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Event-triggered distributed Bayes filter

Giorgio Battistelli, Luigi Chisci, Lin Gao, and Daniela Selvi

Abstract

The aim of this paper is to devise a strategy that is able to reduce communication bandwidth and, consequently,

energy consumption in the context of distributed state estimation over a peer-to-peer sensor network. Specifically,

a distributed Bayes filter with event-triggered communication is developed by enforcing each node to transmit its

local information to the neighbors only when the Kullback-Leibler divergence between the current local posterior

and the one predictable from the last transmission exceeds a preset threshold. The stability of the proposed event-

triggered distributed Bayes filter is proved in the linear-Gaussian (Kalman filter) case. The performance of the proposed

algorithm is also evaluated through simulation experiments concerning a target tracking application.

I. INTRODUCTION

The problem of distributed state estimation (DSE) on a wireless sensor network (WSN) has attracted consider-

able attention due to its wide and successful applicability to many distributed monitoring tasks in the industrial,

environmental and defense contexts [1]. In this respect, several approaches to DSE have been developed such as,

for instance, the distributed Kalman filter (KF) [2]–[4] for the linear case or the distributed extended KF [5], [6],

distributed unscented KF [7] and distributed particle filter (PF) [8] for the nonlinear case.

Normally, sensor nodes of WSNs are battery-powered and, thus, have limited energy. Hence it is of paramount

importance to reduce the message transmission between sensor nodes (i.e., the communication rate) in order

to save energy. Another motivation for reducing message transmission is in defense applications, where each

message transmission increases the risk of discovery of sensor nodes. Generally speaking, the reduction of message

transmission can be accomplished by resorting to an event-triggered (ET) strategy [9], by which a suitable triggering

test is carried out at each sensor node to check in advance whether it is worth transmitting a given message or not.

In centralised multisensor systems, ET strategies have been successfully exploited to reduce the communication

bandwidth [10]–[13]. Recently, attempts have also been carried out to apply ET strategies in distributed state

estimation with satisfactory results. In [14], the information is transmitted by each sensor node whenever the

distance between the most recently transmitted estimate and the current one exceeds a pre-defined threshold, where

the distance is measured in terms of the mean square error (MSE), while the second-order moment (covariance)

discrepancy is ignored. In [15], each sensor node broadcasts a local measurement to the neighbors only when its

Mahalanobis distance (MD) from the latest transmitted measurement exceeds a given threshold. However, as shown
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in [6] and [16], such DSE algorithms exchanging measurements among sensor nodes cannot guarantee stability

unless the number of data exchanges is large enough. In our recent work [9], an ET strategy is proposed along with

a consensus method for DSE with guaranteed stability. At each sensor node, transmission of local information to

the neighbors is triggered whenever the local estimate and/or covariance deviate from the ones predicted after the

last transmission of a sufficiently high amount.

In this paper, the aim is to develop an ET-DSE approach following a Bayesian filtering perspective for DSE [18]

and adopting an information-theoretic criterion for transmission triggering. In particular, it is assumed that each

node, besides the local probability density function (PDF), stores the last transmitted (reference) PDF and also the

last received (neighbor) PDFs from all neighbors. Then, after each local update and before consensus, message

sending is triggered whenever the Kullback-Leibler Divergence (KLD), aka information gain, from the predicted

reference PDF to the local posterior PDF exceeds a given threshold. In a consensus step, when a node does not

receive a message from some neighbor, it can recover the local posterior PDF of such a neighbor with satisfactory

accuracy via prediction of the stored neighbor PDF. The rationale of this recovery is that, if a neighbor does not

transmit messages, its local posterior must be sufficiently close to the predicted reference PDF. The advantage of

the proposed ET consensus Bayes filter (ET-CBF) is that the communication bandwidth/energy consumption of

each sensor node can be significantly reduced while deteriorating the tracking performance as least as possible.

Compared to the standard CBF, the proposed ET-CBF just needs little extra memory space for storing reference as

well as neighbors’ information. Moreover, the proposed ET-CBF can also be regarded as a generalization of the

ET-KF presented in [9].

Similar ET strategies have also also been proposed to handle the problem of distributed joint detection and

tracking of a target, which results in the so-called ET consensus Bernoulli filter [17].

The rest of the paper is organized as follows. Section II reviews consensus-based distributed Bayesian filtering.

Section III introduces the KLD-based ET criterion and develops the proposed ET-DSE algorihm. Section IV analyses

its stability in the linear-Gaussian case. Section V provides a performance evaluation of the proposed ET-DSE via

simulation experiments concerning a target tracking case study. Finally, section VI ends the paper with some

concluding remarks.

II. DISTRIBUTED STATE ESTIMATION WITH CONSENSUS ON POSTERIORS

This paper addresses DSE over a network in which each node can process local data as well as exchange data

with neighbors. Further, some nodes can also sense data from the environment, and are called sensor nodes. The task

of nodes without sensing capabilities, called communication nodes, is only to improve network connectivity. In the

sequel, the sensor network will be denoted as (N ,A,S) where: N = {1, . . . , N} is the set of nodes; A ⊆ N ×N

is the set of arcs (edges) such that (i, j) ∈ A if node j can receive data from node i; S ⊆ N is the subset of sensor

nodes. Further, for each node i ∈ N , Ni ⊆ N will denote the set of its in-neighbors, i.e. Ni
△
= {j : (j, i) ∈ A}.

The DSE problem can be formulated as follows. Each node i ∈ N must estimate at each time k ∈ {0, 1, . . .}

the state xk of the dynamical system

xk+1 = fk(xk) + wk (1)
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given local measurements

yik = hi
k(xk) + vik , i ∈ S , (2)

and data received from all neighboring nodes j ∈ Ni. The initial state x0 and the sequences {wk} and {vik},

representing respectively the process disturbance and measurement noises, are supposed to be mutually independent.

The sequence {wk} is supposed to be generated by a white stochastic process with known PDF pw(·). Similarly,

{vik} is generated by a white stochastic process with known PDF pvi(·).

Consider first the case in which no information exchange is performed among the network nodes, i.e., each node

independently runs its own local filter so as to estimate the state xk. As well known, in this case, the solution of

the local state estimation problem would yield the Bayes filter recursion:

pik|k(x) =
pvi(yik − hi

k(x)) p
i
k|k−1

(x)
∫

pvi(yik − hi
k(ξ)) p

i
k|k−1

(ξ)dξ
, (3)

pik+1|k(x) =

∫

pw(x− fk(ξ)) p
i
k|k(ξ)dξ , (4)

for k = 0, 1, . . ., where pik|t(·) represents the PDF of xk conditioned to all the measurements collected by node i

up to time t, and the recursion is initialized at time k = 0 from some prior density pi
0|−1

(x).

Suppose now that a communication structure is available as described previously so that each node i can receive

data from the nodes belonging to the subset Ni ⊆ N . Then, in order to improve its local estimate, each node i

can fuse the local information, i.e., the local posterior pik|k(·), with the one received from its neighbors pjk|k(·),

j ∈ Ni. More specifically, one can perform at each time instant a certain number, say L, of consensus steps on

the posterior PDFs pik|k(·), i ∈ N , in order to compute in a distributed fashion their average. This can be done by

following the approach of [16]. More specifically, consider a generic node i at time k and suppose that ℓ consensus

iterations have been carried out yielding the posterior density pik,ℓ(x). Then, the fused density at the next consensus

step pik,ℓ+1
(x) is obtained by computing a normalized geometric mean among the local density and those of the

neighbors

pik,ℓ+1 (x) =

[

pik,ℓ(x)
]πi,i ∏

j∈Ni

[

pjk,ℓ (x)
]πi,j

∫

[

pik,ℓ(x)
]πi,i

∏

j∈Ni

[

pjk,ℓ (x)
]πi,j

dx

(5)

where the consensus weights πi,j must satisfy πi,j > 0 and πi,i+
∑

j∈Ni
πi,j = 1. Clearly, in each network node i

the consensus recursion is initialized from the local posterior densities by setting pk,0(x) = pik|k(x). As discussed

in [16], the fusion rule (5) (known in the literature as Generalized Covariance Intersection) has a meaningful

interpretation as the average, in terms of Kullback-Leibler Divergence, of the densities to be fused. For this reason,

it has also been referred to as Kullback-Leibler average. An important property of the consensus algorithm based

on the fusion rule (5) is that, under suitable assumptions [16], as the number ℓ of consensus steps increases all the
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TABLE I

ALGORITHM 1 - DISTRIBUTED STATE ESTIMATION WITH CONSENSUS ON POSTERIORS

At each time k = 0, 1, . . ., for each node i ∈ N :

1) Correction:

If i ∈ S , collect the local measurement yi
k

and update the local prior pi
k|k−1

via equation (3) to obtain the local posterior pi
k|k

;

otherwise, for any i ∈ N \ S , set pi
k|k

= pi
k|k−1

;

2) Consensus:

set pi
k,0

= pi
k|k

;

For ℓ = 0, . . . , L− 1,

transmit pi
k,ℓ

to the out-neighbors;

receive p
j
k,ℓ

from the in-neighbors j ∈ Ni;

perform fusion using (5);

End for

3) Prediction:

compute the local prior pi
k+1|k

from pi
k,L

via equation (4).

local densities converge to the collective average

pk (x) =

∏

j∈N

[

pjk|k (x)
]1/N

∫

∏

j∈N

[

pjk|k (x)
]1/N

dx

(6)

Summing up, the DSE algorithm of Table I is obtained.

Notice that in principle Algorithm 1 can deal with PDFs of arbitrary form. Clearly, a closed-form expression

for the recursion exists only in special cases (for instance, when the system dynamics and measurement equations

are linear and all the random variables are Gaussian). Hence, in general, the treatment of a nonlinear and/or non-

Gaussian setting requires some sort of approximation, for example based on the Extended Kalman Filter (EKF)

[5] or the Unscented Kalman filter (UKF) [18]. Algorithm 1 can be modified, by introducing suitable correcting

factors, in order to weight differently the prior and novel information in the information fusion step, so as to reduce

conservativeness while preserving stability [6], [18], [19].

As a final remark, it is worth pointing out that Algorithm 1 and its variants enjoy nice stability properties. In

fact, in [6], [16] it has been shown that, irrespectively of the number L of consensus steps, Algorithm 1 ensures

a mean-square-bounded estimation error in each network node provided that the system is collectively observable

and the network is strongly connected. The stability result can also be extended to the nonlinear case when the

Extended Kalman filter is used in the correction/prediction steps [5].

III. EVENT-TRIGGERED DISTRIBUTED BAYES FILTER

In Algorithm 1, it is supposed that, at every discrete time instant k, each node i ∈ N sends the local density

to its out-neighbors (even multiple times when L > 1). However, in many contexts, it is desirable to reduce
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data transmission as much as possible while preserving stability and performance. This goal can be achieved by

controlling transmission so that each node i selectively transmits only the most relevant data. To this end, let us

introduce for each node i binary variables cik,ℓ such that cik,ℓ = 1 if node i transmits at time k and consensus step

ℓ, or cik,ℓ = 0 otherwise. We focus on data-driven transmission strategies in which the variable cik,ℓ is a function of

pik,ℓ (the local density currently available in node i) and of the density most recently transmitted by node i.

Let us now denote by p̄ik,ℓ the so-called reference density, obtained by propagating the most recently transmitted

density up to the current time instant. Clearly, this means that, in case the last transmission has occurred at time

k′ < k, the reference density is obtained from the most recently transmitted density via k − k′ prediction steps.

Conversely, if the last transmission has occurred at time k, the reference density simply coincides with the most

recently transmitted one. Noting that the reference density p̄ik,ℓ can be computed also by the out-neighbors of node i,

the idea is that, when the discrepancy between pik,ℓ and p̄ik,ℓ is small, we do not really need to transmit pik,ℓ because

the information gain obtained by replacing p̄ik,ℓ with pik,ℓ is small. With this respect, the discrepancy between the

two densities pik,ℓ and p̄ik,ℓ can be quantified by computing the KLD

DKL(p
i
k,ℓ‖p̄

i
k,ℓ) =

∫

pik,ℓ(x) log
(

pik,ℓ(x)/p̄
i
k,ℓ(x)

)

dx , (7)

which, in Bayesian statistics, represents precisely the information gain achieved when moving from the old density

p̄ik,ℓ to the new one pik,ℓ.

Then, by considering the discrepancy measure (7), the following event-triggered transmission strategy is adopted

cik,ℓ =







0 if DKL(p
i
k,ℓ‖p̄

i
k,ℓ) ≤ τ

1 otherwise
(8)

where the positive scalar τ can be seen as a design parameter that can be tuned so as to achieve a desired behavior

in terms of transmission rate and performance.

Consider now the information fusion step. Clearly, when node i receives the densities pjk,ℓ from all its in-neighbors

j ∈ Ni, the fusion rule is the same as before. Instead, when cjk,ℓ = 0 for some neighbor j, then pjk,ℓ is not available

and the fusion rule has to be modified. With this respect, note that in this case, thanks to the adopted event-triggered

transmission strategy (8), node i is still able to infer that the true pjk,ℓ is close (in terms of KLD) to the reference

density p̄jk,ℓ. Then, a natural idea is to modify the information fusion step at node i by replacing, for any j ∈ Ni

such that cjk,ℓ = 0, the density pjk,ℓ with a suitable density p̃jk,ℓ computed from p̄jk,ℓ. In fact, while in principle

we could use directly p̄jk,ℓ in the fusion step, it may be preferable to modify it so as to account for the additional

uncertainty due to the discrepancy between p̄jk,ℓ and pjk,ℓ. For example, this can be done by setting

p̃jk,ℓ(x) =

[

p̄jk,ℓ(x)
]

1
1+δ

∫

[

p̄jk,ℓ(x)
]

1
1+δ

dx

(9)

with δ ≥ 0, which corresponds to perform a flattening of the density p̄jk,ℓ. To better understand this operation, we

can observe that when p̄jk,ℓ is a Gaussian with mean x̄j
k,ℓ and covariance P̄ j

k,ℓ, then also p̃jk,ℓ will be a Gaussian with

the same mean x̃j
k,ℓ = x̄j

k,ℓ but increased covariance P̃ j
k,ℓ = (1 + δ)P̄ j

k,ℓ, thus modelling the additional uncertainty.

In the following sections, we will show how, in the linear case, the scalar δ can be suitably tuned so as to ensure
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TABLE II

ALGORITHM 2 - EVENT-TRIGGERED DISTRIBUTED STATE ESTIMATION WITH CONSENSUS ON POSTERIORS

At each time k = 0, 1, . . ., for each node i ∈ N :

1) Correction:

If i ∈ S , collect the local measurement yi
k

and update the local prior pi
k|k−1

via equation (3) to obtain the local posterior pi
k|k

;

otherwise, for any i ∈ N \ S , set pi
k|k

= pi
k|k−1

;

2) Consensus:

set pi
k,0

= pi
k|k

;

For ℓ = 0, . . . , L− 1,

determine ci
k,ℓ

as in (8);

If ci
k,ℓ

= 1

transmit pi
k,ℓ

to the out-neighbors;

set p̄i
k,ℓ+1

= pi
k,ℓ

;

Else

set p̄i
k,ℓ+1

= p̄i
k,ℓ

;

End if

receive p
j
k,ℓ

from the in-neighbors j ∈ Ni for which c
j
k,ℓ

= 1;

For all j ∈ Ni

If c
j
k,ℓ

= 1

set p̄
j
k,ℓ+1

= p
j
k,ℓ

;

Else

set p̄
j

k,ℓ+1
= p̄

j

k,ℓ
;

compute p̃
j

k,ℓ
as in (9);

End if

End for

perform fusion using (10);

End for

3) Prediction:

compute the local prior pi
k+1|k

from pi
k,L

via equation (4);

compute the reference density p̄i
k+1,0

from p̄i
k,L

via equation (4);

compute the reference density p̄
j
k+1,0

from p̄
j
k,L

via equation (4) for any j ∈ Ni.

stability of the estimation error in all the network nodes. Summing up, if we denote by N i
k,ℓ the set of in-neighbors

of node i for which cjk,ℓ = 1, each consensus step takes the form

pik,ℓ+1 (x) =

[

pik,ℓ(x)
]πi,i ∏

j∈N i
k,ℓ

[

pjk,ℓ (x)
]πi,j ∏

j∈Ni\N i
k,ℓ

[

p̃jk,ℓ (x)
]πi,j

∫

[

pik,ℓ(x)
]πi,i

∏

j∈N i
k,ℓ

[

pjk,ℓ (x)
]πi,j ∏

j∈Ni\N i
k,ℓ

[

p̃jk,ℓ (x)
]πi,j

dx

(10)

The above-described approach to DSE with event-triggered communication gives rise to the algorithm of Table

II.
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A. The linear-Gaussian case

While in general implementation of Algorithm 2 requires some approximation, it turns out that all its steps admit

a closed-form implementation when the system is linear

xk+1 = Axk + wk (11)

yik = Cxk + vik , i ∈ S , (12)

and all the random variables, (i.e. the initial state, the process disturbance, and all the measurement noises) are

normally distributed,

p0(x) = G(x; x̂0|−1, P0|−1) ,

pw(w) = G(w; 0, Q) ,

pvi(vi) = G(vi; 0, Ri) , i ∈ S ,

where: x̂0|−1 is a known vector and P0|−1, Q, Ri, i ∈ S, are known positive definite matrices; G(·;µ,Σ) denotes

a Gaussian PDF with mean µ and covariance Σ.

In fact, as well known, thanks to the linear-Gaussian assumptions, the Bayesian filtering recursion admits in this

case a closed-form solution given by the Kalman filter recursion. This means that in the correction step, given a

Gaussian prior

pik|k−1(x) = G(x; x̂i
k|k−1 , P

i
k|k−1) , (13)

the local posterior is again a Gaussian

pik|k(x) = G(x; x̂i
k|k , P

i
k|k) (14)

whose mean and covariance can be computed by means of the Kalman filter correction step (details are omitted

since they are standard).

Further, also the consensus step preserves the Gaussian-form of the PDFs. To see this, it is convenient to consider,

instead of mean and covariance, the information matrix

Ωi
k,ℓ = (P i

k,ℓ)
−1 (15)

and information vector

qik,ℓ = Ωi
k,ℓx̂

i
k,ℓ , (16)

which provide an alternative sufficient statistics for representing a Gaussian PDF. In fact, with some algebra, we can

see that the fusion step (10) preserves Gaussianity and can be written as a convex combination of the information

pairs to be fused

qik,ℓ+1 = πi,i q
i
k,ℓ +

∑

j∈N i
k,ℓ

πi,j qjk,ℓ +
∑

j∈Ni\N i
k,ℓ

πi,j q̃jk,ℓ (17)

Ωi
k,ℓ+1 = πi,i Ω

i
k,ℓ +

∑

j∈N i
k,ℓ

πi,j Ωj
k,ℓ +

∑

j∈Ni\N i
k,ℓ

πi,j Ω̃j
k,ℓ . (18)
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where, for each j ∈ Ni \ N i
k,ℓ, the pair (q̃jk,ℓ, Ω̃

j
k,ℓ) is computed from the information pair (q̄jk,ℓ, Ω̄

j
k,ℓ) of the

corresponding reference density p̄jk,ℓ as

q̃jk,ℓ =
1

1 + δ
q̄jk,ℓ (19)

Ω̃j
k,ℓ =

1

1 + δ
Ω̄j

k,ℓ (20)

Notice that equations (19)-(20), which correspond to perform the flattening (9), basically amount to reducing the

weights of the neighboring nodes that have not transmitted by a factor 1 + δ.

After consensus, the usual Kalman filter prediction step can be applied to the fused mean x̂i
k,L = (Ωi

k,L)
−1 qik,L

and covariance P i
k,L = (Ωi

k,L)
−1 to get the predicted mean x̂i

k+1|k and covariance P i
k+1|k.

Finally, notice that for Gaussian PDFs also the triggering condition (8) can be evaluated in closed form since

the KLD between pik,ℓ and p̄ik,ℓ can be written in terms of mean and inverse covariance as

DKL(p
i
k,ℓ||p̄

i
k,ℓ) =

1

2

{

tr[Ω̄i
k,ℓ(Ω

i
k,ℓ)

−1] + ‖x̂i
k,ℓ − x̄i

k,ℓ‖
2

Ω̄i
k,ℓ

+ log
detΩi

k,ℓ

det Ω̄i
k,ℓ

− n

}

, (21)

where n = dim(x).

IV. STABILITY ANALYSIS

Focusing again on the linear-Gaussian case, we show now that, when the weight δ is sufficiently large, the

proposed algorithm ensures stability of the estimation error in all network nodes under the minimal requirements

of network connectivity and collective observability.

To this end, we first show that when the KLD between pik,ℓ and p̄ik,ℓ is small, i.e.

DKL(p
i
k,ℓ||p̄

i
k,ℓ) ≤ τ (22)

so that no transmission occurs, then also the true local estimate x̂i
k,ℓ and information matrix Ωi

k,ℓ are close to the

estimate x̄i
k,ℓ and information matrix Ω̄i

k,ℓ provided by the reference density p̄ik,ℓ.

Proposition 1: Let condition (22) be satisfied. Then, there exist positive scalars α∗(τ), β∗(τ), and δ∗(τ) such

that

‖x̂i
k,ℓ − x̄i

k,ℓ‖
2

Ωi
k,ℓ

≤ α∗(τ) , (23)

1

1 + β∗(τ)
Ωi

k,ℓ ≤ Ω̄i
k,ℓ ≤ (1 + δ∗(τ))Ωi

k,ℓ . (24)

Proof: Notice first that, since DKL(p
i
k,ℓ||p̄

i
k,ℓ) is always non-negative irrespectively of the values of x̂i

k,ℓ and x̄i
k,ℓ,

one has

1

2

{

tr[Ω̄i
k,ℓ(Ω

i
k,ℓ)

−1] + log
detΩi

k,ℓ

det Ω̄i
k,ℓ

− n

}

≥ 0 (25)

which implies

‖x̂i
k,ℓ − x̄i

k,ℓ‖
2

Ω̄i
k,ℓ

≤ 2DKL(p
i
k,ℓ||p̄

i
k,ℓ) ≤ 2τ . (26)
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Further, since ‖x̂i
k,ℓ − x̄i

k,ℓ‖
2

Ω̄i
k,ℓ

≥ 0, under condition (22) we have

tr[Ω̄i
k,ℓ(Ω

i
k,ℓ)

−1] + log
detΩi

k,ℓ

det Ω̄i
k,ℓ

− n ≤ 2DKL(p
i
k,ℓ||p̄

i
k,ℓ) ≤ 2τ. (27)

Notice now that, by exploiting the properties of matrix trace and determinant, the following identity can be derived

tr[Ω̄i
k,ℓ(Ω

i
k,ℓ)

−1] + log
detΩi

k,ℓ

det Ω̄i
k,ℓ

= tr[(Ωi
k,ℓ)

−1/2Ω̄i
k,ℓ(Ω

i
k,ℓ)

−1/2]− log det[(Ωi
k,ℓ)

−1/2Ω̄i
k,ℓ(Ω

i
k,ℓ)

−1/2] . (28)

Hence, inequality (27) can be rewritten as

f
[

(Ωi
k,ℓ)

−1/2Ω̄i
k,ℓ(Ω

i
k,ℓ)

−1/2
]

≤ 2τ (29)

where f(·) is the matrix function

f(X) = tr(X)− log det(X)− n (30)

defined over the cone of positive definite matrices. As it can be easily verified, the function f(X) is convex and non-

negative (it has a global minimum equal to 0 in X = I). Further, f(X) can be written in terms of the eigenvalues

λj of X as follows

f(X) =
n
∑

j=1

(λj − logλj − 1) . (31)

Since all the terms in the summation are nonnegative, f(X) ≤ 2τ implies λj − log λj − 1 ≤ 2τ for any eigenvalue

λj of X . Let us now denote by λ(τ) and λ(τ) the two solutions of the equation λ− logλ− 1 = 2τ where, for any

τ > 0, 0 < λ(τ) < 1 < λ(τ). It is an easy matter to check that λj − logλj − 1 ≤ 2τ implies λ(τ) < λj < λ(τ)

and, as a consequence, f(X) ≤ 2τ implies λ(τ)I ≤ X ≤ λ(τ)I . Hence, inequality (29) yields

λ(τ)I ≤ (Ωi
k,ℓ)

−1/2Ω̄i
k,ℓ(Ω

i
k,ℓ)

−1/2 ≤ λ(τ)I (32)

which can be written as in (24) by letting δ∗(τ) = λ(τ) − 1 and β∗(τ) = 1/λ(τ) − 1.

Finally, recalling (26), inequality (23) holds with α∗(τ) = 2 τ (1 + β∗(τ)).

A consequence of Proposition 1 is that, if we choose the scalar δ in the flattening step (19)-(20) so that δ ≥ δ∗(τ),

then we have

Ω̃i
k,ℓ ≤

1 + δ∗(τ)

1 + δ
Ωi

k,ℓ ≤ Ωi
k,ℓ . (33)

This condition is important because it ensures that the information matrix after fusion is never larger than the one

which would be obtained in case all the nodes transmit, thus preventing the local filter from becoming too confident

on the available information. From the theoretical point of view, this property leads to the stability of the estimation

error. To see this, let us consider the following assumptions.

A1. The system matrix A is invertible.

A2. The system is collectively observable, i.e. the pair (A,C) is observable where C := col
(

Ci; i ∈ S
)

.

A3. The network is strongly connected, i.e., there exists a directed path between any pair of nodes i, j ∈ N .
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Notice that these are the same assumptions under which stability of the Distributed Kalman filter with full

transmission rate of Table I has been proved in [6], [16]. Notice also that assumption A1 is automatically satisfied

in sampled-data systems wherein the matrix A is obtained by discretization of a continuous-time system matrix.

Finally, let Π denote the consensus matrix, whose elements are the consensus weights πi,j , i, j ∈ N (in case j 6= i

does not belong to Ni we simply set πi,j = 0); notice that assumption A3 ensures that Π is primitive, i.e. there

exists an integer ℓ such that all the elements of Πℓ are strictly positive. Then, the following result can be stated.

Theorem 1: Consider the linear-Gaussian case and suppose that assumptions A1-A3 hold. Consider the estimates

x̂i
k|k , i ∈ N , generated by Algorithm 2 starting from positive definite information matrices Ωi

0|−1
, i ∈ N . Further,

let the scalar δ in (19)-(20) be chosen so that δ ≥ δ∗(τ). Then, the estimation error is uniformly bounded in mean

square, i.e.

lim sup
k→∞

E{‖x̂i
k|k − xk‖

2} < +∞ (34)

in each network node i ∈ N .

Proof: The statement can be proved by following similar arguments as in the proof of Theorem 1 of [9]. More

specifically, in [9] stability is proved by considering a triggering condition in which no transmission occurs when

both the current estimate x̂i
k,ℓ and inverse covariance Ωi

k,ℓ are close to the reference ones, i.e.

cik =







0 if ‖x̂i
k|k − x̄i

k‖
2

Ωi
k|k

≤ α and 1

1+β Ωi
k|k ≤ Ω̄i

k ≤ (1 + δ)Ωi
k|k

1 otherwise
(35)

where α, β, and δ are positive scalars. While the transmission strategy (35) is different from the one adopted here

(8), Proposition 1 ensures that the stability analysis of [9] can be applied also in case of a transmission test defined

directly in terms of KLD as in (8), provided that the scalars α, β, and δ of [9] are replaced by the scalars α∗(τ),

β∗(τ), and δ∗(τ) defined in Proposition 1.

Theorem 1 shows that the use of an event-triggered transmission strategy based on KLD does not destroy the

stability properties of the DSE algorithm based on consensus on posteriors, while allowing for a reduction in the

communication load.

V. PERFORMANCE EVALUATION

In this section, the performance of the proposed algorithm is checked via simulation experiments. In our

simulations, the aim is to track a target moving inside a 5 × 5 [km2] surveillance area. The state of the target

at time k is defined as xk = [ξk ξ̇k ηk η̇k]
⊤, where [ξk ηk]

⊤ and [ξ̇k η̇k]
⊤ denote respectively the target position

and velocity in Cartesian coordinates. The target is supposed to move according to the constant-velocity kinematic

model, i.e. the matrix A in (1) is given by

A =

















1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

















, (36)
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where T = 1 [s] represents the sampling interval. The covariance matrix Q of the process noise is set to Q =

diag([16m2, 1m2/s2, 16m2, 1m2/s2]).

A network consisting of 100 (20 sensor and 80 communication) nodes is deployed over the surveillance area in

order to track the moving target. The location of the i-th sensor node is denoted by [ξi ηi]⊤. In our simulations,

two configurations of sensors are considered:

- Linear sensor case, where 10 sensors measure the ξ-coordinate and other 10 the η-coordinate of the target

position. The measurement function (2) of each sensor node i ∈ N is, therefore, given by

yik =







H1xk + vi,ξk , ξ−coordinate

H2xk + vi,ηk , η−coordinate
(37)

where H1 = [1, 0, 0, 0], H2 = [0, 0, 1, 0], and the variances of the measurement noises vi,ξk , vi,ηk are set to

Ri,ξ
k = Ri,η

k = 3[m2].

- Nonlinear sensor case, where 10 sensors provide time-of-arrival (TOA) and the other 10 direction-of-arrival

(DOA) measurements. The measurement function (2) of each sensor node i ∈ N is, therefore, given by

yik =







√

(ξk − ξi)
2
+ (ηk − ηi)

2
+ vi,rk , for TOA

atan
(

ηk−ηi

ξk−ξi

)

+ vi,θk , for DOA
(38)

where the variance of the measurement noises vi,rk , vi,θk are set to Ri,r
k = 9 [m2] and Ri,θ

k = 0.01 [deg2],

respectively.

Details of the considered scenarios are illustrated in Figure 1. Notice that for the nonlinear sensor case (38),

the extended Kalman filter is adopted. In order to better examine the performance of the proposed event-triggered

strategy, the simulation also involves other two transmission strategies: a) randomly-triggered strategy, where each

node randomly chooses the broadcasting time instants according to the preset transmission rate; and b) periodically-

triggered strategy, where the message broadcasting time instants of each node are set in advance according to the

transmission rate. In the simulations, the transmission schedule is designed to ensure that at least one node of the

network will broadcast its message at each time instant under all selected transmission rates. In all transmission

strategies, the number of consensus steps is set to L = 1.

As performance indicator, we employ the average mean square error (AMSE) defined as follows:

Ek =
1

|N |

∑

i∈N

∥

∥

∥
x̂i
k|k − xk

∥

∥

∥

2
, (39)

where ‖·‖
2

denotes the Euclidean-norm. In our simulations, 200 independent Monte Carlo trials are carried out and

the AMSE is further averaged with respect to the trials. The performance achieved by the proposed event-triggered

strategy at different transmission rates is illustrated in Fig. 2 for linear sensors and in Fig. 3 for nonlinear sensors.

It can be concluded that the proposed event-triggered strategy has better performance compared to the other two

triggering strategies at the same transmission rate. It can also be noticed that, when the transmission rate increases,

all triggering strategies perform close to the full-rate benchmark. In particular, the performance of the proposed

ET-DSE algorithm is always close to that of the full-rate one, even if the communication rate is extremely low
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Fig. 1. The simulated scenario.

(a) (b)

0 20 40 60 80 100 120 140 160 180 200

Time (s)

0

5

10

15

A
M

S
E

Full rate ET-DSE Randomly-triggered Periodically-triggered

0 20 40 60 80 100 120 140 160 180 200

Time (s)

0

5

10

15

20

A
M

S
E

Full rate ET-DSE Randomly-triggered Periodically-triggered

(c) (d)

0 20 40 60 80 100 120 140 160 180 200

Time (s)

0

10

20

30

A
M

S
E

Full rate ET-DSE Randomly-triggered Periodically-triggered

0 20 40 60 80 100 120 140 160 180 200

Time (s)

0

10

20

30

40

A
M

S
E

Full rate ET-DSE Randomly-triggered Periodically-triggered

Fig. 2. Linear sensor case – performance evaluation under different communication rates: 70% (a), 50% (b), 30% (c), and 10% (d).

(e.g. 30%), which means that the proposed event-triggered strategy can successfully balance estimation accuracy

and energy consumption.

VI. CONCLUSION

In this paper, an event-triggered consensus Bayes filter is proposed in order to perform distributed state estimation

by means of a sensor network, while reducing communication bandwidth and energy consumption at each sensor

node. The Kullback-Leibler divergence has been employed in the proposed event-triggered strategy in order to

quantify the discrepancy between the local posterior distribution and the one predicted from the last transmission

time. The effectiveness of the proposed approach has been demonstrated by computer simulations. Potential future

research work will address the following issues: (1) to develop a performance-predictable event-triggered strategy

capable to adaptively choose the transmission triggering threshold so as to match a pre-specified transmission rate;
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Fig. 3. Nonlinear sensor case – performance evaluation under different communication rates: 70% (a), 50% (b), 30% (c), and 10% (d).

(2) to apply the proposed event-triggered strategy to distributed multitarget tracking and distributed multirobot

simultaneous localization and mapping (SLAM).
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