Remarks on the geometry of the feedback loop

Z. Szab6 and J. Bokor

Abstract— Youla parametrization of stabilizing controllers is
a fundamental result of control theory. It provides a theoretical
and practical tool that renders LFT loops into model matching
framework. Based on the geometric techniques introduced in
our previous work we have provided a controller blending rule
that defines a controller semigroup structure based only on the
knowledge of the plant and a single stabilizing controller and we
have introduced a novel, geometry based parametrization. In
this paper we investigate the possibility to construct stabilizing
fractions of the given stabilizing controller relative to the
blending rule. We also extend our geometry based framework
to the LFT loops. Our main goal is to show that every controller
which stabilizes the interior loop also stabilizes the LFT loop.
Contrary to the expectations, this problem is far from being
trivial.

I. INTRODUCTION AND MOTIVATION

Klein proposed group theory as a mean of formulating
and understanding geometrical constructions. In [8] the au-
thors emphasise Klein’s approach to geometry and demon-
strate that a natural framework to formulate various control
problems is the world that contains as points equivalence
classes determined by stabilizable plants and whose natural
motions are the Mobius transforms. The observation that any
geometric property of a configuration, which is invariant
under an euclidean or hyperbolic motion, may be reliably
investigated after the data has been moved into a convenient
position in the model, facilitates considerably the solution
of the problems. In [9], [10], [11], as a main contribution
relative to the previous efforts it is shown that, in contrast
to the classical Youla approach, there is a parametrisation
of the entire controller set which can be described entirely
in a coordinate free way, i.e., just by using the knowledge
of the plant P and of the given stabilizing controller K.
The corresponding parameter set is given in geometric terms,
i.e., by providing an associated algebraic (semigroup, group)
structure. Moreover, it turns out that the geometry of stable
controllers is surprisingly simple.

The first part of this paper extends these results by
investigating the problem of halving a stabilizing controller
in the sense of the blending operation, keeping the stabilizing
property invariant. In general, we call these fractional con-
trollers, as they are analogous to the fractions of the integer
numbers.

The second part of the paper extends the geometric
techniques to the LFT framework, showing that the already
introduced blending operator still works in this context,
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too. The classical Youla approach that students learn for
rational LTI systems provides an easy way to relate the LFT
loop with the model matching framework defined entirely
on the set of stable systems. This result, however, actually
has two parts: the qualitative message, i.e., every stabilizing
controller of the interior part stabilizes the LFT loop and the
parametrization dependent part, which is actually the model
matching form.

In our context the first part is relevant: contrary to the
expectations, this problem is far from being trivial in its
generality. Despite of the fact that the geometrical structure
of the controller set suggests that the assertion is always
true, in this paper we can provide a general proof only for
the case, when a double coprime factorization of the interior
part exists.

Section II gives the basic notions related to feedback and
LFT stability and recalls the fundamental result of the Youla
parametrization. Section III recalls some previous results of
the authors: a natural blending method is introduced that
acts directly on the controllers and keeps stability of the
loop. It also provides a geometric based parametrization of
the stabilizing controllers by showing how the geometric
view can be applied to reveal the coordinate free nature of
the parametrization. In Section IV we investigate conditions
for the existence of the halved controllers. Section V is
dedicated to the geometry of the LFT controllers. Finally
some conclusions are formulated.

II. BASIC SETTINGS
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Fig. 1. Feedback connection

To fix the ideas let us consider the feedback-connection
depicted on Figure 1. It is convenient to consider the signals

([ (2)a(3) - ()

where H = H; & Ho and we suppose that the signals are
elements of the Hilbert space H1, Hs (e.g., H; = L]0, 00))
endowed by a resolution structure which determines the



causality concept on these spaces. In this model the plant
G and the controller K are linear causal maps. For more
details on this general setting, see [3].

The feedback connection is called well-posed if for every
w € H there is a unique g and k such that w = g+ k (causal
invertibility) and the pair (G, K) is called stable if the map
w — z is a bounded causal map, i.e., the pair (G, K) is
called well-posed if the inverse

man=(g 1) = (5 5)-

(_(I—KG)‘1 —K(I—GK)—I) "

G(I - KG)™! (I -GK)™!
exists (causal invertibility), and it is called stable if all the
block elements are stable.
The lower and an upper LFT is defined as

Sl(PaK) = Pz1u+quK([7PyuK)71wa

and

Fu(P,A) = Py, + Py, A(I — P,,A)!

Stability of the LFT loop means that the causal map £(P, K)
that relates the signals (z,u,y) to (w,d,n) is invertible and
the inverse map is stable, see Figure 2(a). It turns out that
this is equivalent to the stability of the extended feedback
loop for A, = 0, see Figure 2(b).
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Fig. 2. Stability of LFTs

Starting from the basic relation between the relevant
signals we have

dy, I, K 0 0 U
ngy| | G I, Pyu O y
dye| | 0O 0 L, A, w
n, P, 0 P, I, z

Invertibility of the operator is equivalent to the non-
singularity of the corresponding Schur complement, i.e,
nonsingularity of

I, A, 0 0 0 0\
<Pzw L)(qu 0> G K) (wa 0>

(i )
S\ K) L)’

which is always fulfilled for A, = 0,, when the inverse is
0 0
H(G, K) ( Py 0)

Sl 2)

H(G, K)

(0 0
PZU. O

SePyw 0
K (Sypzw )
= 0 2)
(7quS quS > ( gl(P7 K Z)
On the other hand one has

I, 0 0 w I, -P, O z

0 I, 0 d]l =10 I, K u

Py, 0 I, n 0 G I,/ \y

Thus a routine computation reveals that stability of the LFT
loop is equivalent to the stability of the extended feedback
loop with A, = 0,, as it was claimed.

As a consequence, stability questions of LFT loops can be
reduced to the investigation of the configuration determined
by (P,diag(0, K)). It is obvious that the LFT loop is well-
defined if and only if (G, K) is well defined. However, it is
less obvious whether this claim remains true for stability.

A. Youla parametrization

A fundamental result concerning feedback stabilization of
the connection on Figure 1 is the description of the set of the
stabilizing controllers. A standard assumption is that among
the stable factorizations there exists a special one, called
double coprime factorization, i.e., G = NM -1 = M-IN
and there are causal bounded systems U, V, U and V, with
invertible V' and f/, such that

vV U\ (M U ~ I 0
(—N M)(N V)ZZGZG:<0 1)’ ®

an assumption which is often made when setting the stabi-
lization problem, [15], [3]. The existence of a double coprime
factorization implies feedback stabilizability, actually Ky =
UV~! = V~U is a stabilizing controller. In most of the
usual model classes actually there is an equivalence.

For a fixed plant G let us denote by W the set of
well-posed controllers, while Gg C W denotes the set of
stabilizing controllers.

Given a double coprime factorization the set of the stabi-
lizing controllers is provided through the well-known Youla
parametrization, [7], [14]:

Go ={K =Mx,(Q) | Q € Qs},
where Qs = {Q | Q stable , (V + NQ) ! exists} and
M6 (Q) = (U+MQ)(V+NQ)™". )

For a recent work that covers most of the known control
system methodologies using a unified approach based on the
Youla parameterization, see [5]. Note, that Q; = Q is the set
of stable systems. Here 9 (7) is the Mobius transformation
corresponding to the symbol 7"

Mr(Z) = (B+ AZ)(D+CZ)™", with T = (é’ g)’



on the domain domgy, = {Z|(D + CZ)~ ! exists}. Note
that

Rk

and thus @ = Ok corresponds to Ko = UV 1.

Since the dimensions of the controller and plant are
different, it is convenient to distinguish the zero controller
and zero plant by an index, i.e., Ox and O, respectively.

Finally, note, that the entire construction has a consid-
erable freedom in the choice of the given elements, like
3 p and @, which makes possible to embed a given system
in different frameworks. The standard example is to let the
parameter () to be a stable rational LTI system. However, one
can consider it as a stable linear parameter varying (LPV)
or even switched system obtaining an LPV controller. But
nothing prevents us to set also M and N to be LPV systems
even the original system was an LTI one, see, e.g., [12].

=Mg (K)= (VK -U)(M-NK)™", (5

III. GROUP OF CONTROLLERS

It is obvious that in the particular case when G = 0 we
have Gg = Q, i.e., mere addition preserves well-posedness
and stability. Moreover, the set of these controllers forms the
usual additive group (Q,+) with neutral element Ox and
inverse element () — —@Q. In the general case, however,
addition of controllers neither ensure well-posedness nor
stability.

The most straightforward approach to obtain a stability
preserving operation is to find a suitable parametrization
of the stabilizing controllers, where the parameter space
possesses a blending operation. As an example for this
indirect ( Youla based) blending is provided by the Youla
parametrization. However, this mere addition on the Youla
parameter level does not lead, in general, to a “simple”
operation on the level of controllers:

K =My (Mg, (K1) + My, (K2)))- (©)

The unit element of this operation is the controller K which
defines . Note that an obstruction might appear if the sum
of the Youla parameters are not in the domain of My, e.g.,
for non strictly proper plants where some of the non strictly
proper parameters are out-ruled.
A. Direct blending

The observation that

I K\ (I 0\/[I K; I Ky

G I) \G I)\0 I-GK;)\0 I-GKy)"’

(N

leads to operation
K =K\(I - GKs)+ Ky = K1 Bg Ko, 3

under which well-posed controllers form a group (W¢, ).
The unit of this group is the zero controller K = Ox and
the corresponding inverse elements are given by

K¢ = _K(I —GK)™*. )

Note that

I—-GKB¢ = (I -GK)™. (10)

Clearly not all elements of W are stabilizing, e.g., Ox is
not stabilizing for an unstable plant.

Theorem 1: (Gg,Hg) with the operation (blending) de-
fined in (8) is a semigroup.

Note, that

(I-GK)'=(I-GKy;) '(I-GKy)™". (11)
By using the notation
I K\ (I 0\/[I K _ (@)
(G I) = (G I) (o IGK) = feTx
we have the group homomorphism TI((CI;)T;(C:) = T[((Cf)ma Ko

and K = mRGT&G)Rfl(OK).

As a final remark observe that the blending (8) is multi-
plicative, as the notation suggests. It is a routine calculation
to show that the blending of the inverses is related to the
original blending as:

K=K OgK, iff K¢ =KP 0K, (12

B. Strong stability

The semigroup (G¢,H¢) does not have a unit, in general.
However, if there is a stabilizing controller K such that

KJ¢ = —Ko(I — GKy) ™

is also a stabilizing controller, i.e., K is stable, then
(GG7 gg) with

K1 R Ky = K, Og K5¢ B Ko

is a semigroup with a unit (K;). This may happen only if
the plant is strongly stabilizable.

If we denote by S the set of strongly stabilising con-
trollers, then if this set is not empty, then

Theorem 2: (Sg,X¢g) with the operation (blending) de-
fined as

K=K Rg Ky = Ky Og K5¢ 0g K, =

= Ky + (K, — Ko)(I — GKy)*(I — GK3) (13)

is the group of strongly stable controllers, where Ky € Sg
is arbitrary. The corresponding inverse is given by

K%' = Ky — (K — Ko)(I - GK)"Y(I — GKy).  (14)

At this point recall that the necessary and sufficient con-
ditions for the existence of a strongly stabilizing controller
for a finite rank LTI plant G can be formulated in terms
of the parity interlacing property: there exists a strongly
stabilizing controller if and only if the number of poles of
G (counted according to their McMillan degrees) between
every pair of real blocking zeros of G in the extended right
half plane is even, [13]. However, if G is an LTV plant that
is internally stabilizable, then it can be internally stabilized
by a stable LTV controller, see [6]. Thus, in the general
context of this paper it can be assumed the existence of such
controllers, i.e., Sg is not void. However,, note that even



if it exists, construction of a stable controller might be a
nontrivial task, in general. In practical applications strongly
stabilizing controllers are preferred, see [4].

As a final remark, observe that

I —-Kj Su. Ko\ _ (I O (15)
Sqg Yy -S; I ) \0 I)’

i.e., if Ky is stable, then we have a granted double coprime

factorization given in terms of the original data.

C. A coordinate free parametrization

Let us fix a stabilizing controller, say K. Based on the

Youla parametrization one can obtain the formulae
K= S:RFG.KO (R) = 3l(\I’G»Ko’ R),
R= S)ﬁrél (K) =351(2¢,k,, K),

Ko

(16)
7)

with

Su K0> (KO I)
r Ko = ’ v Ko = ) (18)
G,K (Sg I G, K I Sg

1 (I =K, _ (—KoS;t St
1—‘G,Ko - (Sg Sy ) » ®a Ko = ( S;l G )
(19)
where
ReRy, ={V'QV'QeQ}. (20)

Observe, however, that (17) is defined exactly on W and
let the restriction on the stabilizing controllers be denoted
by Rk, = {8§i1(Pq,k,, K)|K € Gg}. Actually the set
Ry, = R}/(D does not depend on any special factorization.
It can be obtained directly, i.e., without any reference to
some particular factorization of the plant or of the controller,
starting from

(é Ij) - (é I?)) + (é) (K —Ko) (0 1)

and applying two times the matrix inversion lemma to obtain
first

I K\ ' (I K\ ' [S.
) e e

with R = (K — K())(I + Sg(K — K(]))_l and then

(é [I():@ I§°)+<é> R(I—S,R)"(0 T).
(22)

This is the point where the geometric view and the coordinate
free results can be applied. On Ry, we have the blending
rule

Ry O, K, R =Ko+ S,R1 + sty — RQSySgRl. (23)

For the stable controllers the parameter blending is more
simple:

(24)
(25)

Ry ®c,x, B1 = Ro + Ry — RSy Ry,
R%cxo = —R(I — S,R)~".

One can observe that we have

Qs = {Q|Q stable, (I — 5,Q)" exists},

i.e., Qx is representation independent. Moreover, from (21)
it is easy to see that besides Ky € R, the inclusion Qx, C
R, also holds, i.e., we know by start significant, nontrivial
part of Ry, .

IV. FRACTIONAL CONTROLLERS

Given a stabilizing controller K it is a natural question
whether there exists a stabilizing controller X such that

Ko=X0g X = [2X]q,., (26)
ie, X = [3Kolg,. In general, to have Ko = [kX]m,.,
ie., X = [1Ko)g,. respectively. The existence of such a

controller might made possible to have controllers of type
K =(m+ {)X]a,-
From (26) it follows that

Ko=X(I+5,x)8, %, ie, X = KoSy x(I+Sy.x)"",

with Sy x = (I — GX)~!, provided that the corresponding
inverses exist. Recall that S, = S?i - Thus

X = KoSy/2(I+8,/*)™ = Ko — Ko(I + Sy/*)7L.
(27

Analogously, one can deduce that

X = SY2(1+ SYH T K, (28)

which implies condition S;/ 2K0 = KOS;/ 2,
It remains to ensure that this is indeed a controller, i.e.,
H(G, X) is stable. This introduces the additional condition

Si/2Ko = KoSy/? = stable, (29)
S)/2G = GS,/? = stable. (30)

Thus, we have obtained the existence conditions that fully
characterise X: there exists stable .S 1/ 2, S}/ % such that the
inverses (I + Si/*)~! and (I + Si/lé)_1 also exists while
(29) and (30) is satisfied. Observe that by the positivity of
the square roots the existence of the inverses is granted.
Since these inverses are not necessarily stable, the resulting
controller should not be stable either.

In the SISO case and for stable plant and controller the
existence conditions boils down to the existence of the stable
square root system S;/ 2,

As an illustrative numerical example take

0 1 10
G:[O —3]’ KO:[O 1}‘

After some computation, which is left out for brevity, one
has

12 _ g2 _ |1 1/6 12y-1 _ [1/2 —1/18
S =5 _[o 12 UFST= 0 g3 |

which leads to

Y [1 (/)2 11//138} .



Taking Koy = [(1) ﬂ, we obtain

e [11/6 e 1 —1/3
Sy _[0 120 o a2 |

and

- [162 71//138} .

However, taking Ko = 0 1}, the matrix S;/ 2 will be

1 1
complex, while S}/ % is real. Thus (29) and (30) is violated,
hence X does not exist.

In a similar fashion one can obtain the existence conditions
for the general case, i.e., for X = [%KO}BG:

k—1
—(k—1
Ko=X8,57" (3 8)x).
1=0

ie.,
k—

X = Ko(>8F)718,F = ¢

=0

=
N
=

SE) 1S K.

L
o

If one would be tempted to replace the sums according to
the identity Y, ") Z! = (I — Z*)(I — Z)~, note that (I —
A )’1 does not necessarily exists! Observe also that if k& > 2,
having stable expressions SRRy = KOS;/ ¥ and S;/ G =
GS/* are only sufficient to obtain a stabilizing X.

Apart from the trivial case when S, and S, are contrac-
tions it is less known how to ensure the existence of the
required roots. Concerning the existence of the square root
the only result found in the literature is the following: if
the finite rank LTV systems H and (I + kH)~! are both
stable for all 0 < k < 1 then, based on a Newton-Raphson
technique of type

1 _
Yij1 = 5(( + H)Y, ' +Y)),
one can show that [ + H has a stable square root, see [1],
[2].
V. STABILIZATION OF THE P — K LOOP

Stability questions of LFT loops can be reduced to the
investigation of the configuration determined by (P, K),
where K = diag(0, K). It is obvious that the LFT loop is
well-defined if and only if (G, K) is well defined. However,
it is less obvious whether this claim remains true for stability.
A. Geometry of the LFT loop

We already know that if (P, K1) and (P, Ky) is stable,
then (P, K) is also stable with

K=K, Op K. 31
It is immediate to verify, that
K=K OpKy,=K+Ky,— K{PKy =

= dlag(07 Ky + K — KIGKQ) = dlag(oa K, Ug K2)a

ie., K = K g Ks. Thus, well-definedness and stability of
LFT loops is also a geometric property.

Moreover, a routine computation reveals that analogously
to (21), we have

Su
ﬁp,f( = ['P,f(o - Sg R (S.q Sy _Sypyw) )
_quSu

(32)

where the parameters correspond to (G, Kj).

Thus, if (P, Ko) is stable, by using the blending rule (23)
and observing that diag(0,Qx) C Ry, we know by start
a significant part of the stabilizing controllers for the LFT
loop. Moreover, if we denote by K, the set of controllers
generated by using (23) and Qsy, then these controllers will
stabilize the LFT loop, too. It is an interesting research
question whether we can infer from this that the LFT loop
is stabilized by exactly those controllers that stabilize G.

When G has a double coprime factorization, the answer
is affirmative, as it will be shown in the next section.

B. (G,K) vs. (P,K) stability

One can easily check that

PZ?D PZ'lL _ PZU} PZU * 0 I
Py G ) \Pyw O I G)°
Recall that the Redheffer star product is

T1(A, Bi1) A12(I — B11A22) ' Bia
le(I—Angn)_lAzl Su(B, Az22) ’

(33)

A*B:(

Thus, one has

Pzw qu 0 I
‘Sl(PvK):gl(<wa 0 )*(I G)vK):
P, P 0 I ~ =
gl(<wa 0 >7Sl(<[ G) aK)):‘Sl(P;K)a (34)

where the map K = K(I — GK)~' has an inverse K =

(I + KG)~'K if and only if §(P, K) is well defined.
From now on our assumption is that G has a double

coprime factorization, i.e., G = nm~! = m~'#A and

(GG )-0) G D)-60)

It follows then that the controllers k that make the pair (G, k)
stable are described by the Youla parametrization

k= (u+mq)(v+ng)~" = (@+qn) (i+qm) (35)

for arbitrary stable ¢ for which the corresponding inverses
exists. We use the notation k = wv~! = 9714 for the
controller in order to emphasize our initial knowledge, i.e.,
the fact that the pair (G, k) is stable. What we would like
to prove is that k also stabilizes the LFT loop, i.e., the pair
(P, K) is also stable with K = 8 2 .

Our first observation is that by interchanging the role of P
and K, we also have a double coprime factorization of the



controllers K which makes the pair (P, K) stable. Indeed, a
possible factorization is given by

I 010 0 I 0]0 0
0 & |0 —a 0 m|0 w | (I 0
0 0|1 O 0 o|7 o | \o 1)
0 —a|0 m 0 n|0 v
ie.,
Vo —Uo\ (Mo U\ _ (I 0 36)
—Ng M, No Vo) \O I/

Accordingly, we have all possible plants that makes the pair

(Pg, K) stable as:
P = (No+VoQ) (Mo + Up@Q) ™" =

—1
_ (I q12 I 0
Uga1 M+ vqa2 ) \uga1 M+ ugo2 '

It follows that Pg(2,2) = (n + vgaa)(m + ugae)~t. Thus
for Px(2,2) = G we have ¢goo = 0 and

-1
P _(Q11 Q12>< 1 0) B
= =
vg@21 N uqa1 M
_ qi1 — qi2m " tugar  qram !
mgn G ’

It is easy to see that §;(Pk, K) = q11-
Thus,

P Py _ Qi1 — qi2m” tugar  qramt _
wa 0 m71q21 0

(a1 @2 —m~tu m~!
- * 57— 1 ’
g1 0 m 0

and, for the given double coprime factorization of G, the
stabilizable plants Pg are given by

_ (1 @2, —m~tuy m~! N 0 I
K= q21 0 m! 0 I G)’°

where q11, q12, 21 are stable systems.
Moreover,

(37

3u(Pc, k) = gl(@w PSU) (I — GR)™) =
yw

R —1
_ 31(<q11 q(1)2> N < g_lu mo ) (u+ ma)i) =

q21
= Fi( @i ,q) = qi1 + q129421.
g1 0

According to (2) we should check that also Sc j Py,
Sy kPyw PeuSuk and Py, Sc, is stable for the stabilizing
controller k£ given by (35). We have

SekPyw = (u+mg)mm ™" g1 = (u+mq)gar,
Sy kPyw = (v +ng)mm ™ ga1 = (v + nqga,
qusu,k = ihzm*lm(f) + qﬁ) = Q12(5 + qﬁ)7
quSc,k: = Q12m_1m(ﬂ + qm) = Q12(ﬂ/ + qm)

We are in a position to summarize stabilizability condition

of (lower) LFT loops: the stabilizing controller set of an LFT
loop coincides with the set of all stabilizing controllers k of

G, and the closed-loop for a stabilizing controller is given
by

Si1(P k) = q1 + q2q43,

where ¢ is the Youla parameter of K relative to the given
double coprime factorization of G and q1, g2, q3 are stable
systems.

Note that in this proof all the ingredients of the Youla
parametrization play a decisive role. There is no way to
repeat the argument if the parameter is not stable. Moreover,
in this argument the stabilizability issue and the model
matching property are strongly tight together.

VI. CONCLUSIONS

In this paper we provide conditions for the existence
of fractional controllers relative to the stability preserving
blending rule. We also extend our geometry based framework
to the LFT loops. When double coprime factorization esists,
it is shown that every controller which stabilizes the interior
loop also stabilizes the LFT loop. Since existence of a stable
stabilizing controller implies double coprime factorization,
and in the LTV class always exists such a controller, this
property holds for the interesting modell classes.
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