
Learning continuous Q-functions using generalized
Benders cuts

Joseph Warrington, Member, IEEE

Abstract—Q-functions are widely used in discrete-time learn-
ing and control to model future costs arising from a given control
policy, when the initial state and input are given. Although
some of their properties are understood, Q-functions generating
optimal policies for continuous problems are usually hard to
compute. Even when a system model is available, optimal control
is generally difficult to achieve except in rare cases where an
analytical solution happens to exist, or an explicit exact solution
can be computed. It is typically necessary to discretize the
state and action spaces, or parameterize the Q-function with
a basis that can be hard to select a priori. This paper describes
a model-based algorithm based on generalized Benders theory
that yields ever-tighter outer-approximations of the optimal Q-
function. Under a strong duality assumption, we prove that
the algorithm yields an arbitrarily small Bellman optimality
error at any finite number of arbitrary points in the state-
input space, in finite iterations. Under additional assumptions,
the same guarantee holds when the inputs are determined online
by the algorithm’s updating Q-function. We demonstrate these
properties numerically on scalar and 8-dimensional systems.

I. INTRODUCTION

Reinforcement learning (RL) and approximate dynamic pro-
gramming (ADP) commonly employ so-called Q-functions to
model the costs incurred in the future evolution of a discrete-
time system under a given control policy. The Q-function
associated with control policy u = π(x) takes a state x̂ and
input û as parameters, and is equal to the stage costs incurred
immediately for (x̂, û) plus the costs (typically infinite-horizon
with a discount factor) of following policy π thereafter.
Q-functions are widely associated with RL (i.e., model-free

learning), thanks to work stemming from Watkins’ Q-learning
algorithm [17]. However, model-free Q-learning suffers from
slow convergence, even despite new insights into optimizing
the rate [7]. New work such as [11] is an example of interest
in cases where model data, known or itself learned, can im-
prove learning performance for difficult control problems. The
present paper is motivated by a desire to learn an approximate
Q-function to control a system with a known model.

Mathematically, Q-functions have much in common with
value (or V -) functions, the chief difference being that they
are defined on state-input space rather than on the state alone.
Although they are generally more expensive to store, their
higher-dimensional domain often makes approximate, finitely-
parameterized Q-functions more expressive than V -functions
[4, Ch. 2].

It is common to discretize continuous problems in order
to obtain a finite parameterization of the V - or Q-function

The author is with the Automatic Control Laboratory, Swiss Federal Insti-
tute of Technology (ETH) Zurich, Physikstrasse 3, 8092 Zurich, Switzerland.
Contact: warrington@control.ee.ethz.ch

[5]. However, performing even one iteration of the canonical
algorithms, such as value iteration, then has an undesirable ex-
ponential cost. ADP methods have arisen to find more tractable
parameterizations of the continuous V -function. Several are
based on continuous extensions of the “linear programming
approach” to ADP [6], in which a valid lower bound on the
optimal value function is maximized. Examples include the
quadratic lower bound in [14], and the polynomial derived
using sum-of-squares techniques in [13]. Approximate V -
functions represented as the pointwise maximum of multiple
lower-bounding functions have been used in [1], [9], [10], [15].
Recent work utilizing a point-wise maximum representation
[16] has extended the Benders decomposition argument used
for linear multi-stage decision problems in Dual DP (DDP,
[12]), to a general nonlinear, infinite-horizon setting.

In this paper we adapt the Benders approach from [16] to
learn Q-functions. We define an algorithm that successively
produces tighter approximations of a problem’s optimal Q-
function from below, and prove convergence results for off-
policy and policy-driven learning of the Q-function in this
manner. In the former case, (x, u) pairs are pre-selected at
the start of the algorithm, whereas in the latter case, only
the x points are pre-selected, and the u decisions are made
according to a policy from the update Q-function estimate.
We then demonstrate the method’s efficacy for test systems.

Section II describes the infinite horizon problem, Section III
describes the Benders decomposition approach, and Section IV
proposes an algorithm and proves its key properties. Section
V presents numerical examples, and Section VI concludes.

II. PROBLEM STATEMENT

A. Infinite-horizon control problem

The scope considered is the class of infinite-horizon,
discrete-time, deterministic optimal control problems with
time-invariant stage cost functions, dynamics, and constraints:

V ?(x) := inf
u0,u1,...

∞∑
t=0

γt`(xt, ut) (1a)

s. t. xt+1 = f(xt, ut), t = 0, 1, . . . , (1b)
h(xt, ut) ≤ 0, t = 0, 1, . . . , (1c)
x0 = x . (1d)

For each time step t we denote the state xt ∈ X ⊆ Rnx ,
and the action, or input, ut ∈ U ⊆ Rnu . Sets X and U are
the state and action spaces, and are continuous. Future costs
are discounted according to a discount factor γ ∈ (0, 1], the

ar
X

iv
:1

90
2.

07
66

4v
1

 [
m

at
h.

O
C

]
 2

0
Fe

b
20

19

2

(non-negative) stage cost function is ` : X × U → R+, and
the dynamics are governed by the mapping f : X × U → X .
There are nc state-input constraints (1c), parameterized by a
vector-valued mapping h : X × U → Rnc . The parametric
infimum V ?(x) of problem (1) is referred to as the optimal
value function (or optimal V -function) of the problem.

B. Q-functions

We now define Q-functions and briefly state some of their
well-known properties for later use. For more detail, see for
example [4, Chapter 2]. Given a policy π : X → U , its
associated Q-function, Qπ : X × U → R ∪ {+∞}, is

Qπ(x, u) = `(x, u) +

∞∑
t=1

γt`(xt, π(xt)) , (2)

in which the relation xt+1 = f(xt, π(xt)) holds for t ≥ 1,
and x1 = f(x, u). The Q-function is the sum of the stage
cost incurred for some initial state and input x and u, and the
infinite sum of (discounted) costs under policy π thereafter.

The optimal Q-function, which we denote Q?, minimizes
(2) over policies π, and satisfies

Q?(x, u) = `(x, u) + inf
u′∈U(f(x,u))

Q?(f(x, u), u′) (3)

for all (x, u) ∈ X × U . In (3) we use the notation U(x) :=
{u ∈ U : h(x, u) ≤ 0}. An associated Bellman operator for
Q-functions, TQ, can be defined as

TQQ(x, u) := `(x, u) + inf
u′∈U(f(x,u))

Q(f(x, u), u′) . (4)

On the left-hand side, TQQ is to be interpreted as a new
function with the same domain as Q, and evaluated at (x, u).
Thus, condition (3) can be written TQQ?(x, u) = Q?(x, u) for
all (x, u) ∈ X ×U . If an optimal Q- and V -function exist for
problem (1), they are related by V ?(x) = infu∈U(x)Q

?(x, u),
and thus from (3), Q?(x, u) = `(x, u) + γV ?(f(x, u)).

For any approximate Q-function for which the infimum in
(4) is attained, one can define an associated control policy
consistent with definition (2):

π(x;Q) ∈ arg min
u∈U(x)

Q(x, u) . (5)

The attraction of a Q-function is that in a wide range of cases
it is simpler to solve (5) than it would be to solve, for the same
x, the full infinite-horizon problem (1), or a finite-horizon
truncation thereof, as in Model Predictive Control (MPC) [2].

Lastly, for the benefit of developments in Section III, we
note it is easy to show that the operator TQ is monotonic:

Qa(x, u) ≤ Qb(x, u) ∀(x, u) ∈ X × U
⇒ TQQa(x, u) ≤ TQQb(x, u) ∀(x, u) ∈ X × U . (6)

III. BENDERS CUTS

A. Pointwise maximum representation

Let QI : X × U → R be a function of the following
“pointwise maximum” form,

QI(x, u) = max
i=0,...,I

{qi(x, u)} , (7)

where I is a non-negative integer, and each function qi : X ×
U → R is known to satisfy

qi(x, u) ≤ Q?(x, u) , ∀(x, u) ∈ X × U .

Thus QI(x, u) ≤ Q?(x, u) for all (x, u) ∈ X × U . From (5)
the control policy associated with QI is simply π(x;QI) ∈
arg minu∈U(x) maxi=0,...,I{qi(x, u)}.

In Section IV we will propose an algorithm that uses QI to
construct an additional function, or “cut” qI+1. Under certain
assumptions, the new cut satisfies

qI+1(x, u) ≤ Q?(x, u) ∀(x, u) ∈ X × U , (8a)
and qI+1(x̂, û) > QI(x̂, û) for some (x̂, û) ∈ X × U . (8b)

Thus the new function, QI+1(x, u) := max{QI(x, u),
qI+1(x, u)}, will be a tighter under-approximation of Q?

than QI . We now derive a Benders-type procedure to achieve
this, which is related to that in [16] for V -functions.

B. Duality in operator TQ
We start by taking the dual of the minimization problem

solved inside the operator TQ at some point (x̂, û) in the state-
action space. For a function QI taking the form (7), the right-
hand side of (4) can be written equivalently as

TQQI(x̂, û) = inf
x′,u′

`(x̂, û) + γ max
i=0,...,I

{qi(x′, u′)}

s. t. x′ = f(x̂, û) ,

h(x′, u′) ≤ 0 ,

where the extra variable x′ ∈ Rnx is introduced to model the
successor state explicitly. An epigraph variable α ∈ R can be
introduced to replace the inconvenient maximum operator in
the objective with I + 1 separate constraints. This leads to an
equivalent problem:

TQQI(x̂, û) = inf
x′,u′,α

`(x̂, û) + γα (9a)

s. t. x′ = f(x̂, û) , (9b)
h(x′, u′) ≤ 0 , (9c)
qi(x

′, u′) ≤ α , i = 0, . . . , I . (9d)

Assigning the Lagrange multipliers ν ∈ Rnx , λc ∈ Rnc+ , and
λα ∈ RI+1

+ to constraints (9b), (9c), and (9d) respectively, one
can form the Lagrangian,

L(x′, u′, α, ν, λc, λα) := `(x̂, û) + γα+ ν>(f(x̂, û)− x′)

+ λ>c h(x′, u′) +

I∑
i=0

λα,i(qi(x
′, u′)− α) .

Following standard procedure, the dual of (9) is then

JD(x̂, û) := sup
ν,λc,λα

`(x̂, û) + ν>f(x̂, û) + ξ(ν, λc, λα)

(10a)

s. t. 1>λα = γ , (10b)
λc ≥ 0 , λα ≥ 0 , (10c)

where the function

ξ(ν, λc, λα) := inf
x′,u′

{
−ν>x′ + λ>c h(x′, u′)+

I∑
i=0

λα,iqi(x
′, u′)

}

3

depends only on the multipliers. Although problem (9) may
not be convex, the objective of (10) is always concave [3,
§5.2], and weak duality implies JD(x̂, û) ≤ TQQI(x̂, û) for
any choice of parameter (x̂, û) ∈ X × U .

C. Generalized Benders cut

Given a function QI of the form (7) such that QI ≤ Q?,
suppose that optimal multipliers (ν̂?, λ̂?c , λ̂

?
α) are attained when

(10) is solved with parameter (x̂, û). These can be used to form
a new cut qI+1(·, ·) with the following attractive properties.

Lemma III.1. The function

qI+1(x, u) := `(x, u) + ν̂?>f(x, u) + ξ(ν̂?, λ̂?c , λ̂
?
α) (11)

satisfies qI+1(x, u) ≤ Q?(x, u) for all (x, u) ∈ X × U .

Proof. An optimal dual solution (ν̂?, λ̂?c , λ̂
?
α) for parameter

(x̂, û) must in general be a suboptimal solution to problem
(10) when any other parameter (x, u) ∈ X × U is used, i.e.,

`(x, u) + ν̂?T f(x, u) + ξ(ν̂?, λ̂?c , λ̂
?
α) ≤ JD(x, u) .

Note that (ν̂?, λ̂?c , λ̂
?
α) is feasible in (10) for all parameters

(x, u), as the feasible set is independent of the parameter.
From weak duality, JD(x, u) ≤ TQQI(x, u). As we start
with QI ≤ Q? on its domain, we have from the mononoticity
property (6) that TQQI(x, u) ≤ TQQ?(x, u), and the Bellman
optimality condition states that TQQ?(x, u) = Q?(x, u).
Combining these relationships we obtain

`(x, u) + ν̂?T f(x, u) + ξ(ν̂?, λ̂?c , λ̂
?
α) ≤ Q?(x, u) ,

and the result follows simply by noting that (x, u) can refer
to any (x, u) ∈ X × U in the argument above.

This proof leverages the (generalized) Benders decomposi-
tion argument, which was first developed in [8] to partition
a two-stage problem into two subproblems linked by an
approximate value function. Here we have used the properties
of Q-functions to accommodate the infinite number of stages
in problem (1). A similar result was derived for V -functions
in [16].

The following properties concern the violation of the Bell-
man optimality condition (3), or the Q-Bellman error:

ε(x, u;QI) := TQQI(x, u)−QI(x, u) . (12)

Lemma III.2. If ε(x, u;QI) ≥ 0 for all (x, u) ∈ X ×U , then
ε(x, u;QI+1) ≥ 0 for all (x, u) ∈ X × U , where

QI+1(·, ·) = max{qI+1(·, ·), QI(·, ·)} .

Proof. A simple adaptation of [16, Lemma III.3].

Lemma III.3. Suppose strong duality holds between problems
(9) and (10) and that ε(x, u;QI) = TQQI(x, u)−QI(x, u) ≥
0 for all (x, u) ∈ X × U . Then if at some (x̂, û) we have
TQQI(x̂, û) > QI(x̂, û), a cut there is strictly improving:

QI+1(x̂, û) > QI(x̂, û) ,

and the increase is equal to ε(x̂, û;QI).

Proof. If strong duality holds, we have JD(x̂, û) =
TQQI(x, u), and the new function qI+1 satisfies

Algorithm 1 Q-Benders algorithm
1: Variant A: Choose ZAlg := {(x1, u1), . . . , (xM , uM)}
2: Variant B: Choose XAlg := {x1, . . . , xM}
3: Set I = 0 and q0(x, u) = `(x, u)
4: while TRUE do
5: QI(·, ·)← maxi=0,...,I qi(·, ·)
6: for m = 1, . . . ,M do
7: Variant A: (xm, um) taken from ZAlg

8: Variant B: xm taken from XAlg,
9: um ← arg minu∈U(xm)QI(xm, u)

10: ε(xm, um;QI)← TQQI(xm, um)−QI(xm, um)
11: end for
12: if maxm=1,...,M{ε(xm, um;QI)} ≤ εtol then
13: break
14: end if
15: m← UniformRandom(1, 2, . . . ,M)
16: Pick (xm, um) as in lines 7-9
17: if problem (9) feasible with parameter (xm, um) and

dual optimal solution (ν̂?, λ̂?c , λ̂
?
α) available then

18: Add qI+1(·, ·) param’d by (ν̂?, λ̂?c , λ̂
?
α) as in (11)

19: end if
20: I ← I + 1
21: end while
22: Return QI(·, ·) = maxi=0,...,I qi(·, ·)

qI+1(x̂, û) = TQQI(x̂, û). Since QI+1(x, u) :=
max{QI(x, u), qI+1(x, u)} the result follows.

Lastly, the following property facilitates a “greedy” cut
qI+1(·, ·) with respect to some particular (x̂, û) location.

Lemma III.4. The Benders cut that yields the greatest in-
crease at (x̂, û), i.e., for which QI+1(x̂, û) − QI(x̂, û) is
maximized, is that obtained by solving problem (10) at (x̂, û).

Proof. The result follows by reversing the roles of (x̂, û) and
(x, u) in the proof of Lemma III.1.

IV. BENDERS ALGORITHM FOR Q-FUNCTIONS

We propose Algorithm 1 as a means of approximating Q?

by generating Benders cuts of the form (11). It starts with
q0 = `, which from (2) trivially lower-bounds Q?, and by
Lemmas III.2 and III.3 guarantees ε(x, u;QI) ≥ 0 for all
(x, u) ∈ X × U and for all I ≥ 0. New cuts are created at
certain points (xm, um), and Variants A and B differ in how
these are chosen:
A. Select a list of state-input pairs ZAlg := {(x1, u1), . . . ,

(xM , uM)} a priori, and choose a random (xm, um) at
each algorithm iteration.

B. Select a list of state space points XAlg := {x1, . . . , xM}
a priori, and within the algorithm pick a random xm,
letting um follow from policy (5) parameterized by QI .

We now state convergence results for both variants.

A. Fixed (x, u) pairs

The following results hold for Variant A. We omit the proofs
of both, because they carry across with little modification from
the V -function results in [16, Thms. III.5 and III.6]:

4

Theorem IV.1 (Pointwise convergence of {QI(x, u)}∞I=0).
For each (x, u) ∈ X × U for which Q?(x, u) is finite, there
exists a limiting value Qlim(x, u) ≤ Q?(x, u) such that
limI→∞QI(x, u) = Qlim(x, u).

Theorem IV.2 (Finite termination of Variant A). Suppose the
following conditions are met:

(i) Strong duality holds for the one-stage problem (9) with
parameter (xm, um) each time it is solved, for each
(xm, um) ∈ ZAlg.

(ii) Q?(xm, um) is finite for each pair (xm, um) ∈ ZAlg.

Then Variant A of Algorithm 1 terminates in finite iterations
with probability 1 for any tolerance εtol > 0.

B. Fixed x, policy-driven u

Although Variant A has attractive convergence properties,
it learns a Q-function based only on performance at pre-
selected pairs (x, u), in the sense of minimizing the Q-Bellman
error there. Variant B instead learns a Q-function based on
performance at (x, u) pairs in which the u is consistent with
the policy derived from the learnt Q-function. One expects this
criterion to be more relevant to performance of the final policy,
as state-input trajectories will pass closer to these points.

Finite termination of Variant B is our main result, which we
now state precisely along with the required assumptions.

Assumption 1. For each xm ∈ XAlg, the set of feasible inputs
U(xm) contains an element û such that Q?(xm, û) <∞.

This assumption implies V ?(xm) is finite for each xm.
Introducing the notation Q(xm) := infu∈U(xm)Q(xm, u), the
following holds:

Theorem IV.3 (Monotone convergence of {Q
I
(xm)}∞I=0).

Under Assumption 1, the limit Q
lim

(xm) := limI→∞Q
I
(xm)

exists for each xm ∈ XAlg.

Proof. It follows from Assumption 1 that Q?(xm) < ∞,
and from Lemma III.1, QI(xm, u) ≤ Q?(xm, u) for all
u ∈ U(xm). Thus, Q

I
(xm) < ∞ at each iteration I . As

the sequence of functions {QI}∞I=0 increases monotonically,
the sequence {Q

I
(xm)}∞I=0 must also increase monotonically.

This latter sequence is bounded from above, thus the limit
limI→∞Q

I
(xm) = Q

lim
(xm) exists from the Monotone

Convergence Theorem.

An additional performance guarantee for Variant B is avail-
able when the following additional assumptions hold.

Assumption 2. For each xm ∈ XAlg, set U(xm) is compact,
and each entry of f(xm, u) is Lipschitz-continuous on U(xm).

Assumption 3. The problem data in (1) is such that the lower-
bounding functions q0, q1, . . . generated in Variant B:

(i) Maintain strong duality between problems (9) and (10)
with parameter (xm, u) at each iteration of the algorithm,
with u = π(xm;QI), for all xm ∈ XAlg.

(ii) Are Lipschitz continuous in u with some constant Lm
common to all functions qi, for each xm ∈ XAlg.

Assumptions 2 and 3 must be verified for a given problem.
A widespread setting where these hold is the constrained,
stable linear-quadratic regulator (LQR); see the Appendix.

Theorem IV.4 (Finite termination of Variant B). Suppose that
in addition to Assumption 1, Assumptions 2 and 3 hold. Then
Variant B of Algorithm 1 terminates in finite iterations with
probability 1 for any tolerance εtol > 0.

Proof. Let the sequence of iterations I where a given m is
chosen in line 15 of the algorithm be indexed by Im. With
probability 1, this sequence is infinitely long for each m. We
now show that the sequence of Q-Bellman errors

{ε(xm, π(xm;QIm);QIm)}∞Im=0

is a Cauchy sequence converging to zero for each xm ∈ XAlg.
As U(xm) is compact for all xm ∈ XAlg, the policy π(xm;QI)
defined in (5) can always be evaluated.

Recall that Lemma III.2 implies ε(xm, π(xm;QIm);
QIm) ≥ 0 for all xm and Im. Suppose for the sake of contra-
diction that the sequence {ε(xm, π(xm;QIm);QIm)}∞Im=0 is
not a Cauchy sequence converging to 0. Then there must exist
some δ > 0 for which there is no iteration number beyond
which ε(xm, π(xm;QIm);QIm) < δ. Whenever point xm is
picked in line 15 of the algorithm, the strong duality condition
in Assumption 3 and Lemma III.3 together imply that

QIm+1(xm, π(xm;QIm))−QIm(xm, π(xm;QIm))

= ε(xm, π(xm;QIm);QIm) .

If {ε(xm, π(xm;QIm);QIm)}∞Im=0 is not a Cauchy sequence,
there will be an infinite number of occasions on which

QIm+1(xm, π(xm;QIm))−QIm(xm, π(xm;QIm)) ≥ δ .

Furthermore, Assumption 1 and part (ii) of Assumption 3
together imply that

QI(xm, u) ≤ Q?(xm, û)+Lm||u−û|| , ∀u ∈ U(xm) , ∀I ∈ N,

as QI is always a lower bound on Q?. Compactness of U(xm)
implies that the volume of the truncated hypograph

Hm :=

{
u, s

∣∣∣∣QI(xm, u) ≤ s ≤ Q?(xm, û) + Lm||u− û||,
u ∈ U(xm)

}
is finite for each xm; recall that q0(·, ·) ≡ `(·, ·) ≥ 0.

Due to Lipschitz continuity, cut qIm+1 decreases the volume
of Hm by an amount that is lower bounded by a function
of δ, Lm, and the input dimension nu. Thus, this volume
cannot be removed infinitely many times from Hm, and
we have a contradiction. Cuts made at iterations I where
some other index m′ 6= m is picked in line 15 may also
remove some volume from Hm, but this does not affect the
argument. Thus {ε(xm, π(xm;QIm);QIm)}∞Im=0 is a Cauchy
sequence converging to zero, and Algorithm 1 terminates in
finite iterations for any εtol > 0.

Therefore, under certain assumptions one need only specify
XAlg = {x1, . . . , xM}, and Variant B minimizes the Q-
Bellman error at a u ∈ U(xm) associated with each xm ∈
XAlg that is consistent with policy (5). One then expects the
optimal Q-function to be learnt more accurately around the
policy surface than elsewhere in the state-action space.

5

0 50 100 150 200 250
Iteration number

4

2

0

lo
g

1
0
 v

al
ue

Convergence behaviour, Variant A
Mean BE, M= 50 samples
Max BE, M= 50 samples
Conv. tolerance

0 50 100 150 200 250
Iteration number

2

0

lo
g

1
0
 v

al
ue

Convergence behaviour, Variant B
Mean BE, M= 50 samples
Max BE, M= 50 samples
Conv. tolerance

Fig. 1. Convergence behaviour under Variants A (top) and B (bottom)
of Algorithm 1 for a 1-dimensional system. Variant A terminated in 246
iterations, while Variant B terminated in 127 iterations.

V. NUMERICAL EXAMPLES

We now report two numerical tests of Algorithm 1. In both
cases, systems were of the class C-LQR described in the
Appendix, for which finite termination of Variants A and B is
guaranteed by Theorems IV.2 and IV.4 respectively, and lower
bounding functions qi(·, ·) are quadratic. All tests used the
stage cost `(xt, ut) = 1

2x
>
t xt + 1

2u
>
t ut, discount rate γ = 1,

and termination tolerance εtol = 10−3, with h(xt, ut) encoding
an input constraint ‖ut‖∞ ≤ 1. Tests were implemented in
Python with subproblems solved using Gurobi 7.0.2, on a
computer with an Intel i7 CPU at 2.60 GHz and 16 GB RAM.

Scalar system: For ease of visualization, we used the
simple system xt+1 = 0.9xt + ut, with xt, ut ∈ R, and
ran both algorithm variants. In Variant A, ZAlg contained
50 random states x sampled uniformly from the interval
[0, 3], and a random u ∈ [−1, 1] associated with each x.
In Variant B the associated inputs were dropped to form
XAlg. Fig. 1 shows convergence of the maximum Q-Bellman
error maxxm∈XAlg

ε(xm, π(x;QI);QI), with the mean error
1
M

∑M
m=1 ε(xm, π(xm;QI);QI) shown for comparison. Total

time spent generating lower-bounding functions was 243 ms
for Variant A and 121 ms for Variant B. For this simple
system the optimal policy can be computed as π?(x) =
min{1,max{−0.5377x,−1}}. Fig. 2 shows the evolution of
QI at selected iterations; after termination, the policy (5) from
Variant B was closer to the optimal policy than that from
Variant A. The average closed-loop cost starting from points
x ∈ XAlg was also lower at 2.47991, compared to 2.48716 for
Variant A, and 2.47968 for the optimal policy.

Higher-dimensional systems: We tested Variant B for sys-
tems too large for the optimal policy to be computed exactly.
20 random 8-state, 3-input linear systems were created with
‖A‖ ≤ 0.99. For each system, M points in XAlg were sampled
from a normal distribution with zero mean and variance 25
times the identity matrix, for M ∈ {10, 20, 50, 100, 200, 500}.
Table I reports statistics upon termination. The number of
iterations is roughly linear in M , while computation time
is roughly quadratic. The latter excludes the Bellman error
measurement in line 11, on the basis that in practice, the

TABLE I
PERFORMANCE STATISTICS (MEAN ± STANDARD DEVIATION) FOR

VARIANT B OF ALGORITHM 1; 20 RANDOM 8-STATE, 3-INPUT SYSTEMS.

Iterations to Computation Number of
M termination time (s) cuts added 1

10 217.3 ± 57.9 0.313 ± 0.120 160.8 ± 31.7
20 485.7 ± 74.5 1.054 ± 0.296 356.0 ± 71.0
50 1293 ± 193 6.083 ± 1.724 907.0 ± 163.4

100 2736 ± 491 25.09 ± 8.60 1828 ± 367
200 6043 ± 1017 114.7 ± 34.5 3696 ± 626
500 16245 ± 2527 777.1 ± 215.3 9654 ± 1644

1Cut was not added if ε(xm, π(xm;QI);QI) < 10−5 when xm selected

convergence check for which it is used need not be carried
out at every iteration.

It is likely that other ways of choosing m in line 15,
e.g. largest Bellman error, would reduce the number of iter-
ations required, although the assumptions under which finite
convergence can be guaranteed may differ. Nevertheless, total
times are already modest, and we note that alternative “exact”
DP approaches such as value iteration [4, Ch. 2] and explicit
MPC [2] are impractically expensive for problems of this size.

VI. CONCLUSION

This paper presented a general algorithm able to learn Q-
functions, in the sense of minimizing Bellman error at arbitrary
state space locations, for infinite-horizon problems. Conver-
gence results were provided, both for fixed pairs (x, u) and for
“policy-driven” pairs (x, π(x)). A further variant of Algorithm
1 could augment XAlg with sequences of states {xτ} following
the policy at each iteration, i.e., xτ+1 = f(xτ , π(xτ ;QI)).
This would potentially learn a Q-function that approaches Q?

around entire trajectories, which is stronger than minimizing
ε(xm, π(xm;QI);QI) in individual locations xm ∈ XAlg.

An added attraction of our formulation is that in many
cases problem (5) remains convex even when the Q-function
is not convex in the state. Future work will investigate such
situations, and consider an extension to stochastic systems.

ACKNOWLEDGEMENT

The author thanks Rahul Jain of the University of Southern
California for valuable discussions on the topic of this paper.

REFERENCES

[1] P. N. Beuchat, J. C. Warrington, and J. Lygeros. Point-wise Maximum
Approach to Approximate Dynamic Programming. In IEEE Conference
on Decision and Control, Melbourne, Australia, 2017.

[2] F. Borrelli, A. Bemporad, and M. Morari. Predictive Control for Linear
and Hybrid Systems. Cambridge Univ. Press, 2017.

[3] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, 2009.

[4] L. Busoniu, R. Babuska, B. De Schutter, and D. Ernst. Reinforcement
learning and dynamic programming using function approximators, vol-
ume 39. CRC press, 2010.

[5] C. S. Chow and J. N. Tsitsiklis. An optimal one-way multigrid algorithm
for discrete-time stochastic control. IEEE Transactions on Automatic
Control, 36(8):898–914, 1991.

[6] D. P. de Farias and B. Van Roy. The Linear Programming Approach to
Approximate Dynamic Programming. Operations Research, 51(6):850–
865, 2003.

[7] A. M. Devraj and S. Meyn. Zap Q-Learning. Advances in Neural
Information Processing Systems (NIPS) 30, pages 2235–2244, 2017.

6

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x1

1.0

0.5

0.0

0.5

1.0

u
1

Q0(x, u), Variant A

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x1

1.0

0.5

0.0

0.5

1.0

u
1

Q1(x, u), Variant A

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x1

1.0

0.5

0.0

0.5

1.0

u
1

Q5(x, u), Variant A

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x1

1.0

0.5

0.0

0.5

1.0

u
1

Q246(x, u), Variant A

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x1

1.0

0.5

0.0

0.5

1.0

u
1

Q0(x, u), Variant B

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x1

1.0

0.5

0.0

0.5

1.0

u
1

Q1(x, u), Variant B

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x1

1.0

0.5

0.0

0.5

1.0

u
1

Q5(x, u), Variant B

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x1

1.0

0.5

0.0

0.5

1.0

u
1

Q127(x, u), Variant B

Fig. 2. Evolution of QI(x, u) under Variant A (top) and Variant B (bottom) of Algorithm 1, for a 1-dimensional system. Lighter shading indicates a higher
function value. Green markers show points (xm, um) cumulatively visited during iterations. White points show the policy u = π(xm;QI) for each xm in
ZAlg (Variant A) or XAlg (Variant B). The last plot in each row shows the last iteration, on which the termination criterion was satisfied. The policy returned
by Variant B is closer to the optimal piecewise affine policy, and the (x, u) points visited concentrate around this policy in the limit.

[8] A. M. Geoffrion. Generalized Benders decomposition. Journal of
Optimization Theory and Applications, 10(4):237–260, 1972.

[9] M. Hohmann, J. Warrington, and J. Lygeros. A Moment and Sum-of-
Squares Extension of Dual Dynamic Programming with Application to
Nonlinear Energy Storage Problems. arXiv:1807.05947, 2018.

[10] B. Lincoln and A. Rantzer. Relaxing dynamic programming. IEEE
Transactions on Automatic Control, 51(8):1249–1260, 2006.

[11] H. Mania, A. Guy, and B. Recht. Simple random search provides
a competitive approach to reinforcement learning. arXiv:1803.07055,
2018.

[12] M. V. F. Pereira and L. M. V. G. Pinto. Multi-stage stochastic
optimization applied to energy planning. Mathematical Programming,
52(1-3):359–375, 1991.

[13] T. H. Summers, K. Kunz, N. Kariotoglou, M. Kamgarpour, S. Summers,
and J. Lygeros. Approximate dynamic programming via sum of squares
programming. In European Control Conf. (ECC), pp. 191–197, 2013.

[14] Y. Wang and S. Boyd. Performance bounds for linear stochastic control.
Systems & Control Letters, 58(3):178–182, 2009.

[15] Y. Wang, B. O’Donoghue, and S. Boyd. Approximate dynamic pro-
gramming via iterated Bellman inequalities. International Journal of
Robust and Nonlinear Control, 25(10):1472–1496, 2015.

[16] J. Warrington, P. N. Beuchat, and J. Lygeros. Generalized Dual Dynamic
Programming for Infinite Horizon Problems in Continuous State and
Action Spaces, rev. Sep 2018. arXiv: 1711.07222.

[17] C. Watkins. Learning from delayed rewards. PhD thesis, University of
Cambridge, UK, 1989.

APPENDIX

An example of a class of problems where Assumptions 2
and 3 hold is that which we refer to as C-LQR, for which:
• f(x, u) = Ax+Bu;
• `(x, u) = 1

2x
>Qx+ 1

2u
>Ru, with Q,R � 0;

• h(x, u) = Dx + Eu − h̄, defining decoupled state and
input constraints, where the latter are compact;

• γ||A|| < 1, meaning “discounted-asymptotically” stable.

Proposition A.1. Any problem of class C-LQR satisfies As-
sumptions 2 and 3.

Proof. Assumption 2 is satisfied trivially. The lower-bounding
functions in constraint (9d) have the quadratic form

qi(x, u) = 1
2x
>Qx+ 1

2u
>Ru+ ν>i (Ax+Bu) + ξi , (13)

and thus the problem remains convex at each iteration I . A
Slater point exists, namely any feasible (x′, u′) together with

any α > qi(x
′, u′)∀i. Thus the strong duality condition in

Assumption 3 holds.
To prove Lipschitz continuity in Assumption 3, one must

bound the gradient in u-space of the functions qi(xm, ·) for
any given xm. Inspection of problem (9) shows that each new
function qI+1 depends on the existing functions q0, . . . , qI , and
(13) shows that, due to u-compactness, a Lipschitz constant
exists if the sequence {‖νI‖}∞I=0 is bounded. The KKT
optimality conditions of (9) include the stationarity equations

νI+1 = D>λc,I+1 +
∑

I
i=0λα,i(Qx

′ +A>νi) ,

0 = E>λc,I+1 +
∑

I
i=0λα,i(Ru

′ +B>νi) ,

γ =
∑

I
i=0λα,i .

Without loss of generality, one can redefine the system with
a linearly scaled input, B → B̃ and R→ R̃, such that ‖B̃‖ =
1, and then linearly scale the input constraints in h(x, u) such
that ‖E‖ = 1. Triangle inequalities then yield

‖νI+1‖ ≤ ‖D‖ · ‖λc,I+1‖+ γ‖Q‖ · ‖x′‖
+ ‖A‖ ·

∥∥∑I
i=0λα,iνi

∥∥ ,
‖λc,I+1‖ ≤ γ‖R̃‖ · ‖u′‖+

∥∥∑I
i=0λα,iνi

∥∥ .
As U(xm) is compact and xm is fixed, the norms of x′ =
Axm + Bu and u′ are both bounded by some constants X
and U respectively. Eliminating ‖λc,I+1‖, one obtains

‖νI+1‖ ≤ ‖D‖
(
γU‖R̃‖+

∥∥∑I
i=0λα,iνi

∥∥)
+ γX‖Q‖+ ‖A‖ · ‖

∑
I
i=0λα,iνi‖

= γ(U‖D‖ · ‖R̃‖+X‖Q‖)
+ (‖D‖+ ‖A‖)

∥∥∑I
i=0λα,iνi

∥∥
≤ γ(U‖D‖ · ‖R̃‖+X‖Q‖)

+ γ(‖D‖+ ‖A‖) max
i=0,...,I

‖νi‖ .

Thus, {‖νI‖}∞I=0 can grow no larger than γ(U‖D‖·‖R̃‖+X‖Q‖)
1−γ(‖D‖+‖A‖) .

As the state and input constraints are decoupled, ‖D‖ can
be made arbitrarily small by scaling the relevant rows of
h(x, u). Thus the denominator can be made strictly positive,
and functions qi of the form (13) are Lipschitz continuous.

	I Introduction
	II Problem statement
	II-A Infinite-horizon control problem
	II-B Q-functions

	III Benders cuts
	III-A Pointwise maximum representation
	III-B Duality in operator TQ
	III-C Generalized Benders cut

	IV Benders algorithm for Q-Functions
	IV-A Fixed (x,u) pairs
	IV-B Fixed x, policy-driven u

	V Numerical examples
	VI Conclusion
	References
	Appendix

