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COMPOSITIONAL ABSTRACTIONS OF INTERCONNECTED DISCRETE-TIME

SWITCHED SYSTEMS

ABDALLA SWIKIR1 AND MAJID ZAMANI23

Abstract. In this paper, we introduce a compositional method for the construction of finite abstractions of
interconnected discrete-time switched systems. Particularly, we use a notion of so-called alternating simulation
function as a relation between each switched subsystem and its finite abstraction. Based on some small-gain
type conditions, we use those alternating simulation functions to construct compositionally an overall alter-
nating simulation function as a relation between an interconnection of finite abstractions and that of switched
subsystems. This overall alternating simulation function allows one to quantify the mismatch between the
output behavior of the interconnection of switched subsystems and that of their finite abstractions. Addi-
tionally, we provide an approach to construct finite abstractions together with their corresponding alternating
simulation functions for discrete-time switched subsystems under standard assumptions ensuring incremental
input-to-state stability of a switched subsystem. Finally, we apply our results to a model of road traffic by
constructing compositionally a finite abstraction of the network containing 50 cells of 1000 meters each. We
use the constructed finite abstractions as substitutes to design controllers compositionally keeping the density
of traffic lower than 30 vehicles per cell.

1. Introduction

Switched systems serve as an important modeling framework accurately describing several engineering
systems in which physical processes have various operational modes [1]. Despite considerable number of
studies that have been conducted regarding stability of switched systems, the fast grow in computational
technology requires us to make same progress with respect to more sophisticated objectives such as those
expressed as linear temporal logic (LTL) formulae [2]. One particular technique to address complex objectives
is based on the construction of finite abstractions (a.k.a. symbolic models) of switched systems. In the
finite abstractions, each abstract state represents a collection of continuous states of the switched system.
Since finite abstractions are finite, one can algorithmically solves controller synthesis problems by resorting
to automata-theoretic approaches [3, 4]. In general, there exist two types of finite abstractions: sound ones
whose behaviors (approximately) contain those of the concrete systems and complete ones whose behaviors
are (approximately) equivalent to those of the concrete systems [5].

In recent years, there have been several results on the construction of complete finite abstractions of switched
systems. The work by [6] provides a finite abstraction that is related to the original incrementally stable
switched system by establishing an approximate bisimulation relation between them. Recently, the result
in [6] has been extended to the case of multi-rate symbolic models in [7], multi-scale symbolic models in [8],
and to switched systems with aperiodic time sampling in [9].

All the proposed results in [6–10] take a monolithic view of switched systems when abstracting the entire
system. However, the computational complexity of constructing finite abstractions scales exponentially with
the number of state variables in the concrete switched system. Hence, the construction of finite abstractions
for large-scale interconnected switched systems is mostly a complex task from a computational point of view.
A convenient method to cope with this challenge is to first construct finite abstractions of the switched
subsystems individually and then establish a compositional scheme that allows to construct a finite abstraction
of the overall network using those individual finite abstractions.

In the past few years, several results have used the compositional framework for constructing complete
finite abstractions of networks of control subsystems. Based on the notion of interconnection-compatible
approximate bisimulation relation, [11] provides networks of finite abstractions that approximate networks
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of stabilizable linear control systems. This work was extended in [12] to networks of incrementally input-
to-state stable nonlinear control systems using the notion of approximate bisimulation relation. The work
in [13] introduces a new system relation, called approximate disturbance bisimulation relation, as the basis for
the compositional construction of finite abstractions. The results in [14, 15] provide techniques to construct
compositionally finite abstractions of networks of nonlinear control systems using dissipativity and general
small-gain type conditions, respectively. There are also other results in the literature [16–18] which provide
sound finite abstractions of interconnected systems, compositionally, without requiring any stability property
or condition on the gains of subsystems. Unfortunately, non of the compositional results in [11–18] provide a
compositional framework for the construction of finite abstractions for interconnected switched systems.

The main contribution of this work is to provide for the first time a compositional methodology for the
construction of finite abstractions of interconnected switched systems. The proposed approach leverages
sufficient small-gain type conditions to establish the compositionality results which rely on the existence
of alternating simulation functions as relations between switched subsystems and their finite abstractions.
In particular, based on some small-gain type conditions, we use those alternating simulation functions to
construct compositionally an overall alternating simulation function as a relation between an interconnection
of finite abstractions and that of original switched subsystems. The existence of such an overall alternating
simulation function enables one to quantify the mismatch between the output behavior of the interconnection of
switched subsystems and that of their finite abstractions. Furthermore, under standard assumptions ensuring
incremental input-to-state stability of a switched system (i.e., existence of a common incremental input-to-state
Lyapunov function, or multiple incremental input-to-state Lyapunov functions with dwell-time), we show that
one can construct finite abstractions of switched systems in general nonlinear settings. Finally, we apply our
results to a model of road traffic by constructing compositionally a finite abstraction of a network containing
50 cells of 1000 meters each. We use the constructed finite abstractions as substitutes to design controllers
compositionally maintaining the density of traffic lower than 30 vehicles per cell. Notation and some technical
notions used in the sequel are reported in the Appendix.

2. Preliminaries

2.1. Discrete-Time Switched Systems. In this paper we study discrete-time switched systems of the
following form.

Definition 1. A discrete-time switched system Σ is defined by the tuple Σ = (X, P,W, F,Y, h), where

• X,W, and Y are the state set, internal input set, and output set, respectively, and are assumed to be
subsets of normed vector spaces with appropriate finite dimensions;

• P = {1 · · · ,m} is the finite set of modes;
• F = {f1, · · · , fm} is a collection of set-valued maps fp : X×W ⇒ X for all p ∈ P ;
• h : X → Y is the output map.

The discrete-time switched system Σ is described by difference inclusions of the form

Σ :

{

x(k + 1) ∈ fp(k)(x(k), ω(k)),
y(k) = h(x(k)),

(1)

where x : N → X, y : N → Y, p : N → P , and ω : N → W are the state signal, output signal, switching
signal, and internal input signal, respectively. We denote by Σp system (1) with constant switching signal
p(k) = p ∈ P ∀k ∈ N. We use Xx0,p,ω and Yx0,p,ω to denote the sets of infinite state and output runs of
Σ, respectively, associated with infinite switching sequence p = {p0, p1, . . .}, infinite internal input sequence
ω = {w0, w1, . . .}, and initial state x0 ∈ X.

Let φk, k ∈ N≥1, denote the time when the k-th switching instant occurs and define Φ := {φk : k ∈ N≥1}
as the set of switching instants. We assume that signal p satisfies a dwell-time condition [19] (i.e. there
exists kd ∈ N≥1, called the dwell-time, such that for all consecutive switching time instants φk, φk+1 ∈ Φ,
φk+1 − φk ≥ kd).

System Σ is called deterministic if |fp(x,w)| ≤ 1 ∀x ∈ X, ∀p ∈ P, ∀w ∈ W, and non-deterministic otherwise.
System Σ is called blocking if ∃x ∈ X, ∀p ∈ P, ∀w ∈ W where |fp(x,w)| = 0 and non-blocking if |fp(x,w)| 6= 0



COMPOSITIONAL ABSTRACTIONS OF INTERCONNECTED DISCRETE-TIME SWITCHED SYSTEMS 3

∀x ∈ X, ∃p ∈ P, ∃w ∈ W. System Σ is called finite if X and W are finite sets and infinite otherwise. In this
paper, we only deal with non-blocking systems.

3. Transition Systems and Alternating Simulation Functions

In this section, we introduce a notion of so-called transition systems to provide an alternative description
of switched systems that can be later directly related to their finite abstractions.

Definition 2. Given a discrete-time switched system Σ = (X, P,W, F,Y, h), we define the associated transition
system T (Σ) = (X,U,W,F , Y,H) where:

• X = X× P × {0, · · · , kd − 1} is the state set;
• U = P is the external input set;
• W = W is the internal input set;
• F is the transition function given by (x′, p′, l′) ∈ F((x, p, l), u, w) if and only if x′ ∈ fp(x,w), u = p
and the following scenarios hold:

– l < kd − 1, p′ = p and l′ = l + 1: switching is not allowed because the time elapsed since the
latest switch is strictly smaller than the dwell time;

– l = kd − 1, p′ = p and l′ = kd − 1: switching is allowed but no switch occurs;
– l = kd − 1, p′ 6= p and l′ = 0: switching is allowed and a switch occurs;

• Y = Y is the output set;
• H : X → Y is the output map defined as H(x, p, l) = h(x).

We use T (X)z0,u,ω and T (Y)z0,u,ω to denote the sets of infinite state and output runs of T (Σ), respec-
tively, associated with infinite external input sequence u = {u0, u1, . . .}, infinite internal input sequence
ω = {w0, w1, . . .}, and initial state z0 = (x0, p0, l0) ∈ X , where u0 = p0 and l0 = 0.

In the next proposition, we show that sets Yx0,p,ω and T (Y)z0,u,ω, where p = u and z0=(x0, p0, 0), are
equivalent.

Proposition 3. Consider Σ, T (Σ), p = {p0, p1, . . .} = u, ω = {w0, , w1, . . .}, and x0 ∈ X. Then, Yx0,p,ω =
T (Y)z0,u,ω, where z0 = (x0, p0, 0).

The proof is straightforward and omitted here due to lack of space.
From now on, we use Σ and T (Σ) interchangeably.
In the following, we introduce a notion of so-called alternating simulation functions, inspired by Definition

1 in [20], which quantitatively relates transition systems with internal inputs.

Definition 4. Consider T (Σ) = (X,U,W,F , Y,H) and T̂ (Σ̂) = (X̂, Û , Ŵ , F̂ , Ŷ , Ĥ) where Ŵ ⊆ W and

Ŷ ⊆ Y . A function S : X × X̂ → R≥0 is called an alternating simulation function from T̂ (Σ̂) to T (Σ) if

∀(x, p, l) ∈ X and ∀(x̂, p, l) ∈ X̂, one has

α(‖H(x, p, l)− Ĥ(x̂, p, l)‖)≤S((x, p, l), (x̂, p, l)), (2)

and ∀(x, p, l) ∈ X and ∀(x̂, p, l) ∈ X̂, ∀û ∈ Û , ∀w ∈ W , ∀ŵ ∈ Ŵ , ∀(x′, p′, l′) ∈ F((x, p, l), û, w) ∃ (x̂′, p′, l′) ∈

F̂((x̂, p, l), û, ŵ) such that one gets

S((x′, p′, l′),(x̂′, p′, l′)) ≤ max{σS((x, p, l), (x̂, p, l)), ̺(‖w − ŵ‖), ε}, (3)

for some α, ̺ ∈ K∞, 0 < σ < 1, and ε ∈ R≥0.

If Σ does not have internal inputs, which is the case for interconnected systems (cf. Definition 7), Definition
1 reduces to the tuple Σ = (X, P, F,Y, H), the set-valued map fp becomes fp : X ⇒ X, and (1) reduces to:

Σ :

{

x(k + 1) ∈ fp(k)(x(k)),
y(k) = h(x(k)).

(4)

Correspondingly, Definition 2 reduces to tuple T (Σ) = (X,U,F , Y,H), and the transition function F is given
by (x′, p′, l′) ∈ F((x, p, l), u) if and only if x′ ∈ fp(x), u = p and the following scenarios hold:

• l < kd − 1, p′ = p and l′ = l + 1;
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• l = kd − 1, p′ = p and l′ = kd − 1;
• l = kd − 1, p′ 6= p and l′ = 0.

Moreover, Definition 4 reduces to the following.

Definition 5. Consider T (Σ) = (X,U,F , Y,H) and T̂ (Σ̂) = (X̂, Û , F̂ , Ŷ , Ĥ) where Ŷ ⊆ Y . A function

S̃ : X × X̂ → R≥0 is called an alternating simulation function from T̂ (Σ̂) to T (Σ) if ∀(x, p, l) ∈ X and

∀(x̂, p, l) ∈ X̂, one has

α̃(‖H(x, p, l)− Ĥ(x̂, p, l)‖)≤S̃((x, p, l), (x̂, p, l)), (5)

and ∀(x, p, l) ∈ X and ∀(x̂, p, l) ∈ X̂, ∀û ∈ Û , ∀(x′, p′, l′) ∈ F((x, p, l), û) ∃ (x̂′, p′, l′) ∈ F̂((x̂, p, l), û) such
that one gets

S̃((x′, p′, l′), (x̂′, p′, l′))≤max{̃σS̃((x, p, l), (x̂, p, l)), ε̃}, (6)

for some α̃ ∈ K∞, 0 < σ̃ < 1, and ε̃ ∈ R≥0.

The next result shows that the existence of an alternating simulation function for transition systems without
internal inputs implies the existence of an approximate alternating simulation relation between them as defined
in [5].

Proposition 6. Consider T (Σ) = (X,U,F , Y,H) and T̂ (Σ̂) = (X̂, Û , F̂ , Ŷ , Ĥ) where Ŷ ⊆ Y . Assume S̃ is

an alternating simulation function from T̂ (Σ̂) to T (Σ) as in Definition 5. Then, relation R ⊆ X × X̂ defined
by

R=
{

((x, p, l),(x̂, p, l))∈X×X̂|S̃((x, p, l), (x̂, p, l))≤ ε̃
}

is an ε̂-approximate alternating simulation relation, defined in [5], from T̂ (Σ̂) to T (Σ) with ε̂ = α̃−1(ε̃).

4. Compositionality Result

In this section, we analyze networks of discrete-time switched subsystems and leverage sufficient small-gain
type conditions under which one can construct an alternating simulation function from a network of finite
abstractions to the concrete network by using alternating simulation functions of the subsystems. In the
following, we define first a network of discrete-time switched subsystems.

4.1. Interconnected Systems. We consider N ∈ N≥1 discrete-time switched subsystems

Σi = (Xi, Pi,Wi, Fi,Yi, hi), i ∈ [1;N ],

with partitioned internal inputs as

wi=[wi1; . . . ;wi(i−1);wi(i+1); . . . ;wiN ],Wi=

N−1
∏

j=1

Wij , (7)

and with output map and set partitioned as

hi(xi) = [hi1(xi); . . . ; hiN (xi)],Yi =
N
∏

j=1

Yij . (8)

We interpret the outputs yii as external ones, whereas yij with i 6= j are internal ones which are used to define
the interconnected switched systems. In particular, we assume that wij = yji, if there is connection from
switched subsystem Σj to Σi, otherwise we set hji ≡ 0. Next, given input-output structure as in (7) and (8),
we define the interconnection of switched subsystems.

Definition 7. Consider N ∈ N≥1 switched subsystems Σi = (Xi, Pi,Wi, Fi,Yi, hi), i ∈ [1;N ], with the input-
output structure given by (7) and (8). The interconnected switched system Σ = (X, P, F,Y, h), denoted by

I(Σ1, . . . ,ΣN ), is defined by X =
∏N

i=1 Xi, P =
∏N

i=1 Pi, F =
∏N

i=1 Fi, Y =
∏N

i=1 Yii, and map h(x) :=
[h11(x1); . . . ;hNN (xN )], where x = [x1; . . . ;xN ], and subject to the constraint:

∀i, j∈ [1;N ], i 6= j, wij = yji,Yji⊆Wij . (9)
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Similarly, given transition subsystem Ti(Σi), i ∈ [1;N ], one can also define the network of those transition
subsystems as I(T1(Σ1), . . . , TN(ΣN )).

Next subsection provides one of the main results of the paper on the compositional construction of abstrac-
tions for networks of switched systems.

4.2. Compositional Abstractions of Interconnected Switched Systems. In this subsection, we assume
that we are given N discrete-time switched subsystems Σi = (Xi, Pi,Wi, Fi,Yi, hi), i ∈ [1;N ], or equivalently,

Ti(Σi) = (Xi, Ui,Wi,Fi, Yi,Hi), together with their corresponding abstractions T̂i(Σ̂i) = (X̂i, Ûi, Ŵi, F̂i, Ŷi, Ĥi)

and alternating simulation functions Si from T̂i(Σ̂i) to Ti(Σi). Moreover, for σi, αi, and ̺i associated with
Si, ∀ i ∈ [1;N ], appeared in Definition 4, we define

γij(s):=

{

σis if i = j,

̺i ◦ α
−1
j (s) if i 6= j,

∀s∈R≥0,∀i, j∈[1;N ]. (10)

We raise the next small-gain assumption to establish the main compositionality results of the paper.

Assumption 8. Assume that functions γij defined in (10) satisfy

γi1i2 ◦ γi2i3 ◦ · · · ◦ γir−1ir ◦ γiri1 < Id, (11)

∀(i1, . . . , ir) ∈ {1, . . . , N}r, where r ∈ {1, . . . , N}.

The next theorem provides a compositional approach on the construction of abstractions of networks of
discrete-time switched subsystems and that of the corresponding alternating simulation functions.

Theorem 9. Consider the interconnected transition system T (Σ) = (X,U,F , Y,H) induced by N ∈ N≥1

transition subsystems Ti(Σi), ∀ i ∈ [1;N ]. Assume that each Ti(Σi) and its abstraction T̂i(Σ̂i) admit an
alternating simulation function Si as in Definition 4. Let Assumption 8 hold. Then, there exist δi ∈ K∞ such
that

S̃((x, p, l), (x̂, p, l)) := max
i∈[1;N]

{δ−1
i ◦ Si((xi, pi, li), (x̂i, pi, li))}

is an alternating simulation function from T̂ (Σ̂) = I(T̂1(Σ̂1), . . . , T̂N(Σ̂N )) to T (Σ) = I(T1(Σ1), . . . , TN (ΣN )).

5. Construction of Finite Abstractions

In this section, we consider Σ = (X, P,W, F,Y, h) as an infinite, deterministic switched system, and assume
its output map h satisfies the following general Lipschitz-like assumption: there exists an ℓ∈K∞ such that
‖h(x)−h(x′)‖ ≤ℓ(‖x − x′‖) for all x, x′ ∈ X. In addition, the existence of an alternating simulation function
between T (Σ) and its finite abstraction is established under the assumption that Σp is incrementally input-
to-state stable (δ-ISS) [21] as defined next.

Definition 10. System Σp is δ-ISS if there exist functions Vp : X×X → R≥0, αp, αp, ρp ∈ K∞, and constant
0 < κp < 1, such that for all x, x̂ ∈ X, and for all w, ŵ ∈ W

αp(‖x− x̂‖) ≤ Vp(x, x̂) ≤ αp(‖x− x̂‖), (12)

Vp(fp(x,w), fp(x̂, ŵ))≤κpVp(x, x̂) + ρp(‖w − ŵ‖). (13)

We say that Vp, ∀p ∈ P , are multiple δ-ISS Lyapunov functions for system Σ if it satisfies (12) and (13).
Moreover, if Vp = Vp′ , ∀p, p′ ∈ P , we omit the index p in (12), (13), and say that V is a common δ-ISS
Lyapunov function for system Σ. We refer interested readers to [1] for more details on common and multiple
Lyapunov functions for switched systems.

Now, we show how to construct a finite abstraction T̂ (Σ̂) of transition system T (Σ) associated to the
switched system Σ in which Σp is δ-ISS.

Definition 11. Consider a transition system T (Σ) = (X,U,W,F , Y,H), associated to the switched system
Σ = (X, P,W, F,Y, h), where X,W are assumed to be finite unions of boxes. Let Σp be δ-ISS as in Definition

10. Then one can construct a finite transition system T̂ (Σ̂) = (X̂, Û , Ŵ , F̂ , Ŷ , Ĥ) where:
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• X̂ = X̂ × P × {0, · · · , kd − 1}, where X̂ = [X]η and 0 < η ≤ span(X) is the state set quantization
parameter;

• Û = U = P is the external input set;
• Ŵ = [W]̟, where 0 ≤ ̟ ≤ span(W) is the internal input set quantization parameter.

• (x̂′, p′, l′) ∈ F̂((x̂, p, l), û, ŵ) if and only if x̂′ ∈ f̂p(x̂, ŵ) ⇔ ‖fp(x̂, ŵ)−x̂′‖ ≤ η, û = p and the following
scenarios hold:

– l < kd − 1, p′ = p and l′ = l + 1;
– l = kd − 1, p′ = p and l′ = kd − 1;
– l = kd − 1, p′ 6= p and l′ = 0;

• Ŷ = {H(x̂, p, l)|(x̂, p, l) ∈ X̂};

• Ĥ : X̂ → Ŷ is the output map defined as Ĥ(x̂, p, l) = H(x̂, p, l) = h(x̂);

Remark 12. In the context of networks of subsystems, Ŵ should be constructed in such a way that it satisfies
(7) and (9) in the compositional setting with respect to outputs sets of other finite transition subsystems.

We impose the following assumptions on function Vp in Definition 10 which are used to prove some of the
main results later.

Assumption 13. There exists µ ≥ 1 such that

∀x, y ∈ X, ∀p, p′ ∈ P, Vp(x, y) ≤ µVp′(x, y). (14)

Assumption 14. For all p ∈ P , there exists a K∞ function γp such that

∀x, y, z ∈ X, Vp(x, y) ≤ Vp(x, z) + γp(‖y − z‖). (15)

Now, we establish the relation between T (Σ) and T̂ (Σ̂), introduced above, via the notion of alternating
simulation function as in Definition 4.

Theorem 15. Consider a switched system Σ = (X, P,W, F,Y, h) with its equivalent transition system T (Σ) =

(X,U,W,F , Y,H). Let Σp be δ-ISS as in Definition 10. Consider a finite transition system T̂ (Σ̂) = (X̂, Û , Ŵ , F̂ , Ŷ , Ĥ)
constructed as in Definition 11. Assume that Assumptions 13 and 14 hold. Let ǫ > 1. If, ∀p ∈ P, kd ≥

ǫ ln(µ)

ln( 1

κp
)
+ 1, then function V defined as

V((x, p, l), (x̂, p, l)) := κ
−l
ǫ

p Vp(x, x̂) (16)

is an alternating simulation function from T̂ (Σ̂) to T (Σ).

Remark 16. If Σ admits a common δ-ISS Lyapunov function satisfying Assumption 14, then function V in
Theorem 15 reduces to V((x, p, l), (x̂, p, l)) := V (x, x̂).

6. Case Study

The chosen switched system Σ here is the model of a circular road around a city (Highway) divided into
50 cells of 1000 meters each. The road has 25 entries and 50 ways out in such a way that cell q has an entry
and exit if q ∈ Q1 = {q is odd |q ∈ [1; 50]} and has an exit and no entry if q ∈ Q2 = {q is even |q ∈ [1; 50]}.
The entries are controlled by traffic signals, denoted sr, r ∈ [1; 25], that enable (green light) or not (red light)
the vehicles to pass. In Σ, the dynamic we want to observe is the density of traffic, given in vehicles per cell,
for each cell q of the road. The state of switched system Σ is a 50-dimensional vector and its set of modes
can be understood as all possible linear combination of traffic signals sr. More formally, since each traffic
signal sr can have two modes (1 for red light and 2 for green), one can consider the modes of system Σ as
p ∈ P = {1, 2}25. During the sampling time interval τ = 10

60×60 in hours (h), we assume that 12 vehicles can

pass the entry controlled by a traffic signal sr when it is green. Moreover, 10% of vehicles that are in cells
q ∈ Q1, and 35% of vehicles that are in cells q ∈ Q2 go out using available exits. As explained in [22], the
evolution of the density x of all cells are described by the interconnected discrete-time switched model:

Σ :

{

x(k + 1) = Ax(k) +Bp(k),
y(k) = x(k),



COMPOSITIONAL ABSTRACTIONS OF INTERCONNECTED DISCRETE-TIME SWITCHED SYSTEMS 7

Σ1 Σ2

.

Σ25

Road Traffic

Network

Σ1

.

.

Cell2Cell1

ExitExitEntry

with traffic signal

Figure 1. Model of a road traffic network in a circular highway composed of 25 identical links,

each link has two cell.

where A ∈ R
50×50 is a matrix with elements {A}q,q = 0.9 − τv

d
if q ∈ Q1 and {A}q,q = 0.65 − τv

d
if q ∈ Q2,

{A}q+1,q = {A}1,50 =
τv
d
, ∀q ∈ [1; 50], and all other elements are identically zero, where d = 1 and v = 120 are

the length in kilometers (km) and the flow speed of the vehicles in kilometers per hour (km/h), respectively.
The vector Bp ∈ R

50 is defined as Bp = [b1p1
; . . . ; b25p25

] such that bipi
= [0; 0] if pi = 1, and bipi

= [0; 12] if
pi = 2, ∀i ∈ [1, 25], [p1; . . . ; p25] ∈ P = {1, 2}25, where P is the set of modes of Σ. Now, in order to apply the
compositionality result, we introduce subsystems Σi, ∀i ∈ [1; 25]. Each subsystems Σi represents the dynamic
of one link of the entire highway, where each link contains 2 cells, one entry, and two exits as illustrated in
Fig 1. The subsystems Σi is described by

Σi :

{

xi(k + 1) = Aixi(k) +Diwi(k) +Bipi(k),
yi(k) = Cixi(k),

where, ∀i ∈ [1; 25],

Ai=

[

0.9− τv
d

0
τv
d

0.65− τv
d

]

, Di=

[

τv
d

0

]

, Bi1=

[

0
0

]

,

Bi2=

[

12
0

]

, Ci=

[

Cii

Ci(i+1)

]

, Cii=

[

1 0
0 1

]

, Ci(i+1)=
[

0 1
]

,

ωi(k) = C(i−1)ixi−1(k) (with C01 := CN(N+1), and x0 := xN , N = 25), and the set of modes is Pi = {1, 2}.
Clearly, one can verify that Σ = I(Σ1, . . . ,Σ25).
Note that, for any i ∈ [1; 25], conditions (12) and (13) are satisfied with Vipi

(xi, x̂i) = ‖xi− x̂i‖, αipi
= αipi

=
Id, κipi

= 0.65, ρipi
= 0.33Id, ∀pi ∈ Pi. Furthermore, condition (15) is satisfied with γipi

= Id, ∀pi ∈ Pi.
Moreover, since Vipi

= Vip′

i
, ∀pi, p

′
i ∈ Pi, and according to Remark 16, function Vi((xi, pi, li), (x̂i, pi, li)) =

‖xi − x̂i‖ is an alternating simulation function from T̂i(Σ̂i) to Ti(Σi) Note that for the construction of finite

abstractions, we have chosen the finite set Ŵi = {C(i−1)ix̂i−1|x̂i−1 ∈ X̂i−1}, ∀i∈ [1; 25], (with C01 := CN(N+1),

x̂0 := x̂N , and X̂0 := X̂N , N = 25). Now, by employing (10), we have γij < Id, ∀i, j ∈ [1; 25], hence the small-

gain condition (11) is satisfied. Using the results in Theorem 9 with δ−1
i = Id, ∀i ∈ [1; 25], one can verify

that V((x, p, l), (x̂, p, l))= maxi{‖xi − x̂i‖} is an alternating simulation function from I(T̂1(Σ̂1), . . . , T̂25(Σ̂25))
to I(T1(Σ1), . . . , T25(Σ25)).

Next we design a controller for Σ via finite abstractions T̂i(Σ̂i) such that the controller maintains the density
of traffic lower than 30 vehicles per cell. The idea here is to design local controllers for finite abstractions
T̂i(Σ̂i), and then use them in concrete switched subsystems Σi. To do so, the local controllers are designed
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Figure 2. Closed-loop state trajectories of Σ consisting of 50 cells.

while assuming that the other subsystems meet their specifications. The computation times for constructing
abstractions and designing controllers for Σi with state quantization parameter ηi = 0.03 are 10.2s and 0.014s,
respectively. Figure 2 shows the closed-loop state trajectories of the of Σ consisting of 50 cells. Note that
it would not have been possible to synthesize a controller for the 50-dimensional switched system Σ without
applying the proposed compositional method.
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.1. Notation. We denote by R, Z, and N the set of real numbers, integers, and non-negative integers, respec-
tively. These symbols are annotated with subscripts to restrict them in the obvious way, e.g., R>0 denotes the
positive real numbers. Given N ∈ N≥1, vectors νi ∈ R

ni , ni ∈ N≥1, and i ∈ [1;N ], we use ν = [ν1; . . . ; νN ] to
denote the vector in R

n with n =
∑

i ni consisting of the concatenation of vectors νi. The closed interval in
N is denoted by [a; b] for a, b ∈ N and a ≤ b. We denote by diag(A1, . . . , AN ) the block diagonal matrix with
diagonal matrix entries A1, . . . , AN . We denote the identity matrix in R

n×n by In. The individual elements
in a matrix A ∈ R

m×n, are denoted by {A}ij , where i ∈ [1;m] and j ∈ [1;n]. We denote by ‖·‖ the infinity
norm. We denote by | · | the cardinality of a given set and by ∅ the empty set. For any set S ⊆ R

n of the

form of finite union of boxes, e.g., S =
⋃M

j=1 Sj for some M ∈ N, where Sj =
∏n

i=1[c
j
i , d

j
i ] ⊆ R

n with cji < dji ,

and positive constant η ≤ span(S), where span(S) = minj=1,...,M ηSj
and ηSj

= min{|dj1 − cj1|, . . . , |d
j
n − cjn|},

we define [S]η = {a ∈ S | ai = kiη, ki ∈ Z, i = 1, . . . , n}. The set [S]η will be used as a finite approximation of
the set S with precision η. Note that [S]η 6= ∅ for any η ≤ span(S). We use notations K and K∞ to denote
different classes of comparison functions, as follows: K = {α : R≥0 → R≥0| α is continuous, strictly increasing,
and α(0) = 0}; K∞ = {α ∈ K| lim

r→∞
α(r) = ∞}. For α, γ ∈ K∞ we write α < γ if α(s) < γ(s) for all s > 0,

and Id ∈ K∞ denotes the identity function.
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