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Abstract— We show how least squares optimal realization
of autonomous linear time-invariant dynamical systems from
given data, reduces to the solution of an eigenvalue problem.
In this short paper, we can only schematically sketch the
different steps: The first order optimality conditions result in a
multi-parameter eigenvalue problem. The eigenvalue n-tuples
are calculated from the null space of a quasi-Toeplitz block
Macaulay matrix, which is shown to be multishift-invariant.
This last property is then exploited via nD ‘exact’ realization
theory, leading through several eigenvalue problems to the
optimal model parameters.

I. INTRODUCTION

Eigenvalue problems (EVP) are ubiquitous in nature and
science. Specifically in systems and control, they are also
omnipresent: in characterizing stability, controllability and
observability of linear time-invariant (LTI) dynamical sys-
tems, but even so in the steady state versions of LQR control
and the Kalman filter [9], the solutions of which follow
from Algebraic Riccati Equations, which are Hamiltonian
eigenvalue problems in disguise. Similarly, the solutions to
their H., counterparts derive from symplectic eigenvalue
problems [9]. As a final example, model reduction in the
Hankel norm is in essence an eigenvalue problem [12].

But what about the dynamical models themselves, when, as
in system identification, they are estimated from observations
on inputs and outputs? In what sense are these identified
models optimal, whether they are obtained from subspace
algorithms [15], prediction error methods [11] or errors-
in-variables approaches [14]? Typically, the identification
problem is formulated as a one- or two-step (weighted)
least squares optimization problem, in which parametrized
models act as constraints. ‘Nonlinearities’ occur in the in-
terplay between the dynamic model parametrization and the
assumptions by which data inaccuracies or unknown inputs
are modelled. As a matter of fact, most model and data
assumptions for LTI system identification lead to nonlinear
least squares problems, the solution of which is tackled with
iterative minimization algorithms, with typical challenges of
finding good initial guesses, dealing with convergence issues
and having no guarantee to converge to a global minimum.
However, one of the central observations that we will exploit,
concerns the specific nature of these ‘nonlinearities’ in LTI
system identification: They are all ‘multivariate polynomial’,
and therefore in essence the solution reduces to an EVP.
The close relation between roots of sets of multivariate
polynomials on the one hand, and the algebraic EVP on the
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other hand, has been rediscovered many times in algebraic
geometry (see e.g. [4] [13])'. In our work, we also have
made the link with multidimensional realization theory [6],
a relation that will be further exploited here too.

In this paper, we will concentrate on the so-called least
squares realization problem: How to modify a data sequence
Yk, in a least squares sense into a sequence g that is the output
of an LTI autonomous system of a given prespecified order
ng? Without going too much in detail, we will elaborate on
the (non-trivial) steps that lead to the insight that this is an
EVP as follows: In Section II, we formalize the least squares
realization problem. First order optimality conditions are the
subject of Section III, leading to some interesting system
theoretic properties detailed in Section IV. The insight in
Section V concerns the observation that the first order opti-
mality conditions reduce to a multiparameter EVP. In Section
VI, we show how to exploit multishift-invariance properties
of certain subspaces, derived from the multiparameter EVP,
to invoke nD-realization theory, that will ultimately deliver
the optimizing parameters as eigenvalues of certain matrices.
In the final Section, we offer some concluding remarks.

II. THE LEAST SQUARES REALIZATION PROBLEM
A. Data and model assumptions

Let y = (yo y1 ...ynv—1)Y € RY be a given data
sequence. The least squares realization problem is to find
9= (90 i ...gv-1)" € RY so that 0® = |ly — 9|3 =
Zk]yz_ol(yk — & )? is minimized, with 7 the output of an LTI
model of given, prespecified order n,:

gr = CAF g (1)

with the unknown initial state zy € R™e, system matrix
A € R"*" and output vector C € R!X"«, We assume
that the number of data points N is large enough (i.e.
N > 2n,, the minimal number of parameters to describe
(1)) and that y itself is not the output of an LTI autonomous
system? of order n < n,. Let x(A) = det(\l,, — A) =
At A 4+, 1A+, = 0 be the monic (with
leading coefficient 1) characteristic equation of the matrix A.
Then, from the Cayley-Hamilton Theorem, for every k > 0,
nq+1 consecutive samples ¢y, satisfy the difference equation

gk+na + Oé1?3k:+na71 +...+ anaflglﬂ»l + anagk = 07 (2)

Tt must have been known to Sylvester, who developed an elimination
theory for variables in a set of multivariate polynomials, which reduces the
whole problem to finding the roots of a polynomial in one variable only.

2This is a ‘sufficiently richness’ condition on the data, relative to
the given order n,. Without this assumption, the model (2) would be
overparametrized.



so that
T.y=0, 3)

where T}, € RWW="a)xN js a banded Toeplitz matrix with the
coefficients of the characteristic polynomial reversed, i.e. its
first row is (v, @, —1 ... a1 1 0...0). The fact that x(A)
is monic implies that T, is of full row rank: rank(7,) =
N — n4. Eq. (3) is a so-called ‘kernel representation’ in
Willems’s behavioral framework [17]: Only sequences g that
are orthogonal to the row space of T, are ‘compatible’ with
the model class (1).

B. Minimizing the misfit

We define the misfit § via y = i + ¢, so that 02 = ||y —
912 = |93 = §73. From (3) we find that T,y = T,3. If T,
were known, this would be an underdetermined set of linear
equations in the unknown misfit §. The unique minimum
norm solution would then follow from the pseudo-inverse of
T, as

§ =TTy =T, (T.T;) ' Ty . @)

The second equality follows from the fact that 7T, is of
full row rank, so that 7,77 is nonsingular and T =
TH(T,TF)~'. The matrix 11, = T (T,TF)~'T, is the
orthogonal projector onto the row space of T,. If T, were
known, the given data vector y could be decomposed into
two mutually orthogonal vectors as

y:y+g:(IN_Ha)y+Huy- )

In general, there is an infinite number of orthogonal decom-
positions of the data vector y: Construct in R™V a sphere with
center y/2 and radius ||y/2||2. Then, the set of all vectors §
so that y = + ¢ and §7 ¢ = 0, is given by the equation of
that sphere as ||§ — y/2[|3 = |ly/2||3, from which it follows
that 7 (y—3) = 0 and [[y[|3 = [|7]13+1|7]13 (the last equation
being Pythagoras’s Theorem)?®. But here, out of this infinite
set of orthogonal projectors, we want to find that specific
projector I, = TX(T,TT)~1T, that minimizes ||§||3 over
the coefficients of x(A).

IIT. FIRST ORDER OPTIMALITY CONDITIONS

The least squares objective function can now be written as
o? = [19l3 = Iayll3 = y" T (LT3) " Tay - (6)

which is to be minimized over the coefficients «;,7 =

1,...,n, of the characteristic polynomial y(A) of given
degree n,. We will use D, = T,TT, which itself is a
symmetric, positive definite, banded Toeplitz matrix.
The first order optimality conditions are, Vi = 1,...,n,:
2
007 _ o = 21D, Tony
60@

—y" T D' DY D Ty, (7)

3This is a generalization to N dimensions of the ancient Thales’s
Theorem, stating that when a, b and c are distinct points on a circle where
the line ac is the centerline diameter, the angle between ab and bc is a right
one.

where a superscript «; denotes the partial derivative with
respect to «;, and we have used the matrix inverse derivative
expression 9D, !/0a; = —D;1D% D, 1. The observation
that eqs. (7) are ‘nonlinear’ in the coefficients «;, has led to
a lot of heuristic algorithms in the past (see Section VIII).
However, as D;! = adj(D,)/ det(D,), where adj(D,) is
the adjugate of the matrix D, (the matrix transposed with
the cofactors of all elements of D,,), and because det(D,) #
0, these n, equations (7) are equivalent to multivariate
polynomials in the n, unknowns «, after ‘multiplying out’
det(D,). Their roots will contain all global and local minima
and maxima, and all saddle points of the objective function
(6).

Now, the relation between common roots of sets of multi-
variate polynomials on the one hand and the matrix EVP
on the other hand, is (not so) well known (see e.g. [4] [13]).
For an interpretation via multidimensional system realization
theory, which we will also follow here, we refer to [6]. In
any case, not obvious at first sight, eqs. (7) are equivalent to
one or several eigenvalue problems, as we will elaborate on
in the sequel.

Define the vector f = D, 1T,y € RV ~"" and rewrite (6) as

D, Tuy F\
(i )(a)=0 o
Taking partial derivatives with respect to all variables ay;, ¢ =
1,...,n4, and using the derivative chain rule, results in

Dy Ty \(
(ot 50 ) (1)

(e ) () o
Egs. (8) and (9) contain (ng + 1)(IN — n, + 1) equations,
and the number of unknowns is the same (N —n,) in f, 1
in o, ng(N —ng) in all f* and n, for all of the ;).
Two observations can be made: Firstly, the last equation in
(8) is the only one involving o, because the last component
of the last vector in (9) is 0. Secondly, we can easily recover
the secular egs. (7) from (9) by eliminating f®* from the

first block rows in (9), plugging it in into the second block
row and using f = D, 'T,y from (8).

IV. SOME SYSTEM THEORETIC PROPERTIES

Before showing that (9) is a multiparameter EVP, let’s first
discuss some system theoretic properties.

A. Hankel matrices, shift invariance and realization theory

Eq. (3) can be rewritten as

T.j=Ya=0, (10)

where ¥ € R(N-me)x(na+1) js a Hankel matrix generated
from the sequence 9, and a = (a,, ap, 1 ... a; )T €
R(e+1) | contains the coefficients of x(A) in reversed order.
Eq. (10) expresses the well-known fact that a Hankel matrix,
generated from a sequence gy generated by the model (1),



has rank n,. Notice that eqs. (2) and (10) are exactly the
same, so that

c

CA

T, =T, =0, (11)

CAN-1
where I is the (extended) observability matrix. This equation
shows that the row space of T}, and the column space of I"
are orthogonal and complementary. The column space R(T)
of T is shift-invariant, meaning that R(I") = R(L), so that
also

nq = rank(I') = rank(T') = rank(T) = rank(I' T), (12)

where T’ and I are obtained from I' by omitting its first,
resp. last row. This property is sometimes called the partial
realization condition and in fact follows directly from the
Theorem of Cayley-Hamilton*. For single-output systems,
the column space of I" is uniquely determined by the eigen-
value spectrum of the system matrix A. It is obvious that
TA =T, and, even though the choice of basis for the column
space of I' is not unique, this ‘shift’-property is independent
of the choice of basis as for any nonsingular matrix 7", which
transforms I' into I'T", we have:

(CT)(T~YAT) = (T'T). (13)

Because the eigenvalues of A and T~ ! AT are the same (T
is a similarity transformation), we can find the eigenvalues
that characterize the shift-invariant column space of I'T" (in-
dependent of the specific choice of T'), from the eigenvalues
of

(T'AT) = (IT)'(TT), (14)

where a ‘}’ denotes the pseudo-inverse. There is also an
interesting ‘duality’ between the banded Toeplitz structure
of T,, and the shift-invariance of I": The column space of I"
is uniquely determined by the eigenvalues of A, which are
the zeros of the polynomial a from which T}, is constructed.
Said in other words, the banded Toeplitz structure of T,
and the shift-invariance property of I' go ‘hand-in-hand’, as
expressed by (11) (a duality that will be worked out in more
detail elsewhere).

B. Beurling-Lax-Halmos: The misfit is structured
From (4), we get

Y= Tg(TaTg)_lTay = Tgf' (15)

Using the forward shift operator z defined as z(yx) = Yx+1,
we can write the difference equation (2) as a(z)gr = 0,
where a(z) has the same coefficients and roots as y(A).
Eq. (15) implies that the misfit sequence gy, is generated by
a FIR filter, the coefficients of which are those of a(z) in
reversed order (which we denote by a**¥(z)) and driven with
the ‘input’ sequence f (appropriately padded with zeros)
as g = [(a"V(2))/2™]fr. The zeros of this FIR filter

4There is some technical complication when A is singular, case which
we do not consider here.

are the inverses of the poles of the optimal approximating
model a(z). So we find that g itself is generated by a linear
system, the zeros of which are the inverses of the eigenvalues
that characterize the shift-invariant column space of I'. This
can be seen as a finite-dimensional vector space version of
the operator-theoretic Theorem of Beurling-Lax-Halmos (see

e.g. [7] [12]).
C. Optimizing a metric and orthogonality

When dealing with least squares problems, there is always
a lot of geometry going on (we have already given some
examples using the Theorems of Pythagoras and Thales).
One interpretation of (6) is that we try to find the optimal
metric, represented by the nonnegative definite symmetric
projection operator matrix II,, in the following sense: The
set of all row spaces of T, over all possible vectors a, is a
manifold. We are looking for an optimal choice of a, so that
the orthogonal decomposition of the data vector y as in (5),
is such that the norm of ¢ as measured in the metric induced
by I, 02 = ||§]|? = §7 1,7, is minimized.

There are many other properties lurking in the background
that require more attention. To give one example, let’s
concentrate on (9). From the first block row, we find f¢ =
—D_ D% f + D 1Ty, and substituting this in the second
block row y©(T2)Tf + yTTTf* = 0 and using f =
DTy, we find 2fTT%y = fTD% f. Now, we use
D% = (T, T = ToTT + T,(T*)T and (15) to find
fIT% (y — §) = 0. Writing this out for all «; and using
4y = y — y, we then obtain (illustrated here for N = 6 and
Ng = 2):

Jo T

| 91 P2
> . =0.

! Y2 Y3

U3 a4

From (1) and (11), we deduce that f itself belongs to the left
null space of an observability matrix, so that similarly to (15)
and the reasoning that follows, f itself is the output of a FIR
filter driven by an unknown signal g. Said in other words,
the misfit y is generated by filtering an unknown signal g
twice through the same FIR filter, the zeros of which are
the inverses of the eigenvalues that characterize the optimal
shift-invariant column space of I': f = (a"*¥(2))?g for some
g. This is a finite-dimensional vector space version of what
in the Hs-model reduction literature is known as Walsh’s
Theorem (see e.g. [12]).

V. MULTIPARAMETER EIGENVALUE PROBLEM

In (7), when det(D,) is multiplied out, there are n, un-
knowns «; in the n, multivariate polynomials, while in (8)-
(9) there are (n, +1)(IN —ng + 1) equations and unknowns,
but here, the vectors f and f® appear linearly. This is
comparable to the ordinary EVP for a matrix A € R"*",
where both the formulations Az = zA,|jz|] = 1, and
det(AI, — A) = 0 are equivalent. The former contains n+ 1
equations and unknowns (x and \) and the latter only 1 (\).
Indeed, the fact that the eigenvectors x appear linearly in the
EVP, Az = x), allows one to write (AI,, — A)z = 0, which



only has a nontrivial solution z # 0 if and only if the charac-
teristic polynomial x(A) = det(\[,, — A) = 0. We will now
show how (8)-(9) is a multiparameter eigenvalue problem,
where the vectors f and f® are (parts of) eigenvectors, the
«; generate ng-tuples (o, ..., a,,) of eigenvalues, and the
secular equations (7) are the multiparameter generalizations
of the characteristic equation in the ordinary EVP.

Contrary to l-parameter eigenvalue problems (including the
Jordan, Weierstrass and Kronecker canonical forms, or also
eigenvalue problems polynomial in one variable), multi-
parameter eigenvalue problems are much less studied and
described in the literature. Some references include [1] [3]
[16].

We will omit the equation that defines o2 in (8) (the last
row), as it is the only equation where o appears, in which
case eqs. (8) - (9) comprise (n,+1)(N —n,)+n, equations
and unknowns. As an example, for n, = 2, we then have

1 N -2 N-2 N-=-2
N-2 [ T,y D, 0 0
N =2 TMy D D, 0
N—2]| T2y Do 0 Dy |20 =0,
| 0 YT YTT 0
1 0 yi(T=)" 0 YTy
(16)
where 2o = (=1 fT (fo)T (f*2)T)T. The matrix in

(16) is a function of the given data y and the unknown
coefficients «;, which appear quadratically in D, and linearly
in D2 and T,. The pair (o1, ag) is called the eigenvalue-pair
of the multiparameter eigenvalue problem. The eigenvector
w contains f, f** and f“2, which appear linearly in the
equations. Notice that the matrix is rectangular, 1 more row
than column for this n, = 2 case, so that its rank deficiency
is non-trivial.

For general n,, there is an ng-tuple (aq,...,ap,) of
eigenvalues and an eigenvector containing the vectors
fofor, ..., f%a. The matrix will be of size (n,(N —n,)+
ng) X (ng(N —mng) + 1), so with more rows than columns.
Its rank deficiency can be expressed by requiring that the
determinants of certain submatrices (n, of them) are simul-
taneously zero, which are exactly the ‘secular’ equations (7),
replacing the one characteristic equation in the 1-parameter
case x(A) = 0, with n, equations in the n,-variable case.

VI. SOLVING THE MULTI-PARAMETER EIGENVALUE
PROBLEM

How to solve multiparameter eigenvalue problems like the
ones we just derived? Most often in the literature, one
resorts to nonlinear equations solvers to find solutions for
(7), and then, obtain the eigenvectors by solving a set of
(homogeneous) linear equations. In doing so, the problem
is that, one needs appropriate initial guesses to start up
the nonlinear iterations, one has to monitor the convergence
behavior and it is not known beforehand how many solutions
there might be.

Here, we outline a different approach. By multiplying each
of the equations in (8)-(9) with monomials formed from the

ng unknown coefficients a;, we create additional equations
that will be grouped into a so-called block Macaulay matrix.
We then show that the null space of this matrix is multishift
invariant, a property that will be exploited to find the n,
unknowns «; as the eigenvalues of certain matrices. We
exploit the duality between the quasi-Toeplitz structure of
this block Macaulay matrix and the multishift- invariances of
its null space, for which we also describe the system theoretic
structure that allows to identify the finite (affine) solutions
and possible solutions at infinity.

For the sake of clarity, we now proceed with the simple
cases of n, = 1 and n, = 2, but the results can perfectly be
generalized for arbitrary n, > 2.

A. Shift-invariant null space for ng, =1

For n, = 1, there is only 1 unknown « and the multipa-
rameter eigenvalue problem reduces to one with 1 parameter
only. In that case, eqgs. (8)-(9) (without the equation for ¢2)
can be combined to a 1-parameter eigenvalue problem that
is polynomial in « as

(Ag + Ao+ Aza?)zg = 0, (17)

where Ay, A1, 4, € REN-Dx@EN-1) apd ,, =

(=1 fT (f*)T)T. Ay contains all the coefficients of a® = 1,
A; those of « and A, those of a2.

There are now two ways to proceed. The first one is to define
21 = zpa and then obtain the generalized EVP:

0 Iy-: 20\ _( fan—1 O 200\,
Ag Ay 21 0 —A <1 ’

Another way to proceed, is to start from (17), rewrite it as

(Ag A A) (18)

and then create a null space with a shift-invariant structure.
Hereto, generate a block Toeplitz matrix by multiplying (18)
with increasing powers of o to get

Ao AL Ay 00 0

Zox
0 Ay A Ay 0 Y

0 —0.
0 0 Ay A A oo’

In this way, we can recursively construct larger and larger
block Toeplitz matrices. From a certain recursion step on,
the nullity, which is the dimension of the null space, will
stabilize. It counts the total number of solutions, including
the ones at infinity (This is equivalent to Bezout’s Theorem
in Algebraic Geometry, see [4]). One can then always find a
column compression, as explained in the next Section VII,
that separates the affine (=finite) roots in « from those at
infinity. The resulting ‘affine’ subspace is shift-invariant and
one can then apply realization theory on the affine part as
in (13) and (14) to find all affine a’s as the eigenvalues that
characterize this shift-invariant subspace.



B. Shift invariant null space for n, = 2

We start from the multiparameter EVP (16). Define the vector
25 = (=1 fT (o) (f*2)" )T, and matrices A;; that
contain the coefficients of the monomials ofa? with i,j =
0,1, 2. Write (16) as a multiparameter EVP:

(Ago+ Ao +Agrae +A2004% +A00 +A02ag)20 =0.

Next, we ‘enlarge’ this multiparameter eigenvalue problem
by multiplying it with monomials in «a;, a9 of increasing
degree (a first recursion with «; and «s, a second recursion

with o2, ajas, o2, a third recursion with o3, ..., etc.) so
that we get

1 o a9 a% a0 ag a:f

Agg Ao Aot Ay A A O

0 Ap 0 A Apn 0 Ay

0 0 Ao 0 A A O

0 0 0 Ao 0 0 A1
x(2d 2y 2lay 2la? loanas 2las Lad )T =0.

(19)

We get a quasi-Toeplitz block Macaulay matrix, the null
space of which consists of vectors that are block multishift-
invariant, a property that we elaborate on in the next section.

VII. ND REALIZATION THEORY IN MULTI-SHIFT
INVARIANT SUBSPACES

It can be shown (see e.g. [6]) that there is a non-trivial
null space of the quasi-Toeplitz block Macaulay matrix, the
nullity of which will ‘stabilize’ after a sufficient number
of recursions (provided the solution set of the multiparam-
eter EVP is zero-dimensional, i.e. the corresponding variety
has dimension 0). This nullity reveals the total number
of eigenvalue-pairs (v, ) of the multi-parameter EVP,
including solutions at infinity. Let the matrix I' represent
the null space of the quasi-Toeplitz block Macaulay matrix
(e.g. obtained from its SVD). Then, it can be shown that
there is always a non-singular column compression 7' from
the right, that transformng as follows:

rr = (

(20)

This specific column compression 7" can be found following
several rank tests and SVDs (details omitted). 7" will split
I'T into I'r (‘R’ from regular) and I's (‘S’ from singular),
which together form the observability matrix of a singular
multi-dimensional system, of order n = ny + ny, where n;
is the number of affine (finite) pairs of eigenvalues (aq, a2),
and ne is the number of eigenvalue pairs at infinity.

As one can see in (20), there are three block row zones
in the matrix I'I" (separated by the double lines in (20)).
These zones can be determined when one starts checking
the ranks of submatrices of I'T’, from the top to the bottom,
by including more and more blocks in the rank test. For a
sufficiently large number of recursions in monomials of
and aw, there will be 3 block row zones:

Zone I: the ‘regular’-zone: The rank increases with at least
1 per block, up to the block where the block row degree is
ny — 1;

Zone II: ‘Mind-the-gap’-zone: The rank does not increase
anymore (this is a generalization of Cayley-Hamilton for
pairs of matrices). In this zone, all rows are linearly de-
pendent on some of the rows in Zone I.

Zone III: ‘A-bout-du-souffle’-zone: The rank increases again
per block, until the rank of I'T" equals the total nullity of
the block Macaulay matrix. The zeros at infinity can be
found from the structures and properties in Zone III (details
omitted).

It can be shown that these observability matrices I'g and I'g
are generated by a singular 2D state space system of the form
(already converted in what could be called the Weierstrass
Canonical Form for 2D commutative linear systems):

x§+1,z = Alﬂ?ﬁzv
xi—l,l = Elxg,z,
ka,lH AgkaJ,
xf,l—1 Eﬂf,z»
Ykl = CRJCkR,z + Csl‘f,p

Here, for the case n, = 2, xf¥; is the regular part of the
state, governed by two discrete indices k and [. The 2D-
grid state propagation over increasing k is modelled by A,
while that over increasing [ is governed by As. Together
they form the dynamics of the regular state xﬁ ;- Here,
Ay, Ay € R™*™ commute: A1 Ay = Az A; (Intuitively,
they should, as mkRHJ 41 can be reached from ka’l in 2
different ways as ka+1,l+1 = Alxﬁlﬂ = AlAgxﬁl =
Agxit, ) = AgAyafl, which should hold for arbitrary ).
The singular part of the state is xf.l, which propagates
backward both in k and [ via the matrices F; and F5, where
E{,Ey € R™*"2 also commute: F1FEy = E3F7 and in
addition, F; and FEs are nilpotent, i.e. when powered up,
from a certain power on, we get a zero matrix. In (20), we do
not explicitly show the backward propagation structure of the
singular observability matrix I's: we have replaced it in zone
III by “*’-s, as it is not relevant for our present discussion.
In any case, in I'g there will be only nonzero elements
in Zone III: starting from the bottom we get blocks with



increasing powers of Ei E; that die out in Zone II because
of the nilpotency (hence the name ‘a-bout-du-souffle’). The
Jordan structure of E; and FEs reveals the eigenvalue-pair
structure at infinity, but we will not discuss that here any
further. Finally, there are the output matrices C'g € Rirxm1
Cs € Rls*"2 with [ and Ig the specific numbers of outputs
that follow from the multiparameter EVP (19). The ‘mind-
the-gap’ zone will only appear for a sufficiently large block
Macaulay matrix: From a certain number of recursions on,
all rows in Zone II will be linearly dependent on rows in
Zone 1, and due to the nilpotency of E; and Es, there will
only be zero rows of I's in Zone II. As the block Macaulay
matrix keeps on growing, the ‘gap’ between Zone I and Zone
IIT becomes wider and wider.

The column space of the regular observability matrix I'p
is a block multishift-invariant subspace. Denote by I'; the
submatrix of I'p that contains the first block rows up to
degree n1 — 1 (so all block rows of Zone I). One can now
verify that (recall that A; and A, commute):

Fl Al = Ser and Fl A2 = SQFR, (21)

where the selector matrix S; selects the block rows
(2,4,5,7,8,9,...) and the selector matrix Sy selects the
block rows (3,5,6,8,9,10,...). So, from the column com-
pressed I'T", we can now find A; and A, by exploiting this
multishift-invariance property (21) to find

A1 = FJ{(Ser) and A2 = FI(SQFR) .

The eigenvalue pairs (cv, ap) then follow from the eigen-
values ;7 of A; and ag of As.

VIII. CONCLUDING REMARKS

In this short paper, we could only schematically sketch an
outline of some major results: Least squares optimal real-
ization of observed data is basically an EVP. It is surprising
that a (difficult) nonlinear problem in a 1D system theoretic
setting, can in principle be solved exactly as an EVP, in an
ne-dimensional system theoretic setting. The required steps
involve writing the first order optimality conditions as a mul-
tiparameter EVP, next, using recursions to generate a block
Macaulay matrix, finding in its null space the regular part that
is multishift invariant. Then use n,-dimensional realization
theory to calculate matrices Ay,...,A,,, the eigenvalues
of which will generate the n,-tuples (aq,...,ay,, ), one of
which corresponds to the global minimum. In doing so, we
also presented a new solution method for multiparameter
EVP.

Of course, many more details will be discussed elsewhere,
but let’s make some final observations. This work is a
nice combination of several disciplines, like numerical linear
algebra, system theory in one and more dimensions, (com-
mutative) algebraic geometry, operator theory, etc. Many
heuristic algorithms have been described in the literature
for heuristically ‘solving’ the least squares realization prob-
lem, often as an Alternating Projection Method: Iterative
Quadratic Maximum Likelihood (see e.g. [10]), Steiglitz-
McBride (see e.g. [12]), Cadzow’s iteration (see e.g. [2]),

the Riemannian SVD (see [5]), plain numerical optimization
(like in PEM in [11]), weighted null space fitting [8], etc.
We hope that our results will shed some new light in under-
standing these heuristic approaches (e.g. the nature of their
‘fixed points’ if and to which they converge). As a matter of
fact, there are numerous applications where the underlying
model is of the form (1) (e.g. moment problems, impulse
response realization, ‘shape-from-moment’ problems, nD
texture modelling, signal processing approaches like MUSIC
and ESPRIT, etc...), for which the results presented here
are highly relevant. The fact that also new algorithms to
obtain all solutions to multiparameter eigenvalueproblems
can be derived using the ideas established here, forms another
exciting perspective.
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