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Adaptive Hessian Estimation Based Extremum Localization

Huseyin Demircioglu, Iman Fadakar, Baris Fidan

Abstract— In this paper we study continuous time adaptive
extremum localization of an arbitrary quadratic function F (·)
based on Hessian estimation, using measured the signal intensity
by a sensory agent. The function F (·) represents a signal field
as a result of a source located at the maximum point of F (·) and
is decreasing as moving away from the source location. Stability
of the proposed adaptive estimation and localization scheme is
analyzed and the Hessian parameter and location estimates are
shown to asymptotically converge to the true values. Moreover,
the stability and convergence properties of algorithm are shown
to be robust to drift in the extremum location. Simulation test
results are displayed to verify the established properties of the
proposed scheme as well as robustness to signal measurement
noise.

I. INTRODUCTION

Years by years, source localization yields some promiser

applications, hence, it has been studied broadly such as

[1]–[4]. The generic task in these problems is that one or

more sensory agents locate the source of a signal field with

the help of measurement obtained from sensors mounted

on these agents. In order to localize the source, different

kinds of measurements are utilized depending on the on

the setting and constraints of the particular localization task.

Generally, localization is accomplished using the information

of the relative position of a single agent or multi-agents to a

source such as bearing / angle of arrival (AOA) [5], [6], time

difference of arrival (TDOA) [7], [8], time of flight (TOF)

[9], [10], received signal strength(RSS) [11], [12].

When the source is stationary and the measurements

contain no noisy signal, the task can be easily succeeded by

getting a small number of measurements. However, in the

real world, these conditions can not be met, therefore, the

agent searching for a source requires an estimator to solve

the uncertainty issues arisen from the target’s motion or the

noisy signal which can be studied under adaptive target lo-

calization. In [13]–[15], the authors present a source position

estimation algorithm where the agent is able to measure its

distance to the position of the source. The algorithm is shown

to be exponentially stable under a persistent excitation (PE)

condition and robust to drifts in the source location, and the

presented simulation results demonstrate that the proposed

algorithm performs well in presence of sensor noise as well.

In [16], a geometric cooperative technique is proposed

to estimate permittivity and path loss coefficients for the

electromagnetic signal case, with RSS and TOF based range
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sensors. The proposed technique is integrated to a recursive

least squares (RLS)-based adaptive localization scheme and

an adaptive motion control law, to perform adaptive target

localization robust to uncertainties in environmental signal

propagation coefficients. In [2], this technique is applied

to the problem of tracking biomedical capsule for gastro-

intestinal endoscopy and medication applications.

The above studies all utilize sensor units providing ge-

ometric measurements, such as distance, bearing, distance

difference, directly related to relative position of the target

or the signal source. In many applications, as opposed to

distance/direction measurement, RSS is used to estimate the

gradient of the unknown signal field of interest and locate

the extremum point where the gradient of the field is zero.

In [17], the authors studies a combined formation acquisition

and cooperative extremum seeking control scheme for a team

of three robots moving a plane in order to find the extremum

point of an unknown signal strength field by on-board signal

measurement. The proposed algorithm guarantees conver-

gence to a specified neighbourhood of the maximum of the

field while ensuring that the desired formation is acquired

and maintained. Similar to the above work, it is accomplished

to locate a source by using only direct measurements of that

signal at the vehicles individual locations in [18]–[20].

In this paper, we study adaptive Hessian estimation and

extremum localization of a (signal) field F by a sensory agent

that continuously measures the intensity of F at its current

location while moving. Beyond from the existing literature,

including [17]–[20] , the aimed contribution is two-folds:

(1) On-line identification of more detailed information about

the signal field F than just the extremum of it. (2) More

accurate and faster localization of the extremum utilizing

this extra information. Having the knowledge of the position

y of the sensory agent and the signal value F (y) at the

agent’s current location as measured by an on-board sensor,

we design an adaptive scheme, involving some regression

filters, for adaptive estimation of Hessian parameters of F ,

which helps us extract the information of the source location.

Rest of the paper is arranged as follows: The signal

map representation is formally introduced and the extremum

localization problem is defined in Section II. The pro-

posed adaptive Hessian estimation and extremum localiza-

tion scheme is presented in Section III. Stability and the

convergence of the proposed scheme are analyzed in Section

IV. Simulation results are displayed to verify the feasibility

and robustness of the proposed adaptive scheme in Section

V. Concluding remarks are given in Section VI.

http://arxiv.org/abs/1811.04527v1


II. THE EXTREMUM LOCALIZATION PROBLEM

The main objective of the adaptive estimator designs in

this paper is to produce an accurate estimate of the location

of the extremum(maximum) of a quadratic (signal field)

function F (·) : D −→ R, for a compact state location domain

D ⊂ R
m, formulated by

F (y) = c1 −
1

2
(y − x)

T
H (y − x) (1)

where c1 is an unknown positive constant and H is an

unknown m×m positive definite matrix. For m ∈ { R
2,R3},

(1) typically represents the strength of a signal emitted by

a source at location(state) x ∈ R
m measured by a sensory

node at location (state) y ∈ R
m [21]–[23]. The idea for using

a quadratic function as a profile of the signal field is rooted

in the fact that any smooth function can be approximated

locally by its Taylor expansion near each extremum point.

For a general nonlinear smooth function Fg(·), the gradient

∇Fg(y) will vanish at the extremum point y = x, we can

write [24] :

Fg(x+ yr) = Fg (x) +
1

2
yTr ∇

2Fg(x)yr + h.o.t (2)

where yr = y − x. The approximation (2) enables us to

extract the gradient of the field using averaging methods [25]

and find the location of the extremum point. Assuming that

Fg(·) is a positive concave signal field function, ∇2Fg(x) is

negative definite and c1 and H in (1) matches, respectively,

with Fg(x) and −∇2Fg(x) in (2). For brevity, neglecting

the higher order terms ( h.o.t. ) in (2), we focus on the

representation (1) in this paper, and formally define the

extremum localization problem for this representation.

Problem 1: Consider the quadratic signal field function

in (1). Suppose that a sensory agent has access to the

field measurement F (y) at its current location y. Design an

adaptive identification scheme to estimate the target location

x at which F takes its maximum value, and derive the

conditions under which the estimate x̂(t) converges to x
asymptotically.

III. THE PROPOSED ADAPTIVE HESSIAN ESTIMATION

AND LOCALIZATION SCHEME

In order to devise an adaptive localization algorithm, we

use the adaptive parameter identification based framework

proposed in [13]–[15]. We use the notation in [13] for deriva-

tive operation and asymptotically equal signals: s denotes

the derivative operator, i.e., given a function f of time t,
sf := ḟ = df/dt. 1

s+a
f(t) :=

∫ t

0
e−aτfτdτ . For two vector

functions f, g of the same dimension, f(·) ≈ g(·) if there

exist λ,M such that ‖f(t) − g(t)‖≤ Me−λt for all t ≥ 0.

We derive a parametric model that is linear in unknown

parameters of the system, i.e., the elements of Hessian matrix

H and the location(state) x of the extremum. Taking time

derivative of (1) and assuming that x is constant, i.e., ẋ = 0,

we obtain

Ḟ (y) =− ẏTH(y − x) = −ẏTHy + ẏTHx

=−
1

2

d

dt

(

yTHy
)

+
d

dt

(

yT
)

Hx

=−
1

2

d

dt
(H11y

2
1 + 2H12y1y2 + · · ·+H22y

2
2

+ 2H23y2y3 + · · ·+Hmmy2m) +
d

dt

(

yT
)

Hx

(3)

which can be written as

Ḟ (y) = θ∗T
dΨ

dt
, (4)

θ∗ =

[

H11, H12, · · · , H1m, H22, · · · , Hmm,

xTH1, · · · , x
THm

︸ ︷︷ ︸

xTH

]T

∈ R
m(m+3)

2 ,
(5)

Ψ =

[

−1
2 y21,−y1y2, · · · ,−y1ym, −1

2 y22 ,

· · · , −1
2 y2m, yT

]T

∈ R
m(m+3)

2 ,

(6)

where Hi denotes the ith column (= transpose of the ith row)

of H . In order to eliminate need for explicit differentiation

of available signals, z(·) and φ(·) are introduced as the state

variable filtered versions of F (·) and Ψ(·), respectively:

ξ̇1(t) = −aξ1(t) + F (y(t)), (7)

ξ1(0) = 0, (8)

z(t) = −aξ1(t) + F (y(t)), (9)

ξ̇2(t) = −aξ2(t) + Ψ(t), (10)

ξ2(0) = [0, . . . , 0]T ∈ R
m(m+3)

2 , (11)

φ(t) = −aξ2(t) + Ψ(t), (12)

for some a > 0. It can be seen in (7)–(12) that the

measurements of the location(state) y(t) of the sensory agent

and the field intensity F (y(t)) at that location are sufficient

to generate the signals z(t) and φ(t).

Lemma 1: Suppose θ∗ ∈ R
m(m+3)

2 is a constant, and

z(t), φ(t) are defined by (7)–(12) with a > 0. Then there

holds:

z(·) ≈ θ∗Tφ(·). (13)

Proof :Using (7)–(9), we obtain;

ż(t) + az(t) =
d

dt
{F} , (14)

where a > 0. In operator notation i.e., using s to denote the

differentiator operator,

z(·) ≈
s

s+ a

{
F (·)

}
. (15)

Similarly,

φ(·) ≈
s

s+ a

{
Ψ(·)

}
. (16)



Then,

z(·) ≈
s

s+ a

{
F (·)

}
≈

1

s+ a

{

θ∗T Ψ̇(·)
}

≈ θ∗T
s

s+ a

{
Ψ(·)

}
≈ θ∗Tφ(·). � (17)

Using (13) as linear parametric model, and (7)–(12) to

generate the regressor signals in this model, we design the

following gradient based adaptive estimation algorithm [26],

[27] to identify θ∗:

˙̂
θ = γφ(z − θ̂Tφ), (18)

where θ̂ denotes the estimate of θ∗ and γ > 0 is a scalar

design constant. To be able to extract the information of the

elements of H and the location(state) of the source (x) from

the estimation of θ∗, we consider the following partitioning

of θ∗ and θ̂ ;

θ∗ =

[
θ∗H
θ∗x

]

, θ̂ =

[

θ̂H
θ̂x

]

(19)

where θ∗H ∈ R
m(m+1)

2 is composed of the entries of θ∗ that

are independent of x, θ∗x = Hx ∈ R
m, θ̂H and θ̂ are the

estimates of θ∗H and θ∗x respectively. Since all the elements of

H exist in θ∗H , we can form Ĥ (the estimate of H) from θ̂H .

In order to obtain x̂ which is the estimation of the source’s

location(state) x, we utilize the equality θ∗x = Hx;

x̂ = Ĥ−1θ̂x. (20)

In order to take the inverse of Ĥ in (20), it must be

guaranteed that Ĥ is non-singular.

Assumption 1: The Hermitian matrix H satisfies the fol-

lowing:

1) Hii > 0 for all i = 1, · · · ,m.

2) H is strictly diagonally dominant which means |Hii|>∑

i6=j |Hij | for all i, j = 1, · · · ,m.

Lemma 2: If H satisfies Assumption 1, then it is positive

definite.

Proof : The result is a direct corollary of Theorem 6.1.10

of [28].

To assure Ĥ is non-singular, we apply parameter projec-

tion on the elements of θ̂H in consideration of Assumption

1 and (18) with the parameter projection is re-designed as;

˙̂
θ = Proj

θ̂H∈SH

{γφ(z − θ̂Tφ)}, (21)

where the convex compact set SH is defined as the set of all

vectors θ̂H = [Ĥ11, Ĥ12, · · · , Ĥ1m, Ĥ22, · · · , Ĥmm]T such

that the corresponding m×m matrix Ĥ satisfies Assumption

1, and Proj
θ̂H∈SH

{·} is the parameter projection operator [26],

[27] defined to maintain θ̂H in SH .

Remark 2.1 If H is a diagonal matrix, the vectors θ∗ and

Ψ in (5)–(6) can be redefined in reduced form as follows:

θ∗ =

[

H11, · · · , Hmm, xTH

]T

∈ R
2m (22)

Ψ =

[
−1

2
y21 , · · · ,

−1

2
y2m, yT

]T

∈ R
2m (23)

For a general case, since H is a symmetric matrix with

real elements, we can deduce that by choosing appropriate

coordinates, we can diagonalize the matrix H and hence,

design the identification algorithm based on the reduced

order model (13),(22),(23).

In the next section, we analyze the stability of the proposed

adaptive estimation and localization scheme.

IV. STABILITY AND CONVERGENCE

A. Stationary Extremum Localization

Note that the base adaptive law (18) and the adaptive law

(21) with parameter projections can be rewritten, respec-

tively, as

˙̃
θ =

˙̂
θ = −γφφT θ̃, (24)

˙̃
θ =

˙̂
θ = Proj

θ̂H∈SH

{−γφφT θ̃}, (25)

where θ̃ = θ̂ − θ∗. Hence, the aimed convergence of the

estimate θ̂ to actual θ∗ is equivalent to the convergence of θ̃
to zero.

Theorem 1: Suppose θ∗ ∈ R
m(m+3)

2 is a constant. Con-

sider z(t) and φ(t) defined in (7)–(12), with a > 0. Then

for each of the base adaptive law (24) and the adaptive law

(25) with parameter projection , there exist ρ1, ρ2, λ > 0
such that for all t ≥ 0 and ||θ∗(0)||

||θ̃(t)||≤ (ρ1||θ
∗(0)||+ρ2)e

−λt (26)

if and only if there exist α1 > 0, α2 > 0, T > 0 such that

for all t ≥ 0

α1I ≤

∫ t+T

t

φ(τ)φ(τ)T dτ ≤ α2I. (27)

Proof : It is established in the literature (see, e.g., [29])

that (24) is exponentially asymptotically stable if and only if

(27) holds. Moreover, it is proven in [27] that the parameter

projection does not affect the properties of the gradient

adaptive laws deducted on the Lyapunov analysis and it can

only make the time derivative of Lyapunov function more

negative. Hence, (25) is also exponentially asymptotically

stable if and only if (27) holds.�

B. Drift in Extremum Location

The drift analysis in [13] can be applied here as well,

without requiring significant modification. Before, detailing

the drift analysis, we make the following assumption.

Assumption 2: The agent trajectory y : R → R
m is

twice differentiable, the source trajectory x : R → R
m is



differentiable and there exist M1,M2,M3,M4, ǫ > 0 such

that for all t ∈ R

||y(t)|| ≤ M1, ||ẏ(t)||≤ M2, ||ÿ(t)||≤ M3, (28)

||x(t)|| ≤ M4, ||ẋ(t)||≤ ǫ. (29)

Lemma 3: Under Assumption 2, for z(t) and φ(t) defined

in (7)–(12), there exists M5 : R≥0 → R≥0 such that for a

suitable K1 depending only on M1,M2,M4 and a,

|z(t)− θ∗Tφ(t)|≤ M5(t), ∀t ≥ 0 (30)

and

M5(·) ≈ K1ǫ. (31)

Proof : Using the operator notation in the proof of Lemma

1, it is achieved that

z(·) ≈
s

s+ a

{
F (·)

}

≈
1

s+ a

{

−
(
ẏ(·)− ẋ(·)

)T
H

(
y(·)− x(·)

)}

≈−
s

s+ a

{
1

2
yT (·)Hy(·)

}

+
1

s+ a

{
1

2
ẏT (·)Hx(·)

}

+ f(·) (32)

where

f(·) =
1

s+ a

{
1

2
ẋT (·)H

(
y(·)− x(·)

)
}

. (33)

In consideration of Assumption 2, there exists a F ;R≥0 →
R≥0, such that for all t ≥ 0,

|f(t)|≤ F (t) (34)

and

F (·) ≈
M1 +M4

a
ǫ. (35)

Now, consider the second term in (32)

1

s+ a

{
1

2
ẏT (·)Hx(·)

}

≈ Q(·) (36)

where with C ∈ R
m,

Q(t) =e−at

∫ t

0

eaτ ẏT (τ)Hx(τ)dτ

=e−at

[(∫ τ

0

easẏ(s)ds+ C

)T

Hx(τ)

]t

0

− e−at

∫ t

0

(∫ τ

0

easẏ(s)ds+ C

)T

Hẋ(τ)dτ

=

[(∫ τ

0

e−a(t−s)ẏ(s)ds+ Ce−at

)T

Hx(τ)

]t

0

−G(t), (37)

G(t) =e−at

∫ t

0

(∫ τ

0

easẏ(s)ds+ C

)T

Hẋ(τ)dτ.

(38)

Thus, as a > 0, and adding the first term in (32), we obtain

−
s

s+ a

{
1

2
yT (·)Hy(·)

}

+Q(·) ≈ θ∗Tφ(·) −G(·).

(39)

Moreover, from (38), it is obtained that

|G(t)|≤ e−atM2λmax(H)ǫ

[

eat − 1

a2
+ t

(

||C||−
1

a

)]

(40)

Then the result follows from (30)–(40). �

Then in the view of Theorem 1, we have the following

result.

Theorem 2: Suppose Assumption 2 hold, and there exist

α1, α2, T > 0 such that ∀t ≥ 0. Consider z(t) and

φ(t) defined in (7)–(12). Then θ̂(t) in (21) obeys for

some K obtained from M1,M2,M4, γ, a, T, α1 and α2,

lim supt→∞|θ̂(t)− θ∗(t)|= Kǫ.
Proof : Due to (21) there holds

˙̃
θ(t) =

˙̂
θ(t)− θ̇∗(t)

=γφ(t)(z(t)− θ̂T (t)φ(t)) − θ̇∗(t)

=− γφ(t)φT (t)θ̃(t) + γφ(t)(z(t)− θ∗T (t)φ(t))

− θ̇∗(t)

=− γφ(t)φT (t)θ̃(t) +G2(t) (41)

where

G2(t) = γφ(t)(z(t)− θ∗T (t)φ(t)) − θ̇∗(t). (42)

Then because of Lemma 3, (29) and the fact that φ̂(·) is

bounded, there exists a K5 > 0 obtained from M1,M2M4, γ
and a, and an M6 : R≥0 → R≥0, obeying M6(·) ≈ K5ǫ such

that |G2(t)|≤ M6(t)∀t ≥ 0. Hence the result follows from

the exponential asymptotic stability of (21). �

V. SIMULATION RESULTS

In this section, we provide simulation results to exhibit

the performance of the proposed scheme in Section III. For

all examples, the state number, the adaptation gain and the

filter pole are selected as m = 2(considering the localization

of extremum in 2-D plane.), γ = 1 and a = 0.5, respectively

and the signal field is formed as F (y) = 3−(y−x)H(y−x)

where the Hessian matrix is H =

[
1 0.2
0.2 2

]

.

Scenario 1: Assume the extremum location is at x =
[
1 2

]T
and the sensory agent’s trajectory is given by y =

[
sin(4t) + sin(5t) sin(2t) + sin(3t)

]T
. Using the adaptive

estimation algorithm (21), the Hessian matrix and the source

location estimates converge to their actual values exponen-

tially as seen in Figure 1.

Scenario 2: Consider the same conditions in Scenario

1, but with white noise with variance(0.05) on F (t) mea-

surement of the sensory agent. Figure 2 displays that the

localization is accomplished with some errors scaled with

the noise magnitude.
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Fig. 1: Location estimation for x(t) = [1, 2]T , y(t) = [sin(4t) + sin(5t), sin(2t) + sin(3t)]T , a = 0.5. The dashed lines

and the solid lines represent the actual values and their estimates, respectively.
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Fig. 2: Location estimation for x(t) = [1, 2]T , y(t) = [sin(4t) + sin(5t), sin(2t) + sin(3t)]. Noise in sensing the signal

intensity with variance(0.05). The dashed lines and the solid lines represent the actual values and their estimates, respectively.



Scenario 3: There is a slow drift movement in the location

of extremum as x(t) = [1+0.5 sin π
1000 t, 2+0.5 sin π

1000 t]
T .

As expected from Subsection IV-B, the simulation results in

Figure 3 show that the adaptive estimation algorithm in (21)

is applicable for the drift case.

Scenario 4: Combine the two circumstances in Scenarios 2

and 3. There is F (t) measurement noise with variance(0.05)

and drift in the location of extremum point as x(t) = [1 +
0.5 sin π

1000 t, 2 + 0.5 sin π
1000 t]

T . The simulation results in

Figure 4 demonstrate the adaptive estimation algorithm in

(21) works well despite the extremum location drift and noise

in sensing.

VI. CONCLUSION

In this paper we have designed an adaptive scheme for

Hessian estimation and extremum localization of quadratic

signal field functions by a sensory agent measuring the signal

intensity. The proposed scheme is effective in extracting

more detailed information about such signal fields and utiliz-

ing this information in more accurate and faster localization

of the extremum. The stability of the proposed adaptive

estimation and localization scheme has been proven for both

stationary and slowly drifting extremum cases. Simulation

results are presented in the presence of realistic measure-

ment noise and drift in extremum location that exhibit the

performance of the proposed scheme.

Ongoing and future related research directions include

implementing the proposed scheme on autonomous vehicle

and cooperative extensions of the design where more than

one sensory agent are utilized.
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Fig. 3: Location estimation for x(t) = [1+ 0.5 sin π
1000 t, 2+ 0.5 sin π

1000 t]
T , y(t) = [sin(4t)+ sin(5t), sin(2t)+ sin(3t)]T ,

a = 0.5. The dashed lines and the solid lines represent the actual values and their estimates, respectively.
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Fig. 4: Location estimation for x(t) = [1+ 0.5 sin π
1000 t, 2+ 0.5 sin π

1000 t]
T , y(t) = [sin(4t)+ sin(5t), sin(2t)+ sin(3t)]T ,

a = 0.5. Noise in sensing the signal intensity with variance(0.05). The dashed lines and the solid lines represent the actual

values and their estimates, respectively.
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