypoints.
[12] adopts for CD the predicted probabilistic reach sets of
the positions occupied by the aircraft, which are computed
via a sample-based approach on a 2D nonlinear aircraft
motion model subject to a Gaussian random field modeling
the wind. Although sample-based algorithms can be applied
to general prediction models, they typically require a large
number of runs which can be computationally intensive
and time demanding for complex dynamics. Also, they can
provide an a-priori accuracy bound but only in probability.

III. PROBLEM FORMULATION

Consider two aircraft, say aircraft S and aircraft R, that
are flying at the same constant altitude while following their
nominal level flight trajectories. The actual positions rS and
rR of aircraft S and R, respectively, may deviate from the
nominal ones due to various sources of errors including wind.
As a result, rS and rR are the sum of the nominal aircraft
position and its stochastic deviation:

rS = r̄S + ∆rS

rR = r̄R + ∆rR

Now, in order to estimate the instantaneous conflict prob-
ability along the reference mid-term horizon, at time t we
shall determine the probability that the aircraft distance

d(t) = rS(t)− rR(t) (1)

has an absolute value that is smaller than the safety distance.
In the following, time dependence is omitted to ease the
notation. As suggested, e.g., in [5], we can fictitiously view
aircraft R as the reference aircraft flying with a velocity
that is equal to the relative instantaneous nominal velocity
of aircraft S with respect to aircraft R, and aircraft S as
the stochastic aircraft whose distance from aircraft R is
given by d. Correspondingly, the probability of conflict is



Fig. 1: Conflict zone and combined error covariance [5]

the probability that aircraft S is within the circular conflict
zone D ⊂ <2 centered at aircraft R with radius equal to
the safety distance. This interpretation is pictorially drawn
in Fig. 1 taken from [5]. In formulas, we have that

pc =

∫
D

fd(s)ds, (2)

where fd denote the probability density function of the 2D
random variable d. According to the experimentally assessed
model in [4], for mid-term horizon prediction purposes, the
tracking errors ∆rS and ∆rR of the two aircraft can be
modeled as two jointly Gaussian random variables with zero
mean, covariance matrices VS and VR, and cross-covariance
matrices VSR = E[∆rS∆r>R ] and VRS = E[∆rR∆r>S ].

Remark 1: Note that the cross-covariance terms could be
used to model the correlation caused by wind [15]. However,
it is set to zero in most approaches in the literature. Also, the
covariance matrices VS and VR are typically not diagonal,
since none of the coordinate axes is generally aligned with
the aircraft trajectory and the along-track and cross-track
errors are independent but with a different variance. �

Correspondingly, d is Gaussian and can be characterized
through its mean and covariance matrix:

fd(·) = G2(·;µ, V ),

where µ = r̄S − r̄R can be computed based on the nominal
trajectories and V = VS + VR − VSR − VRS. By plugging in
this expression for fd in (2) one finally obtains:

pc =

∫
D

G2(s;µ, V )ds. (3)

The issue of efficiently computing (3) guaranteeing a high
accuracy in a limited computation time is addressed in the
next section.

IV. PROPOSED METHOD

The conflict probability in (3) cannot be calculated an-
alytically because it involves integrating a 2D Gaussian
density function. However, if it can be reduced to computing
integrals of 1D Gaussian densities, then, a high quality

approximation of each single 1D integral can be obtained
so that the resulting method is classified as analytical (see
Section II). This is the idea exploited in the geometric
methods in [4]–[6] and also in the one proposed here, which
is a simple extension of the method proposed in [6]. Despite
its simplicity, this extension has the twofold positive effect
of improving the quality of the estimate of the conflict
probability and also providing a deterministic bound on its
accuracy. This is indeed a key distinguishing feature of our
method and allows the user to decide if possibly refining
the estimate upon inspection of its value and accuracy. This
is useful, for example, in the case of a not much accurate
estimate that is close to the threshold value set for issuing
an alert in a CD system.

In order to compute our estimate and accuracy bound,
we first apply a coordinate transformation to reduce the
covariance matrix V in (3) to an identity matrix so that the
two component of the distance in the new reference frame
are independent with unitary variance and keep independent
and with unitary variance for any rotation of the coordinate
system. This transformation rests on the Cholesky factoriza-
tion of the positive definite covariance matrix V :

V = L>L (4)

where L is upper triangular with positive elements on the
diagonal. If we set the new coordinate variables as[

ξ
η

]
= L

[
x
y

]
where x and y are the original coordinates, then, in the new
coordinate system d is still Gaussian but with the following
mean and variance:

µ̃ = Lµ =

[
µ̃ξ
µ̃η

]
and Ṽ = I

so that

G((ξ, η); µ̃, Ṽ ) = G(ξ; µ̃ξ, 1) · G(η; µ̃η, 1), (ξ, η) ∈ <2.

Correspondingly, the circular conflict zone D is reshaped into
an ellipse D̃ still centered at the origin as it was D. Without
loss of generality, it can be assumed that the major axis of
the ellipse D̃ is parallel to the vertical axis η. As a matter
of fact, if this were not the case, a suitable rotation (see e.g.
[16, p. 979]) can be applied to the coordinate system so as
to make the major axis of D̃ aligned with the vertical axis
while preserving the property that the variance matrix of d
is the identity matrix.

Finally, equation (3) can be rewritten as

pc =

∫
D̃

G(ξ; µ̃ξ, 1) · G(η; µ̃η, 1)dξ dη. (5)

If the ellipse D̃ is approximated by the union of rectangular
sets with sides aligned with the coordinate axes, then, the
integral in (5) can be approximated by the sum of the
integrals over the rectangular sets, which in turn reduced
to the product of two integral involving G(·; µ̃ξ, 1) and
G(·; µ̃η, 1), separately. Both an upper and a lower bound



Fig. 2: Outer and inner approximation of the conflict zone
through N = 5 rectangular sets.

on the conflict probability can be determined by adopting
an inner and an outer approximation of the ellipse through
rectangular sets. An example is shown in Fig. 2.

Only upper bounds on the conflict probability have been
introduced in the current relevant literature. Here, we de-
termine both an upper bound pUB

c and a lower bound pLBc
on the conflict probability, and define its estimate as their
average

p̂c =
pUB
c + pLBc

2
. (6)

The quality of the estimate p̂c in (6) can be quantified via an
accuracy parameter ε such that pc ∈ (p̂c − ε, p̂c + ε), where

ε =
pUB
c − pLBc

2
. (7)

We shall next explain in some detail how we compute
pUB
c and pLBc . Note that in [6], only the upper bound pUB

c is
computed and the conflict probability estimate is set equal to
such an upper bound without providing any accuracy. This
prevents the possibility of implementing a guided refinement
so as to achieve some desired quality of the estimate.

A. Upper and lower bound computation

Let us partition the minor axis of the ellipsoidal conflict
zone centered in the origin of the (ξ, η) plane with the major
axis aligned with the vertical η axis into N intervals [ξ−i , ξ

+
i ),

i = 1, . . . , N , of the same length as shown in both plots of
Fig. 2. Consider now the points (ξ, η) of the ellipse with
ξ = ξ−i and ξ = ξ+i that belong to the positive η half plane.
Let ηMi and ηmi be the largest and smallest values of the
resulting η coordinates (these two quantities are shown for
the second rectangular set in Fig. 2). Then, we can compute
an upper bound on the conflict probability as

pUB
c =

N∑
i=1

pUB
c,i ,

where

pUB
c,i =

(
Ψµ̃η

(ηMi )−Ψµ̃η
(−ηMi )

)
·
(
Ψµ̃ξ

(ξ+i )−Ψµ̃ξ
(ξ−i )

)
with Ψα(x) :=

∫ x
−∞ G(v;α, 1)dv =

∫ x−α
−∞ G(v; 0, 1)dv.

Analogously, we can compute a lower bound on the
probability of conflict as

pLBc =

N∑
i=1

pLBc,i ,

where

pLBc,i =
(
Ψµ̃η

(ηmi )−Ψµ̃η
(−ηmi )

)
·
(
Ψµ̃ξ

(ξ+i )−Ψµ̃ξ
(ξ−i )

)
.

If we grow N , then, the accuracy (7) of the conflict proba-
bility estimate in (6) improves.

V. NUMERICAL RESULTS

In this section, we compare the proposed approach with
the geometric approaches in [4], [5], and [6] through two
numerical examples. Results are reported in Sections V-
A and V-B. In both examples, we consider an encounter
where two aircrafts are flying at the same constant alti-
tude, each one following a nominal trajectory traveled at
constant velocity. This is the framework where the method
in [4] is more accurate. In order to set a baseline for all
methods, the conflict probability is also evaluated through
a highly accurate but time consuming method, called the
“exact method”, resorting to the numerical integration of
the probability density function of the distance (1) using
a fine uniform mesh of the conflict zone with equilateral
triangles. The mesh is generated by using the DistMesh
toolbox [17] with the initial edge length set to 0.0625 nmi
(nautical miles).This parameter is the initial distance between
the corner points of the triangles. According to the standards
for enroute flight, the safety distance is set equal to 5 nmi.
Computations are performed with MATLAB on a Dell 1320
Notebook Computer.

Note that the accuracy of the conflict probability estimate
can be improved in our method and the one proposed in [6]
by increasing the number N of rectangular sets approximat-
ing the conflict zone, whereas the accuracy of the methods
in [4] and [5] is fixed for a specified conflict geometry and
cannot be improved. Furthermore, in our method we can
decide if further increasing N and improving the estimate
by inspecting the obtained accuracy ε.

A. Numerical example with fixed relative heading

Fig. 3: Encounter geometry [5] – example of Section V-A.
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Fig. 4: Lower bound, upper bound, and estimate of the conflict probability obtained with the method proposed in this paper
for a number of rectangular sets N ∈ {3, 10, 15, 25} – example of Section V-A.

We consider the 2D encounter in Fig. 3 taken from [5],
where the stochastic aircraft is at the origin of the coordinate
frame and the reference one flies with a constant horizontal
velocity at a distance of 5.5 nmi along the vertical axis.
The combined error covariance V is assumed to be constant
during the encounter and equal to the identity matrix when
measured in nmi2.

In Fig. 4, we plot lower bound, upper bound and estimate
of the conflict probability obtained with the method proposed
in this paper, for a growing number N of rectangular sets.

time (s)
0 10 20 30 40 50 60

C
on

fli
ct

 P
ro

ba
bi

lit
y

0

0.1

0.2

0.3

0.4

Exact
Proposed Method
Ref [4]
Ref [5]
Ref [6]

time (s)
0 10 20 30 40 50 60

C
on

fli
ct

 P
ro

ba
bi

lit
y 

E
rr

or

10-7

10-6

10-5

10-4

10-3

10-2

Fig. 5: Top plot: Conflict probability estimate computed with
our method, those in [4], [5], [6], and the exact method.
Bottom plot: error of the estimate obtained with our method
and that in [6] using N = 100 rectangular sets – example of
Section V-A.

The results of conflict probability estimation obtained with
our method, the methods in [4], [5], and [6], and the exact
method are reported in the top plot of Fig. 5, using N = 100
for both our method and that in [6]. The results show that
the method proposed in [4] as well as that in [5] largely
overapproximate the probability of conflict and has, hence,
low accuracy. On the contrary, the method proposed here and

the method proposed in [6] have both comparable accuracy
and provide an estimate that is very close to that obtained
with the the exact method since N is large (N = 100). The
estimation error is shown in the bottom plot of Fig. 5.

B. Numerical example with different relative headings

Fig. 6: Encounter geometry – example of Section V-B.

We consider the 2D scenario in Fig. 6, where the stochastic
aircraft is at the origin whereas the reference aircraft is on
the circle of radius 5 nmi at an angular position θ with a
velocity that is pointing towards the stochastic aircraft.

The conflict probability at time 0 is calculated for θ
ranging from 0 to 180 degree with a step of 10 degrees,
assuming that the combined error covariance V is equal to
the identity matrix.

Fig. 7 shows the error in the conflict probability estimation
and the computation time as a function of the number of the
rectangular sets (N ) used in our method and in the method
proposed in [6]. For each N , average values with respect
to all θ’s are reported. As for the computation time, it is
determined per each θ value as the mean of the computation
times obtained by repeating calculations 1000 times.

In both methods, the accuracy is improved at the expense
of the computation time. However, the error of the method
proposed here decays much faster.

The computation time of the exact method, the method
in [6], and the one proposed in this paper are reported in
Table I, together with the conflict probability error. This error
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Fig. 7: Conflict probability estimation error and computation
time as a function of the number N of rectangular sets for
the proposed method and one described in [6] – example of
Section V-B.

is determined by considering the conflict probability value
calculated by the exact method with the finest mesh (initial
edge length set equal to 0.0625 nmi) as if it were the true
conflict probability. In order to show the trade-off between
the computation time and the conflict probability error of
the exact method, two rougher triangular meshes with initial
edge lengths set equal to 2 and 10 times of the default value
(0.0625 nmi) are considered. The results indicate that the
exact method outperform both the approximation methods in
[6] and in this paper in terms of accuracy if a small-enough
mesh is used. However, this comes at the expense of a much
larger computation time.

TABLE I: Conflict probability error and computation time
of the exact method, the method described in [6], and the
proposed method– example of Section V-B

Method Initial Edge N Conflict Computation
Length (nmi) Probability Error Time (s)

exact 2×0.0625 - 4.0e-6 2.3
exact 10×0.0625 - 7.0e-3 0.07
[6] - 200 5.8e-3 5.6e-4
[6] - 400 3.0e-3 6.6e-4

proposed - 200 3.4e-4 7.6e-4
proposed - 400 1.2e-4 9.5e-4

VI. CONCLUSIONS
In this paper, we addressed mid-term probabilistic CD for

two aircraft encounters in the level flight case. We devel-

oped a new method to compute an estimate of the conflict
probability. The distinguishing feature of our method is that
it provides a bound on the accuracy of the estimate, which
can be used to decide if some refinement of the estimate is
needed. We presented two numerical examples and showed
that the method is promising and better performing with
respect to alternative methods available in the literature.
Further work is needed to extend it to the 3D airspace
where aircraft are not necessarily flying at the same constant
altitude.
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