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Abstract— An interval observer design approach for partially
unknown nonlinear systems is developed, where the unknown
system component is modeled using Gaussian processes and
noisy system measurements. The proposed method is applicable
for bounded nonlinear systems where the system uncertainty
is described by a Lipschitz continuous function. The interval
observer generates a correct estimation error with high prob-
ability, and the error bound is decreased by employing new
training data points.

I. INTRODUCTION

One of the most frequently employed forms of state
observer is the Luenberger observer [1], which essentially
corresponds to a linear dynamical system that converges
towards the actual system’s state over time. Even though
the Luenberger observer is generally only applicable for
linear systems, its success has prompted a number of similar
approaches for nonlinear systems [2], [3]. However, such
observers typically require perfect model knowledge, which
is often an unrealistic requirement in practice. Moreover,
even though nonlinear observers often guarantee convergence
of the state estimate towards the true states, they typically
do not provide any information regarding the precision of
the computed estimate. Interval observers aim to provide an
upper and lower bound for the system’s state during the state
estimation procedure. This is achieved by employing two
observers that serve as upper and lower bound for the state
estimation. Interval observers have become a particularly
popular tool when the system model contains unknown
uncertainties, as they enable to determine the worst case
impact of the system uncertainty on the state estimate [4]–
[6].
Whenever a system’s parametric structure is known, classical
system identification methods can often be employed to
derive good model estimates [7]. However, acquiring para-
metric structures for nonlinear systems is often hard, and can
lead to discrepancies between model prediction and system
behavior. In order to overcome this shortcoming, Gaussian
processes (GPs) are increasingly employed to model nonlin-
ear systems [8]–[10]. GPs are a form of nonlinear stochastic
processes, which define a distribution over infinite sets of
functions by assigning a mean and covariance to every point
in the input space. GPs are employed as a nonparametric
regression tool to model system dynamics using a Bayesian
framework [11].
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So far, most of the work carried out at the intersection
between observers and GPs corresponds to the development
of Bayesian filters for GP models, most of which employ
a Kalman filter formalism [12]–[14]. Such filters aim to
compute the most likely system estimate by employing a
Bayesian framework in noisy settings. This is achieved by
interpreting the GP model variance as the variance of the
normally distributed model disturbances. However, Bayesian
filters not always produce satisfying results, and the choice
of filter can significantly influence the observer performance
depending on the system model [13]. Moreover, no error
bounds for the observer’s estimate are obtained when such
filters are employed.
This paper provides a general framework to design an
interval observer based on Gaussian process models. The
proposed approach employs the Gaussian process model’s
variance to determine upper and lower bounds for the system
estimate. The upper and lower bounds are shown to hold with
high probability.
Notation: Bold lowercase letters denote vectors, bold capital
letters denote matrices. R+ denotes the set of positive
real numbers. ∇ denotes the gradient operator. For any
pair of vectors w,v ∈ Rp, p ∈ N, the notation w ≤ v is
employed to denote ui ≤ wi, ∀i ∈ {1, · · · , p}.
The remainder of this paper is arranged as follows. Section
II introduces the general problem setting. Section III gives
a brief introduction to GP models. The general observer
design approach is provided in Section IV-B. A numerical
illustration of the proposed approach is given in Section V,
after which come some concluding remarks, in Section VI.

II. PROBLEM SETTING

We introduce the general problem setting that is analyzed
in this work. Consider an n-dimensional autonomous non-
linear system of the following form.

ẋ = f(x) + g(x), x(0) = x0,

y = Cx,
(1)

where x ∈ R ⊆ Rn denotes the system’s states, and R is
a known and compact subset of Rn. y ∈ Y ⊆ R is the
system’s output. C ∈ R1×n

+ is a known positive row vector,
the nonlinear function f : Rn 7→ Rn denotes the known
component of the system dynamics, whereas g : R 7→ Rn
describes the unknown and nonlinear component. The goal
of this paper is to design an interval observer for a setting
where the unknown component g(·) is modeled using a GP
and noisy system measurements. To this end, we assume that
the unknown function g(·) satisfies the following condition.



Assumption 1: The function g(·) is bounded and Lipschitz
continuous with respect to its arguments, i.e., there exist
positive scalars Bg and Bdg , such that ||g(x)||2 ≤ Bg and
||∇g(x)||2 ≤ Bdg holds for all x ∈ R.
This is a very unrestrictive assumption due to the compact-
ness of R.

III. GAUSSIAN PROCESS MODEL

Given an input space I ⊂ Rd with dimension d ∈ N, a
GP describes a distribution over functions by assigning a
Gaussian distribution to every point ξ ∈ I. A GP is fully
defined by a mean function m : Rd 7→ R and covariance
function k : Rd ×Rd 7→ R, where the latter is also called
kernel function. A GP is then denoted as GP(m, k). In
practice, the mean m(·) is often set to zero, unless prior
knowledge about the mean is available. The kernel function
k(·, ·) expresses the similarity between two function inputs ξ
and ξ′, and also reflects smoothness properties of the actual
system.
GP models are used as a nonparametric regression tool to
approximate nonlinear functions of the form f : Rd 7→ R
[11]. This is achieved by computing a posterior distribution
conditioned on a set of noisy system measurements of the
form y

(k)
f = f(ξ(k)) + ε(k), where the superscript (k) de-

notes the system measurement, k ∈ {1, · · · , N}, and N ∈ N
denotes the number of system measurements. ξ(k) ∈ I are
the system inputs and ε(k) is measurement noise. Assuming
a mean m(·) of zero, the posterior distribution corresponding
to the GP is then given by the mean and covariance

µN (ξ) = kT (ξ)
(
K + σ2I

)−1
yN , (2)

kN (ξ, ξ′) = k(ξ, ξ′)− kT (ξ)
(
K + σ2I

)−1
k(ξ′), (3)

where yN = (y
(1)
f , ..., y

(N)
f )T ∈ RN contains the noisy

output measurements, and the entries of the function
k : Rd 7→ RN and matrix K ∈ RN×N are given by
ki(ξ) = k(ξ(i), ξ) and Kij = k(ξ(i), ξ(j)), i, j = 1, · · · , N ,
respectively.
A GP kernel defines a Hilbert space, denoted reproducing
kernel Hilbert space (RKHS). The induced norm ‖ · ‖k
measures smoothness with respect to the kernel k(·, ·). For
a detailed discussion on RKHSs, see [15]. The following
theorem is due to [16].

Theorem 1: Suppose that ‖f‖2k≤ Bf , yN is a vec-
tor of N noisy system measurements, where the noise
ε is additive and zero-mean σ-sub-Gaussian. Choose
βN = Bf + 4σ

√
γN + 1 + ln( 1

δ ), where δ ∈ (0, 1) and γN
is the maximal information that can be gained about the GP
prior using N noisy data samples, i.e.,

γN = max
ξ̃(1),··· ,ξ̃(N)∈I

I(ỹN , f̃N ), (4)

where f̃N = (f(ξ̃(1)), ..., f(ξ̃(N)))T contains noiseless mea-
surements and ỹN = (f(ξ̃(1)) + ε(1), ..., f(ξ̃(N)) + ε(N))T

contains noisy measurements. Then, for all N ≥ 1 and
ξ ∈ I, the following holds with probability of at least 1− δ.

|f(ξ)− µN−1(ξ)| ≤ βNσN−1(ξ). (5)

If the set I is compact, then γN has sublinear dependence
on N for a multitude of kernels and can efficiently be
approximated up to a constant [17]. This implies that
the GP model error bound can be decreased with high
probability despite βN growing with N . If the bound Bf
is not available a priori, one can be obtained by employing
guess-and-doubling strategies [17].
Each entry of the unknown function g(·) is
approximated using a GP and corresponding noisy
measurements. The training data consists of pairs
of system inputs x and noisy measurements, i.e.,
D =

{
gi(x

(j)) + ε
(j)
i

}
, i = 1, · · · , n, j = 1, · · · , N . In

order to obtain the necessary noisy measurements, the
known component of the signal, i.e., f(x), is subtracted
from noisy measurements of the system’s time derivative ẋ.
The data points are collected prior to the observer design,
and should be chosen such that the model error bound
(5) is reduced. The variance term σN−1(ξ) is small close
to data points [11], hence the data points should cover
the region of interest efficiently. For a detailed discussion
on how data and kernel choice affect the bound (5), the
reader is referred to [17]. The computed GP mean functions
are then employed to approximate the system dynamics
corresponding to the entries of the functions g, i.e.,

ĝ(x) =
(
ĝ1(x) ĝ2(x) · · · ĝn(x)

)T
, (6)

where ĝ : Rn 7→ Rn denotes the estimated model, and
ĝi(x) : Rn 7→ R, i = 1, · · · , n are GP means. Even though
a multivariate formulation exists for GPs [11], which enables
the function g(·) to be approximated by a single GP, such a
formulation is very cumbersome and corresponds to a high
computational cost, as opposed to employing multiple scalar
GPs. The following assumptions are assumed to hold.

Assumption 2: The kernel k(·, ·) used for the GP model
is Lipschitz continuous and bounded.

Assumption 3: The components of the function g have
bounded RKHS norm with respect to the kernel k(·, ·), i.e.,
||gi||k <∞, ∀i ∈ {1, · · · , n}.
Assumption 3 implies that the kernel k(·, ·) is adequate
to approximate the function g(·). Choosing an appropriate
kernel comprises a problem-dependent task, which strongly
depends on the system characteristics. In practice, universal
kernels are often employed [11], since they can arbitrarily
approximate continuous functions on compact sets. More-
over, Assumption 2 together with Assumption 3 implies that
the entries of the functions g(·) are smooth and bounded.
This applies to a number of physical systems.
A probabilistic model error bound for the i-th entry of ĝ(·)
at a given point x ∈ Rn is given by βiNσ

i
N (x), where βiN

is chosen as in Theorem 1 for a fixed δ. For simplicity of
exposition, the same δ is assumed to have been chosen to
compute βiN for all i.

IV. OBSERVER DESIGN

This section provides a brief introduction to interval ob-
servers and describes how such an observer is designed for
a system of the form given by Equation (1).



A. Interval Observers

In this section, a brief introduction to interval observers is
given, together with related concepts.

Definition 1: Consider the system given by Equation (1).
A system of the form

Σ =

{
ẋ+ = h+(x+,x−, y), x+(0) = x+

0

ẋ− = h−(x+,x−, y), x−(0) = x−0
(7)

is called a framer for Equation (1) if x−(t) ≤ x(t) ≤ x+(t)
for all t ≥ 0.
If a framer produces estimation errors x+ − x and x− − ẋ
that are globally uniformly ultimately bounded, then it is
called an interval observer. Hence, interval observers consist
of dynamical systems that act as upper and lower bounds
for the system’s actual state.

B. Design Approach

In order to avoid unnecessarily conservative observer
bounds, the bound of the known setR are taken into account.
This is carried out by defining the bounds xmax ∈ Rn and
xmin ∈ Rn, whose entries are given by xmax

i = maxx∈R xi
and xmin

i = minx∈R xi, respectively.
Even though an interval observer can be trivially obtained
by employing the bounds xmax and xmin, such a bound is
generally too conservative. Hence, in this subsection, an
interval observer that generates tight probabilistic bounds is
designed.
Consider the dynamical system obtained by setting g(·) = 0,
i.e., the reduced system

˙̃x = f(x̃), x̃(0) = x̃0,

ỹ = Cx̃,
(8)

where x̃ ∈ Rn is the system’s state and x̃0 ∈ Rn is the
system’s initial condition. The following assumption is made.

Assumption 4: Let x̃−0 , x̃
+
0 ∈ Rn, such that

x̃−0 ≤ x̃0 ≤ x̃+
0 . There exist known smooth functions

f+ : Rn × Rn × Y 7→ R and f− : R×R× Y 7→ R, such
that the system

Σred =

{
˙̃x+ = f+(x̃+, x̃−, ỹ), x̃+(0) = x̃+

0
˙̃x− = f−(x̃+, x̃−, ỹ), x̃−(0) = x̃−0

(9)

is an interval observer for Equation (8), and
f+i (x̃+, x̃−, ỹ) ≥ fi(x̃) ≥ f−i (x̃+, x̃−, ỹ) holds for all
x̃+, x̃−, x̃ ∈ Rn with x̃+ ≥ x̃ ≥ x̃− and x̃+i = x̃i = x̃−i .
Moreover, there exists a Hurwitz matrix A ∈ R2n×2n, such
that the following holds

Aẽ ≥
(
f+(x̃+, x̃−, ỹ)− f(x̃)
f(x̃)− f−(x̃+, x̃−, y)

)
= ˙̃e, (10)

where ẽ := (x̃+ − x̃ x̃− x̃−)
T concatenates the errors of

the interval observer for the reduced system.
This means that the error of the interval observer for the
reduced system is bounded by an exponentially stable linear
system. Such an observer can be obtained using a series of
different approaches [5], [6], [18].

Proposition 1: Let ĝ(·) denote the GP estimate of the
function g(·), as shown in Equation (6). There exist Lipschitz
continuous and differentiable functions ĝ+ : R 7→ Rn and
ĝ− : R 7→ Rn, such that ∇ĝ+(x) ≥ 0, ∇ĝ−(x) ≥ 0, and
ĝ+(x)− ĝ−(x) = ĝ(x) holds for all x ∈ R.

Proof: Due to Assumption 2, the function ĝ(·) is
Lipschitz continuous in Rn. The proof then follows straight-
forwardly from [18, Property 3].
There are infinitely many functions that satisfy such re-
quirements [18], and the choice of ĝ+(·) and ĝ−(·) can
strongly affect the performance of the interval observer. How
to choose such functions is out of the scope of this paper.
In order to obtain an interval observer, the model un-
certainty needs to be taken into account. In order to
do so, define the entries of the vector valued function
ζx : R×R 7→ Rn as ζx,i(x1,x2) = max

x1≤x≤x2

βiNσ
i
N (x).

Note that due to Assumption 2, the function ζx(·, ·) is
bounded. Denote the corresponding bound by ζx,max, where
ζx,max,i = max

x1,x2∈R
ζx,i(x1,x2).

Lemma 1: Let z, z+, z− ∈ R, such that z− ≤ z ≤ z+.
Choose ĝ+(·) and ĝ−(·) as discussed in Proposition 1. Then
the following holds with probability at least 1− nδ

ĝ+i (z−)− ĝ−i (z+)− ζx,i(z−, z+) ≤ gi(z)

≤ĝ+i (z+)− ĝ−i (z−) + ζx,i(z
−, z+).

(11)

Proof: By design,

ĝi(z)− ζx,i(z−, z+) ≤ ĝi(z)− βiNσiN (z),

ĝi(z) + βiNσ
i
N (z) ≤ ĝi(z) + ζx,i(z

−, z+).
(12)

holds. Moreover, due to Theorem 1, the following holds with
probability at least 1− δ.

ĝi(z)− βiNσiN (z) ≤ gi(z) ≤ ĝi(z) + βiNσ
i
N (z). (13)

Applying the union bound yields the same result for all
i = 1, · · · , n with probability 1 − nδ. Moreover, due
to the monotonicity of ĝ+(·) and ĝ−(·), as discussed in
Proposition 1, together with z− ≤ z ≤ z−,

ĝ+i (z−)− ĝ−i (z+) ≤ ĝi(z) ≤ ĝ+i (z+)− ĝ−i (z−) (14)

holds. Putting together Equations (12) to (14) yields the
desired result.
In order to design the interval observer, two nonlinear
functions b+ : R×R× R 7→ Rn, b− : R×R× R 7→ Rn
are introduced, which are given by

b+(z, z′, a) =f+(z, z′, a) + ĝ+(z)− ĝ−(z′)

+ ζz(z′, z) + F(z− z′)

+ θ+(Cz− a),

b−(z, z′, a) =f−(z, z′, a) + ĝ+(x′)− ĝ−(x)

− ζx(x′,x)− F′(x− x′)

+ θ−(Cx′ − a),

(15)

where F+,F− ∈ Rn×n are gain matrices and θ−,θ+ ∈ Rn
are gain vectors. Choose x−0 ,x

+
0 ∈ Rn such that



x−0 ≤ x0 ≤ x+
0 holds. The candidate interval observer

is then given by

ΣGP =

{
ẋ+ = o+(x+,x−, y), x+(0) = x+

0

ẋ− = o−(x+,x−, y), x−(0) = x−0
(16)

where x+,x− ∈ R are the estimated state bounds and
o+ : R×R× R 7→ Rn, o− : R×R× R 7→ Rn are non-
linear functions, whose entries are given by

o+i (x+,x−, y) =


0, if x+i ≥ x

+
max,i and

b+i (x+,x−, y) ≥ 0

b+i (x+,x−, y), otherwise
(17)

and

o−i (x+,x−, y) =


0, if x−i ≤ x

+
min,i and

b−i (x+,x−, y) ≤ 0

b−i (x+,x−, y), otherwise
(18)

respectively.
Lemma 2: Let Assumptions 2 to 4 hold. Then the system

given by Equation (16) corresponds to a framer for Equa-
tion (1) with probability 1− nδ.

Proof: Consider the estimation error e+ = x+ − x.
Since e+(0) ≥ 0 holds by design, and e+(t) is continuous
in t, it suffices to prove that ėi ≥ 0 holds if ei = 0 for
all i ∈ {1, · · · , n}. Hence, assume ei = 0 holds for an
i ∈ {1, · · · , n}. The two cases corresponding to Equa-
tion (17) need to be analyzed separately. If x+i ≥ x

+
max,i and

b+i (x+,x−, y) ≥ 0 holds, then ei = 0 implies x+i = x+max,i,
which in turn means that ẋi ≤ 0 must hold. Hence,

ė+i =o+i (x+,x−, y)− fi(x)− gi(x)

=0− fi(x)− gi(x) = −ẋi ≥ 0
(19)

holds. On the other hand, if either x+i < x+max,i or
b+i (x+,x−, y) < 0 holds, then the following holds with
probability at least 1− nδ.

ė+i =f+i (x+,x−, y)− fi(x) + ĝ+i (x+)

− ĝ−i (x−)− gi(x) + ζx,i(x
−,x+)

≥f+i (x+,x−, y)− fi(x) ≥ 0,

(20)

where the first and second inequalities are due to Lemma 1
and Assumption 4, respectively. Using the analogous proce-
dure, the same can be shown for the negative error compo-
nents.

Lemma 3: Choose ĝ+(·) and ĝ−(·) as in Proposition 1.
Then there exist matrices N1,N2,N3,N4 ∈ Rn×n, such
that for all x+,x,x− ∈ Rn with x− ≤ x ≤ x+,

ĝ+(x+)− ĝ−(x−)− ĝ(x) ≤ N1e
+ + N2e

−, (21)
ĝ(x)− ĝ+(x−) + ĝ−(x+) ≤ N3e

+ + N4e
−. (22)

Proof: See [18, Property 5].
Theorem 2: Consider the matrix A, as discussed in As-

sumption 4 and the corresponding partition

A :=

(
A11 A12

A21 A22

)
, (23)

where A11,A12,A21,A22 ∈ Rn×n. Moreover, choose the
matrices N1,N2,N3,N4 as in Lemma 3. Define the con-
catenated error dynamics e :=

(
e+ e−

)T
. If Assumptions 2

to 4 hold and the matrix

Ã =(
A11 + N1 + F+ + θ+C A12 + N2 + F+

A21 + N3 + F− A22 + N4 + F− + θ−C

)
(24)

is Hurwitz, then with probability of at least 1− nδ,

lim
t→∞

e(t) ≤ −2Ã−1
(
ζx,max

ζx,max

)
. (25)

holds.
Proof: The following holds with probability 1− nδ.

ė =

(
o+(x+,x−, y)− f(x)− g(x)
f(x) + g(x)− o−(x+,x−, y)

)
≤
(
b+(x+,x−, y)− f(x)− g(x)
f(x) + g(x)− b−(x+,x−, y)

)
=

(
f+(x+,x−, y)− f(x) + ĝ+(x+)− ĝ−(x−)− g(x)
f(x)− f−(x+,x−, y) + g(x)− ĝ+(x−) + ĝ−(x+)

+ζx(x−,x+) + F+(x+ − x−) + θ(y+ − y)
+ζx(x−,x+) + F−(x+ − x−)− θ(y− − y)

)
≤Ãe+

(
g(x)− ĝ(x) + ζx(x−,x+)
ĝ(x)− g(x) + ζx(x−,x+)

)
≤Ãe+

(
ζx(x,x) + ζx(x−,x+)
ζx(x,x) + ζx(x−,x+)

)
≤Ãe+ 2

(
ζx,max

ζx,max

)
,

(26)

where the first inequality results from
o+(x+,x−, y) ≤ b+(x+,x−, y) together with
o−(x+,x−, y) ≥ b−(x+,x−, y), and the second inequality
is due to Lemma 3. The third inequality is due to Lemma 1.
Since Ã is Hurwitz, the autonomous linear system

ż = Ãz + 2

(
ζx,max

ζx,max

)
, z(0) = z0 (27)

is stable for all z0 ∈ R, and admits a single equilibrium

point, which is given by ze = −2Ã−1
(
ζx,max

ζx,max

)
. This in

turn implies the desired result.
Since the entries of ζx,max depend on the variance of the
GPs used to model g(·), this implies that the observer’s
ultimate error bound is made smaller by incorporating system
measurements such that the variance of the GP models
is decreased, as discussed in Section III. Moreover, the
choice of θ−, θ+,F−,F+ also affects the error bound, as
they influence the bounding matrix Ã. This in turn can
be employed to robustify the proposed approach in settings
where the data points are not sufficient to achieve a low error
bound ζx,max.



V. NUMERICAL SIMULATION

The observer design approach proposed in Section IV-B
is employed to estimate the state of a dynamical system in
a numerical simulation. The system employed is based on
versions of Chua’s circuit found in [19] and [20]. Chua’s
circuit consists of a three-dimensional nonlinear electric
circuit that exhibits chaotic behavior, and is described using
the following set of dimensionless differential equations.

ẋ1 = α(x2 − h(x1)), (28)
ẋ2 = x1 − x2 + x3, (29)
ẋ3 = −κx2 − ηx3, (30)

where α, κ, η, a, b ∈ R are scalar parameters, and h : R 7→ R
is the following nonlinear function.

h(s) =
1

6
s3 − 1

6
s. (31)

The system output is

y = x1 + x2 + x3. (32)

The model parameters are set to α = 11.85, κ = 14.9,
η = 0.29. We assume to have the following erroneous model
of the system dynamics.

f(x) =

α (0.2x1 + 1.05x2)
x1 − 0.8x2 + x3
−0.9κx2 − 0.8ηx3

 , (33)

hence the unknown component is

g(x) =

α(−0.05x2 − h(x1))
−0.2x2

−0.1κx2 − 0.ηx3

 . (34)

The function g(·) satisfies Assumption 1, hence the inter-
val observer design approach discussed in Section IV-B is
employed. For the known component f(·), the following
observer is employed, is derived using the approach given
by [18].

Σred =

{
ẋ+ = f(x+) + θ̃+(y+ − y) + F̃+(x+ − x−)

ẋ− = f(x−)− θ̃−(y − y−)− F̃+(x+ − x−),
,

(35)

where

θ̃+ = θ̃− =
(
−α −1 0

)T
, (36)

F̃+ = F̃− =

0 0 α
0 0 0
0 0.9κ 0

 . (37)

Using the procedure described in [18], it can be shown that
the error of the reduced system interval observer Σred corre-
sponds to an asymptotically stable system. Each entry of the
unknown function g(·) is modeled using a GP, as discussed in
Section III. However, we do not employ inputs from the full
state space to model each estimate ĝi(x). Instead, for an i ∈
{1, 2, 3}, we only employ the components x1, x2, x3 of the
state space that directly influence gi(x). For each GP model,
N = 64 noisy measurements are taken from a simulation

of Chua’s circuit. The corresponding measurement noise ε
is randomly sampled from a uniform distribution, which
is bounded by εmax = 0.01. For the GP models, squared-
exponential kernels are employed, which encode infinitely
differentiable functions. The corresponding parameters are
obtained by optimizing the respective marginal likelihoods
[11]. The values suggested by Theorem 1 are often too con-
servative in practice, and can be divided by a constant factor
[17]. Here we first estimate the multiplicative factors for the
model uncertainty β1

N , β
2
N , β

3
N via a guess-and-doubling

approach using the training data. This roughly corresponds to
estimating Bgi , where ‖gi‖ki < Bgi , and setting βiN = Bgi .
We then scale down the resulting βiN by a factor of 10.
The bounding vectors are set to xmax = (2.5 0.5 5)

T and
xmin = (−2.5 − 0.5 − 5)

T. If g(·) and ĝ(·) were identical,
then, since ∇g(x) ≤ 0, holds, a partition ĝ+(·) and ĝ−(·)
could be obtained by choosing ĝ+1 = 0, ĝ+2 = 0, ĝ+3 = 0,
ĝ−1 = −ĝ1, ĝ−2 = −ĝ2, and ĝ−3 = −ĝ3. However, the GP
models only reproduce g(·) approximately, and do not neces-
sarily exhibit monotonous behavior. In order to compensate
this, the scalar values

L1,i = max

{
0,max

z∈R

∂g1
∂xi

(z)

}
, i = 1, 2, 3 (38)

L2,i = max

{
0,max

z∈R

∂g2
∂xi

(z)

}
, i = 1, 2, 3 (39)

L3,i = max

{
0,max

z∈R

∂g3
∂xi

(z)

}
, i = 1, 2, 3 (40)

are computed, which are employed to design the partitions

ĝ+j (z) =

3∑
i=1

Lj,iz, j = 1, 3

ĝ−j (z) = ĝj(z) +

3∑
i=1

Lj,iz, j = 1, 3

It is easy to show that ĝ+(·) and ĝ−(·) are monotonously
increasing and that ĝ+(·) − ĝ−(·) = ĝ(·) holds. The gain
matrices are set to

θ+ = θ− =
(
0 0 0

)T
, (41)

F+ = F− =

0 0 0
0 0 0
0 0.1κ 0

 . (42)

The corrective vectors θ+ and θ− are set to zero in the
present case, since the interval observer for the reduced
system already contains a corrective term. The system initial
conditions are x0 =

(
0.1 0.2 0.05

)T
, whereas the ob-

server initial conditions are set to x+
0 =

(
0.5 0.5 0.5

)T

and x−0 =
(
−0.5 −0.5 −0.5

)T
. The simulation results

and respective errors are presented in Figure 1. The interval
observer provides a boundary for all the state’s during the
whole simulation. In order to illustrate the stochastic nature
of the interval observer, a Monte Carlo simulation consisting
of 50 runs is carried out, where each each run is identical
to the simulation described above except for the partition
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Fig. 1. Simulation results of dimensionless Chua’s system using the
proposed interval observer.

constants given by Equations (38) to (40), and the simulation
time, which is set to 80. The measurement noise is sampled
from the same distribution as in the first case. The interval
observer errors resulting from all 50 runs are presented
in Figure 2. All interval observers generate different error
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Fig. 2. Interval observer errors of Monte Carlo simulation consisting of
50 runs.

dynamics, which is due to the probabilistic nature of the
measurement noise used to compute the GP models. All
observers yield positive errors at all times, except for five
observers, which generate errors e−2 and e+2 that are at times
negative. The corresponding lower bound for the incorrect
interval observer errors is e−2 , e

+
2 ≥ −5−4 for all t ∈ [0, 80].

This reflects the result of Theorem 2, which indicates that
the bounds provided by each interval observer are correct
with a predetermined probability.

VI. CONCLUSION

An interval observer for Gaussian process models is pre-
sented. The interval observer is designed by employing an
existing observer for the known component of the system

model, which is extended by and observer for the un-
known component. The proposed interval observer employs
a decomposition of the Gaussian process model into two
monotonous components, as well as the Gaussian process
model uncertainty to generate upper and lower bounds for the
state estimation. The interval observer is shown to provide
correct error bounds with high probability. The correspond-
ing failure probability is made smaller by increasing the
number of data points employed.
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