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Abstract— This paper describes a decentralized control strat-
egy for the automation of road intersections and studies its
impact on traffic in a realistic urban road network. The
controller incorporates a consensus-based auction algorithm
(CBAA-M), which allows vehicles to agree on a crossing order
at each road intersection, and an on-board model predictive
controller that avoids collisions with other traffic participants,
while trying to satisfy performance metrics over time. Random-
ized simulations show that this decentralized control approach
guarantees efficiency, safety, and a higher throughput than
traditional solutions.

I. INTRODUCTION

In the last decades, the study of fully automated vehicular
traffic has been in the spotlight, see [1], [2]. Cutting the
human driver out of the loop pledges more safety, higher
traffic efficiency, and a decrease of air pollution. The automa-
tion of extra-urban traffic has encouraged studies, e.g., on
path following [3] and autonomous overtaking with collision
avoidance [4]. In an urban environment, where overtaking is
usually not allowed, automating road intersections represents
the main challenge. Traditionally, in the adjacency of an
intersection, traffic lights are in charge of deciding - in
a centralized fashion - the crossing order of vehicles. In
the near future, when autonomous vehicles will be able to
exchange information (according to the so-called V2V –
vehicle to vehicle – and V2I – vehicle to infrastructure –
communication), traffic lights can be replaced. One possible
strategy is to design a centralized optimal controller which
gives each vehicle a crossing order. Appropriate factors, such
as actual and desired speeds or inter-vehicular distances,
will be weighted while trying to maximize the intersections’
throughput. However, employing a centralized controller
creates real-time implementability issues. In fact, as prob-
lem complexity complexity increases exponentially with the
addition of more intersections and more vehicles, realistic
scenarios defy real-time solutions. Moreover, in case the
centralized controller fails, the whole traffic network will be
affected.
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Fig. 1: Urban road network. LW is the width of the lane,
while the length of each road sector is an integer multiple
of DW .

In [5], a possible solution employing a decentralized
control structure for the automation of a road intersection
is presented. It builds an algorithm for task assignment from
robotics (see [6]). In the following, this solution will be
referred to as CBAA-M (Consensus Based Auction Algo-
rithm Modified). Vehicles agree on a crossing order for each
possible collision point in the intersection by participating
in an auction without a central auctioneer. This is possible
by employing a consensus protocol see e.g. [7]. Inspired
by [8], each vehicle will use an on-board Model Predictive
Controller (MPC) designed to avoid collisions with higher
priority (and frontal) vehicles while minimizing some cost.
This fully decentralized control strategy was shown to guar-
antee a real-time collision-free solution to the problem while
providing a high throughput.

The following work aims to extend the results presented
in [5] to the case of urban road networks with many inter-
sections. In Section II, a realistic urban scenario, composed
of a collection of adjacent road intersections is described.
In Section III, CBAA-M is reviewed and proven to achieve
finite-time convergence for groups of cars with a connected
(but not necessarily fully connected) network topology. The
optimal control structure is introduced in Section IV; dif-
ferently from [5], vehicles are also allowed to turn left
at intersections. Section V presents simulation results and
quantifies the impact of this solution. Finally, an analysis of
the impact of disallowing left turning is presented.

A. Notation

Throughout the paper, N0 denotes the set of nonnegative
integers, R the set of real numbers, and N the set of positive
integers. The set of nonnegative and positive real numbers
are, respectively, R≥0 and R>0. Given a set S, its cardinality
is |S|. An undirected graph is a pair (S,A), where S is a
set of nodes and A ⊆ [S]2 a set of arcs, with [S]2 denoting
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the set of all two-element subsets of S. Given a node i ∈ S,
its neighbors set is Si = {j | {i, j} ∈ A}. A path between
nodes i1 ∈ S and in ∈ S i1 6= in, is a set of arcs of the
form q = {{i1, i2}, {i2, i3}, . . . {in−2, in−1}, {in−1, in}}.
The graph (S,A) is connected if there exists a path between
any pair of nodes i, j, i 6= j. It is fully connected, if there
is an arc between any two nodes, i.e., A = [S]2. The
i-th entry of vector v is (v)i. Two sorting functions are
used. The function sort : Rn≥0 → Rn≥0 organizes vector
elements in decreasing order of magnitude; the function
argsort : Rn≥0 → Nn displays vector indices in decreasing
order of their respective entries’ magnitude. The function
argmax : Rn≥0 → N yields the index of the maximal entry in
the vector. If more than one entry has maximum value, one
index is selected randomly among the possible candidates.

II. PROBLEM DESCRIPTION

An urban road network is a system of interconnected roads
which are designed to carry vehicular traffic, as in Figure 1.
Each road is composed of two lanes, one per direction. For
simplicity and without loss of generality, only a Manhattan-
like grid, in which all roads are perpendicularly intersecting,
will be analyzed. Overtaking and u-turns are forbidden. The
traffic is composed of fully autonomous vehicles communi-
cating with each other (V2V). The availability of a common
shared clock is assumed.

A. Vehicle model
A set N = {1, . . . , n} of n > 1 vehicles driving on

the urban road network is considered. Each vehicle, say
i ∈ N, is given a desired path in global coordinates, i.e.
Pi = {Xgi ,Y

g
i } ⊂ R2, which comes from a higher-level GPS

navigation system. The latter provides vehicle i also with a
desired cruising speed, i.e. vri ∈ R>0. Each vehicle i ∈ N
is modeled, as in [9], by a point-mass discrete-time linear
system. Let xi(k) = [pi(k), vi(k)]′ be its state vector, where
pi(k) ∈ R>0 and vi(k) ∈ R≥0 are, respectively, position and
velocity along Pi at discrete time instant k ∈ N0;

xi(k + 1) = Axi(k) +Bui(k), (1)

where
A =

[
1 Ts
0 1

]
, B =

[
0
Ts

]
, (2)

Ts ∈ R>0 is the sampling time, xi(0) = xi0 , and ui : N→ R
is the longitudinal acceleration of vehicle i along Pi. In the
following, we refer to pi as position in local coordinates.
Each vehicle i will have a local to global mapMi : R≥0 →
Pi, which will associate pi to the respective position in the
global frame, i.e.

Mi(pi(k)) = xgi (k) = (xgi (k), ygi (k)) ∈ Pi. (3)

The global to local map is also defined and denoted by
M−1

i : Pi → R≥0. Given two vehicles i, j and a discrete-
time index k ∈ N0, their distance is defined as

dki,j = d(xgi (k), xgj (k)) =√
(xgi (k)− xgj (k))2 + (ygi (k)− ygj (k))2. (4)

Fig. 2: Possible collision points in one intersection.

We say that, at time k, a collision between vehicle i and
j occurs if dki,j < d, where d ∈ R>0 is a given minimum
allowed distance.

B. Frontal Vehicles

Clearly, different vehicles can simultaneously drive along
the same lane. It is important that each vehicle i recognizes
its current frontal vehicles, so that any possible bumper-to-
bumper collision can be avoided. Let Fki be the set of i’s
frontal vehicles at time k, formally

Fki = {j ∈ N | Mj(pj(k)) ∈ Pi,
M−1

i (Mj(pj(k))) > pi(k)}. (5)

C. Collision Points

Vehicle i should be aware of all those vehicles driving
on different road sections but going to intersect Pi. All the
possible paths, i.e. {Pi | i ∈ N}, will determine the set of
all possible collision points in the network (cf. Figure 2),

H = {(hx, hy) ∈ R2}. (6)

Let Gki be the set of all collision points that vehicle i has
still to cross at time k, i.e.

Gki = {h ∈ H | h ∈ Pi, M−1
i (h) > pi(k)}. (7)

On the other hand, given h ∈ H, the set Hk
h collects all the

vehicles that still have to cross, at time k, the collision point
h, i.e.,

Hk
h = {i ∈ N | h ∈ H, h ∈ Pi, M−1

i (h) > pi(k)}. (8)

Let Lki be the set of all vehicles with a higher priority than
vehicle i for crossing the collision point in Gki . A method
to compute Lki in a complete decentralized fashion will be
presented in Section III.

D. Control Structure

This information plays a rucial role within the hierarchi-
cally structured controller for vehicle i (see Figure 3). The
ingredients of this controller are described below:
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Fig. 3: Hierarchical control structure for vehicle i.

a) Reference Generator: Its task is providing the on-
board controller with the desired path and cruising speed,
given the goal position. It is outside the scope of this paper.

b) CBAA-M: this layer runs the so-called Consensus-
based Auction Algorithm Modified (see Section III). Vehicle
i will run this algorithm at every discrete-time step k thus
providing the controller with the set Lki of higher priority
vehicles, introduced in Section II-C.

c) MPC: this on-board Model Predictive Controller
minimizes a cost function (reflecting deviations from the
desired speed, discomfort, etc) while avoiding collisions with
vehicles in set Fki ∪Lki . Its output is the acceleration ui(k).

The proposed structure builds on the idea of avoiding
collisions only with higher priority and frontal vehicles,
which was originally proposed in [8].

III. CONSENSUS-BASED AUCTION ALGORITHM
MODIFIED

CBAA-M is an algorithm that allows a multi-agent system
modeled by a graph (S,A) to achieve an agreement between
a set of agents. of agents. It has been presented in [5], which,
in turn, takes inspiration from [6]. This algorithm is able to
run an auction without requiring the presence of any central
auctioneer. It can therefore be employed in a completely
decentralized control approach, as the one adopted in our
strategy. In the following, we will briefly summarize CBAA-
M and prove that it converges for connected graphs. This is
a sharper result than in [5], where full connectedness was
assumed.

Each agent i ∈ S = {1, . . . , S} places a bid ci ∈ R>0

that determines its position in the sequence. We assume that
each agent has a distinct bid to place, i.e. ∀i 6= j, ci 6= cj .
The higher the bid, the earlier that agent could appear in the
resulting sequence. Each agent has two vectors of dimension
S, i.e. vi and wi, which are updated at each iteration κ ∈ N
and are initialized as zero vectors. The first vector (winners
list) has to be filled with a sequence of agents’ indexes,
whilst the second vector contains their respective bids. This

algorithm is composed of two subsequent phases within
every iteration step k:

1) Local Auction [Algorithm 1]: at each iteration κ, each
agent i ∈ S places, if its index is not already stored in
vκi , its own bid ci in the earliest possible position of
vector wκ

i . In the same position, it stores its index in
vector vκi .

Algorithm 1 CBAA-M Phase 1 for agent i at iteration κ

1: v0
i = 0S , w0

i = 0S
2: procedure BID(ci, vκ−1

i , wκ−1
i )

3: vκi ← vκ−1
i

4: wκ
i ← wκ−1

i

5: j ← 1
6: loop:
7: if i 6= (vκi )l, ∀l = 1 . . . S then
8: if ci > (wκ−1

i )j then
9: (vκi )j ← i

10: (wκ
i )j ← ci

11: j ← j + 1
12: goto loop.
13: close;

2) Consensus over the lists [Algorithm 2]: after the first
phase, each agent has its own version of vκi and wκ

i .
The network need to reach an agreement on them. For
that purpose, each agent i ∈ S sends its vectors to its
respective neighbors (i.e. the nodes in the set Si) and
receives theirs. Then, via a max-consensus protocol, it
selects the best bid for each row of wκ

i and puts in the
same position of vκi the respective agent’s index.

Algorithm 2 CBAA-M Phase 2 for agent i at iteration κ

1: SEND (vκi ,w
κ
i ) to j ∈ Si = {j ∈ S | (i, j) ∈ E}

2: RECEIVE (vκh,w
κ
h) from h ∈ Si = {j ∈ S | (j, i) ∈ E}

3: procedure UPDATE(vκh∈Si , w
κ
h∈Si )

4: (aκi )j ← arg max
h∈Si

((wκ
h)j), ∀j = 1 . . .max(κ, S)

5: (vκi )j ← (vκ(aκi )j
)j ∀j = 1 . . .max(κ, S)

6: (wκ
i )j ← max

h∈Si
((wκ

h)j) ∀j = 1 . . .max(κ, S)

After terminating Phase 2, (wκ
h)j is the maximal bid for

position j that agent i is aware of, and (vκh)j is the index of
the agent having placed that bid.

In [5], a fully connected network topology was assumed
and an agreement was shown to be reached in exactly S
iterations. In the following, we will show that the algorithm
converges under the weaker condition of (S,A) being con-
nected.

Proposition 1. A multi-agent system represented by a con-
nected graph (S,A) executes CBAA-M. An agreement is
reached in κ̄ ∈ N iterations. Formally, ∃κ̄ ∈ N:

∀i, j ∈ N, vκ̄i = vκ̄j = v∗ = argsort(c), (9)

wκ̄
i = wκ̄

j = w∗ = sort(c), (10)



where, ∀i ∈ S, (c)i = ci.

Proof. Given a pair i ∈ S, κ ∈ N, such that vκi = v∗ and
wκ
i = w∗, the following holds:

∀j ∈ Si ∪ {i}, vκ+1
j = v∗, wκ+1

j = w∗. (11)

In fact, if (11) does not hold, Algorithm 2 would imply that,
for an arbitrary j ∈ Si, ∃g = 1, . . . , S, (wκ

j )g > (w∗)g . The
latter, by Algorithm 1, means that ∃h = 1, . . . , S : cg <
ch < cg+1, which is in contradiction with the definition of
w∗, i.e. w∗ = sort(c). A similar analysis can be conducted
for vκj .

The agreement phase of CBAA-M follows a max-
consensus protocol for each row of vi and wi. By [10],
max-consensus is achieved in a connected network in at most
l steps, where

l = max
i,j∈S
{|i, j|l,min}, (12)

where |i, j|l,min denotes the length of the shortest existing
path between node i and node j. Therefore, by (11) and (12),
if agent i0 at iteration κ0 is the first agent to have vκ0

i0
= v∗

and wκ0
i0

= w∗, then κ̄ ≤ κ0 + l.
Let’s now estimate κ0 in the worst case scenario. By

Algorithm 1, intuitively, i0 is the first agent to fill the last
row of wi. This is only possible, by Algorithm 1, if i0
is not contained in vi and if the first S − 1 rows of wi

have already been filled. By this, agent i0 must be the
agent having the minimum bid in the network, i.e. ci0 =
mini∈S ci. In the worst case scenario, by [10] and (12), for
retrieving the information of each row j of vi and wi, agent
i needs maximum l steps. Therefore, always in the worst
case scenario, κ0 ≤ (S − 1)l. Finally, we can state that the
multi-agent system achieves an agreement as (9)-(10) in κ̄
steps, where

κ̄ ≤ κ0 + l ≤ (S − 1)l + l = Sl.

This concludes the proof.

Due to the need of real-time implementation, a fast
convergence to the agreement vector is often required. In
[11], it was shown how the convergence rate of a max-
consensus protocol can be drastically increased by harnessing
the interference

As claimed in Section II-D, each vehicle i ∈ N, at
every discrete time step k ∈ N0, runs one CBAA-M for
each collision point h ∈ Gki , thus retrieving |Gki | priority
vectors. These can be grouped in a set {v∗h | h ∈ Gki },
where v∗h ∈ N|Hkh | is the agreed crossing priority list for
collision point h. From this collection of vectors, vehicle i
can retrieve the set Lki (cf. Section II-C) that collects all
the vehicles having higher priority than i at some collision
points. Formally,

Lki = {(v∗h)j | h ∈ Gki , j < m, (v∗h)m = i}. (13)

As in [5], the bid cki,h placed by vehicle i at time k in the
auction for crossing h ∈ Gki is determined from its current

velocity and its distance from h:

cki,h =
pvvi(k) + pd
dki,h + ε

, (14)

where pv ∈ R>0, pd ∈ R>0, and ε ∈ R>0 are chosen
parameters (equal for all vehicles). The quantity dki,h is the
distance at time k from vehicle i to the collision point h ∈ H,
i.e., dki,h =

√
(xgi (k)− hx)2 + (ygi (k)− hy)2. The reader

can refer to [5] for a comprehensive analysis of cki,h and
potential coherency problems in the auction procedures.

IV. ONBOARD MODEL PREDICTIVE CONTROLLER

As shown in Figure 3, each vehicle i ∈ N has an on-
board MPC controller that computes an optimal longitudinal
acceleration at every discrete step k ∈ N0. It is provided with
the desired path Pi, the desired cruising speed vri , the current
vehicle state xi(k), the sets Lki and Fki , and the states xj(k)
of all vehicles j ∈ Lki ∪ Fki .

A. Prediction Model

MPC employs a prediction model of the traffic situation
extrapolated from the current states and evolving along a
horizon Th ∈ N. In the following, we describe the optimal
control problem to be solved at every k ∈ N0 by vehicle
i ∈ N.

The predicted state and input of vehicle i itself are x̃i(t) =
[p̃i(t), ṽi(t)] and ũi(t), t ∈ [0, Th]. The prediction model
evolves according to

x̃i(t+ 1) = Ax̃i(t) +Bũi(t), (15)

where t ∈ [0, Th−1]. The prediction model of other vehicles
is based on a constant acceleration assumption: in fact, ∀ζ ∈
Fki ∪ Lki ,

x̃ζ(t+ 1) = Ax̃ζ(t) +Bũζ , (16)

where t ∈ [0, Th−1] and ũζ = uζ(k). Clearly, the prediction
variables are initialized according to the current measurement
at instant k, i.e.,

x̃i(0) = xi(k), (17)

∀ζ ∈ Lki ∪ Fki , x̃ζ(0) = xζ(k). (18)

Remark 1. Let F ti , ∀t ∈ [0, Th], be the set of vehicles
j ∈ Lki ∪Fki that are in front of vehicle i at prediction time
t. Formally, as in (5),

F ti = {j ∈ Lki ∪ Fki | Mj(p̃j(t)) ∈ Pi,
M−1

i (Mj(p̃j(t))) ≥ p̃i(t)}. (19)

Since any vehicle in Lki ∪Fki always has priority in front of
i, requiring M−1

i (Mj(p̃j(t))) ≥ p̃i(t) in (19) is redundant.
Accordingly, (19) can be rewritten as

F ti = {j ∈ Lki ∪ Fki | Mj(p̃j(t)) ∈ Pi}, (20)

thus making it clear that the usage of F ti does not affect the
convexity of the problem, since it does not depend on the
choice of ũi(t).



B. Obstacle Avoidance

We employ, similarly to [8], the idea of avoiding collisions
with higher priority and frontal vehicles. The safety distance
to be kept is defined via the continuous-time headway rule,
as in [12]. Then, a general collision avoidance constraint
between vehicle i and an arbitrary vehicle ζ at prediction
time t is of the form

d(x̃gi (t), x̃
g
ζ(t)) ≥ λṽi(t) + d+ δ(t), (21)

where λ is the so called time-headway (measured in seconds)
and d is the fixed bumper-to-bumper distance defined in Sec-
tion II-A. The remaining term, δ(t), is a slack variable that
will be weighted in the cost function and that is traditionally
used in the formulation of soft constraints. This allows the
optimal controller to increase, if possible, the safety distance.
In Section IV-C, δ(t) will be constrained to a given set.

Clearly, having d(x̃gi (t), x̃
g
ζ(t)) formulated as in (4) makes

the problem non-convex. In order to prevent this, in [5],
collision avoidance constraints were reformulated. By [5,
Proposition 3], constraints to avoid collisions with frontal
vehicles can be rewritten as

∀t ∈ [0, Th], ∀ζ ∈ F ti ,
M−1

i (Mζ(p̃ζ(t)))− p̃i(t) ≥ λṽi(t) + d+ δ(t). (22)

Clearly, (22) is convex.
In [5], left turns are disallowed, since allowing left turns

is claimed to lower traffic efficiency. In this paper, we do
allow left turns at intersections and analyze the effect of
this in Section V-B. First, we introduce a general convex
collision avoidance constraint for vehicle i and all higher
priority vehicles crossing Pi i.e. ζ ∈ Lki \Fki . The following
proposition extends the outcome of [5, Proposition 4].

Proposition 2. Given a vehicle ζ ∈ Lki \Fki , the constraint,
∀h ∈ Gki ∩Gkζ :

M−1
i (h)− p̃i(t) ≥ λṽi(t) + d+ δ(t),

∀t ∈ [0, Th] : ζ 6∈ F ti ∧M−1
ζ (h)− p̃ζ(t) ≥ −d, (23)

guarantees that any collision between i and ζ throughout the
prediction horizon is avoided.

Proof. A collision between i and ζ occurs at prediction time
t if, as in Section II-A,

d(xgi (t), xgζ(t)) ≤ d. (24)

We can distinguish three different cases. (i) In the case ζ ∈
F ti , any collision is avoided if (22) holds. (ii) if ζ 6∈ F ti ,
but M−1

ζ (h) − p̃ζ(t) < −d, vehicle ζ at prediction time t
does not lie on Pi and has driven at a distance larger than
d far from Pi, (24) does not hold. (iii) as long as ζ 6∈ F ti ∧
M−1

ζ (h) − p̃ζ(t) ≥ −d, the distance between i and Pζ is
larger than λṽi(t) + d+ δ(t), which is clearly larger than d.
This concludes the proof.

TABLE I: Problem data.

Lw = 3.5m, Dw = 30m, Ts = 0.25s, pc = 1, pd = 0.1, ε = 0.1
λ = 1s, λ̄ = 0.5s, δ̄ = 10m, d = 2.1m, v = 0, v̄ = 130km/h,

Th = 10, ai = −9m/s2, āi = 5m/s2, q = 0.1, r = 0.01, ω = −0.1
vmin = 52km/h, vmax = 56km/h, ℘ = 0.5

The resulting convex collision avoidance constraint then
becomes:

∀h ∈ Gki ∩Gkζ , M−1
i (h)− p̃i(t) ≥ λṽi(t) + d+ δ(t),

∀t ∈ [0, Th] : ζ 6∈ F ti ∧M−1
ζ (h)− p̃ζ(t) ≥ −d. (25)

C. Other Constraints and Cost Function

Traditional constraints on the allowed speed and acceler-
ation can be formulated as follows:

∀t ∈ [0, Th], ũi(t) ∈ [ai, āi], (26)
ṽi(t) ∈ [v, v̄], (27)
ṽζ(t) ∈ [v, v̄], (28)

where v > 0, thus guaranteeing that vehicles do not drive
backwards.

The slack variable δ(t) is also constrained to a given set,
i.e.

∀t ∈ [0, Th], δ(t) ∈ [−λ̄ṽi(t), δ̄], (29)

where 0 ≤ λ̄ < λ and δ̄ > 0. By this, the time headway
in (21) can be diminished down to λ− λ̄, although this will
be negatively weighted in the cost function, thus aiming to
increase the safety distance.

The controller performance can be evaluated by the fol-
lowing cost function

J =

Th∑
t=0

q(ṽi(t)− vri )2 + rũ2
i (t) + ωδ(t), (30)

where q, r ∈ R>0 and ω ∈ R<0 are design parameters. The
first term of the sum punishes deviations from the desired
speed vri ; the second term discourages high values of accel-
eration or deceleration, thus pledging a better comfort on-
board. The last term punishes small δ(t), hence contributing
to crease safety.

The optimal control problem is then formulated as follows:

min
ũi(0)...ũi(Th)

cost function (30)

s.t. Prediction model (15-18)
Safety constraints (22, 25)
Input and state constraints (26- 29).

A vector of inputs composed of ũi(0) . . . ũi(Th) will solve
the optimal control problem. Coherently with the MPC
structure, only the first optimal control input will be executed
in (1) at each k ∈ N, i.e. ui(k) = ũi(0).



Fig. 4: Using the open-source software YatSim for modeling
the urban road network.
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Fig. 5: Analysis of individual vehicles’ characteristics.

V. SIMULATION

The traffic flowing in the urban road network sketched
in Figure 1 can be simulated by means of the open-source
programme YatSim [13], as in Figure 4. Vehicles will employ
the decentralized control strategy presented in this paper. In
the following, a macroscopic analysis of the traffic (in the
sense of [14]) will be conducted. Accordingly, the traffic
will be studied as a flow. This allows to quantify the impact
that this control strategy has on the urban road network
as a whole, hopefully resulting in an improvement of flow
performance indexes, such as average or minimum speed and
acceleration.

A. Macroscopic Analysis

Vehicles will be randomly injected into the network; at
each discrete time step from each road, provided that there is
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Fig. 6: Macroscopic analysis.

enough space to avoid trivial initial collisions, a vehicle, say
i ∈ N, will enter the road network with a given probability
℘ ∈ (0, 1). Its desired speed vri will be drawn out of an
uniform distribution U[vmin,vmax]. Also its desired path Pi
will be chosen in a random way, as illustrated in [13].
The parameters used for the simulation are contained in
Table I. The simulation is run until more than 500 vehicles
complete their paths. For what concerning simulation results,
the average speed of the traffic is 46.8[kmh ], which, by [15],
is much higher than the current average traffic speed in New
York City (28.32[kmh ]) or Boston (33.64[kmh ]). We use these
two cities as benchmark, since the road network structure
composed of perpendicularly intersecting streets is similar
to the one considered here. Moreover, ℘ has been chosen
to replicate real congestion conditions. Vehicles are injected
in the simulation environment with their desired speeds.
Intuitively, they will have to slow down in order to avoid
collisions. In fact, the average acceleration of the traffic is
−0.0212[ms2 ], thus showing a breaking behavior.

Given a vehicle i ∈ N, let p̄i(k) be its normalized local



coordinate, i.e. ∀k ∈ N,

p̄i(k) =
pi(k)

max
k

pi(k)
∈ [0, 1],

let v̄i(k) be its speed ratio, i.e. ∀k ∈ N,

v̄i(k) =
vi(k)

vri
100%,

and let dmini (k) be the minimum distance towards other
vehicles at instant k, i.e. ∀k ∈ N,

dmini (k) = min
j∈N\{i}

dij(k).

Although this section presents a macroscopic analysis, a de-
tailed evaluation of individual vehicles’ characteristics is also
reviewed. Figure 5a shows the evolution of speed ratios as
function of normalized local coordinates for each individual
vehicle. The large majority of vehicles keep a speed above
the 80% of their desired ones, while no vehicle is slowing
down below the 48% of its desired speed. By comparing
this result to the traditional solution with traffic lights, the
improvement is explicit since no vehicle is actually stopping.
This might intuitively result in decreasing the traffic safety
(which can be defined as the likelihood of having collisions).
However, Figure 5b shows that all vehicles keep a safety
distance larger than d. Moreover, the amount of vehicles
getting close to this minimum allowed value is marginal. Fig-
ure 5c outlines individual vehicles’ accelerations as function
of p̄i(k). As already motivated above, many vehicles brake
as soon as they enter the simulation environment. Vehicles
are often saturating their acceleration, in those cases when
collision avoidance constraints allow to do so (e.g. as soon as
that vehicle wins the decentralized auction). This saturating
behavior can be intuitively mitigated by increasing r. Only
in one point (e.g., for pi(k) between 0.3 and 0.4), a vehicle
is saturating the braking power. This could be prevented by
increasing Th, length of the prediction horizon, or ω, weight
of the hold safety distance.

An analysis of which portions of the urban road network
suffer the most of speed drops or robust braking is presented.
First, the road network has to be divided into small fragments
(e.g. squares of side 2.5[m]) on which we compute the
average characteristics of the traffic. As in Figure 6a, average
speeds lower than 44[kmh ] are met in some roads entering an
intersection (e.g. (x = 50, y = 77.5) or (x = 155, y =
77.5)), while, along those roads leaving an intersection,
higher speeds are found. Figure 6b shows that traffic along
roads entering an intersection exhibits a braking behavior.
On the other hand, vehicles try to leave the intersection as
soon as possible once inside of it, thus resulting in higher
average acceleration.

B. Impact of Left-Turns

In [5], left turnings were forbidden. Also, [16] revealed
that a world-wide known delivery company has historically
prohibited left-turnings to its drivers. This was due to the
assumption that allowing left-turns affects traffic efficiency
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in a negative way and increases hazards. In the following, we
repeat our simulation for the case when left-turns are forbid-
den. We simulate the same urban road network where cars
have the same parameters (same initial and goal position) and
are generated according to the same probability ℘; however,
left turnings are in this case not allowed. The average speed
of the traffic is 47.8[kmh ] and the average acceleration is
−0.002[ms2 ]. Additionally, Figure 7 shows that in almost all
the portions composing the road network, vehicles keep a
higher speed than in Figure 6a. With regards to the outcome
of the previous section, it is therefore clear that preventing
vehicles from turning left increases the average speed and
decreases their absolute acceleration. If the average speed is
a measure of traffic efficiency, then the assumption presented
by [16] seems reasonable.

On the other hand, under a safety-related point of view,
we do not get to the same conclusion. Let us pick, as
safety index, the minimum distance that each vehicle keeps
towards the others, and let this be plotted, as function of the
normalized local coordinates, in Figure 8. Its outcome is not
much different than what Figure 5b yields. Therefore, left-
turnings do not seem to increase hazards in the autonomous
road traffic. One can guess that, although the overall average
speed is affected by the presence of a left-turning traffic,
safety is anyhow guaranteed by the presence of the on-board
MPC controller.



VI. CONCLUSION

In this paper, we suggested the use of a decentralized
control scheme for vehicles in a urban traffic network. This
scheme is based on a consensus-based protocol (CBAA-M),
which gives vehicles crossing orders at the intersections,
with an on-board MPC controller, responsible for avoiding
collisions and tracking some performance. CBAA-M has
been here proven to achieve an agreement in cases when
the network topology is connected. This is in contrast to [5],
where full connectedness was required. Finally, the impact
of disallowing left-turning has been analyzed.

Future work will focus on real-time implementability
issues by improving the convergence rate of the consensus
protocol and decrease the complexity of the on-board MPC.
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[11] F. Molinari, S. Stańczak, and J. Raisch, “Exploiting the superposition
property of wireless communication for max-consensus problems in
multi-agent systems,” 7th IFAC Workshop on Distributed Estimation
and Control in Networked Systems (NecSys18), 2018.

[12] C. Chien and P. Ioannou, “Automatic vehicle-following,” in American
Control Conference, 1992. IEEE, 1992, pp. 1748–1752.

[13] A. M. Dethof and F. Molinari, “Yatsim: an open-source simulator for
testing consensus-based control strategies in urban traffic networks,”
arXiv preprint arXiv:1810.11380, 2018.

[14] A. D. May, Traffic flow fundamentals, 1990.
[15] J. Kleint. (2009) Cityspeed at sourceforge. [Online]. Available:

http://sourceforge.net/projects/cityspeed/
[16] A. A. Reich, “Transportation efficiency,” Strategic Planning for Energy

and the Environment, vol. 32, no. 2, pp. 32–43, 2012.


