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Abstract— The extreme loads experienced by the wind tur-
bine in the extreme wind events are critical for the evaluation
of structural reliability. Hence, the load alleviation control
methods need to be designed and deployed to reduce the adverse
effects of extreme wind events. This work demonstrates that
the extreme loads are highly correlated to wind conditions
such as turbulence-induced wind shears. Based on this insight,
this work proposes a turbulence-based load alleviation con-
trol strategy for adapting the controller to changes in wind
condition. The estimation of the rotor averaged wind shear
based on the rotor loads is illustrated, and is herein used to
statistically characterize the extreme wind events for control
purpose. To demonstrates the benefits, simulations are carried
out using high-fidelity aero-elastic tool and the DTU 10 MW
reference turbine in normal and extreme turbulence wind
conditions. The results indicate that the proposed method can
effectively decrease the exceedance probability of the extreme
loads. Meanwhile, the method can minimize the loss of annual
energy production in normal operating condition.

I. INTRODUCTION

With the advent of larger rotor size and more flexible wind
turbine, limiting the loads experienced in extreme turbulence
condition is becoming increasingly important. The wind
energy industry is continuously researching better control
methods to achieve a reasonable trade-off between energy
production and component loading [1], [2]. The probabil-
ity of extreme blade and tower cyclic stresses are highly
correlated with the wind condition. The power production
cases in extreme turbulence are among the top design driving
load cases. Environmental wind conditions often change
with time, for example, wake in a wind farm, extreme
shear in complex terrain, high turbulence weather fronts, etc.
Therefore, an optimal trade-off can be achieved in principle
if the controller can adapt its behaviour to various wind
conditions.

Turbulence Intensity (TI) is commonly used as an indicator
of spatial-temporal variation in wind inflow. To achieve the
real-time knowledge of the wind, the concept of wind speed
estimation based on the wind turbine operating condition has
been proposed in a considerable amount of literature [3]–
[7]. In addition, another growing body of literature [8], [9]
investigated on estimating turbulence intensity using Light
Detection And Ranging (LiDAR) systems. The work [8]
proposed a solution of scheduling a feedback controller based
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on the LiDAR data to reduce the structural loads. The work
[10] discussed the improving structural reliability based on
advanced control algorithm in extreme wind situation, which
yield a reduction in the extreme load distribution.

Most of the existing studies have focused on effective
wind speed based control, but the spatial imbalance in wind
inflow is not included explicitly, which has a significant
impact on generating extreme load for the large sized wind
turbines. The turbulent kinetic energy within the rotor disk
will produce the imbalanced local wind, then it can be
transported into the blade structure, finally the load will
be propagated into the hub and other components. Several
attempts have been made to estimate the rotor averaged
shear information [11], [12], which can be integrated into
controller as an indicator of the extreme wind events.

The aim of this work is to explore the relationship between
the loads and statistical quantities of rotor averaged wind
condition. Then, an algorithm for modifying the control pa-
rameters in response to the indicators of turbulence-induced
shear is proposed. The method is referred to as Turbulence-
based Load Alleviation Control (TLAC).

The remainder of this paper is organized as follows.
Section II briefly describes the simulation setup used in
this work. Section III deals with the estimation of the rotor
averaged wind condition. The correlation between loads and
wind condition is analyzed in Section IV. In Section V, the
TLAC framework is developed and the simulation results are
presented, comparing the TLAC with the baseline control.
The conclusion is summarized in Section VI.

II. SIMULATION SETUP

To evaluate the performance of TLAC, the simulations are
performed using the aero-elastic tool HAWC2 and the DTU
10 MW reference wind turbine [13] with a diameter of 178.3
m and a hub height of 119 m. The rated wind speed is 11.4
m/s. The DTU Wind Energy Controller (DTUWEC) [14] is
referred to as baseline controller in this work, which is an
open-source and conventional variable speed controller. The
DTUWEC is able to couple with aero-elastic simulation code
to investigate the performance of various control strategy.

A. Coordinate System

The coordinate systems for each major component are
illustrated in Fig. 1, including the tower, blade and shaft
coordinates. When viewing the turbine from upstream, clock-
wise azimuth angle ϕ = 0 radian represents blade 1 pointing
upward, the azimuth angle of blade 2 and 3 are ϕ + 2π/3
and ϕ +4π/3 respectively.
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Fig. 1: Illustration of right-handed coordinates. X-Y-Z repre-
sents coordinate for each turbine component, the subscripts
’G’, ’B’, ’S’ stand for tower base (ground), blade and
stationary shaft, respectively. U-V-W represents the original
wind coordinate without rotation.

The wind field described in wind coordinate system
(u,v,w) is rotated horizontally and vertically with respect
to the coordinate system (U,V,W ). The positive horizontal
and vertical direction are pointing to left and upwards when
viewing the turbine from the upwind.

B. Load Case Definition

According to the IEC standard [15], two subsets of the
normal power producing Design Load Cases (DLC) have
been evaluated, including Normal Turbulence Model (NTM)
DLC 1.2 and Extreme Turbulence Model (ETM) DLC 1.3.
Since the peak loads often occur around rated wind speed,
6 random seeds at each mean wind speed from 10 to
14 m/s spaced at 2 m/s apart are simulated. The turbulence
category is A. For each mean wind speed, three different
wind directions 8, 0 and -8 deg are included. The simulation
time is 700 s and the first 100 s is discarded. Finally, in total
36 cases are obtained, including 18 ETM cases and 18 NTM
cases.

III. ROTOR AVERAGED WIND CONDITION ESTIMATION

This section describes the method to estimate the rotor
averaged wind characteristics based on the rotor loads.

A. Actual Rotor Averaged Wind Characteristic

The rotor averaged wind speed and shear are modelled as
the least-squares fit of the u component wind speeds across
the rotor disk area:

u1
u2
...

uN

=


1 ∆y1 ∆z1
1 ∆y2 ∆z2
...

...
...

1 ∆yN ∆zN


Ueff

δh
δv

 . (1)

where for all N points on the rotor disk, Ueff is the rotor
averaged wind speed. The linear variation of wind speed
across the rotor disc is represented by rotor averaged vertical
shear δv and horizontal shear δh, ∆y and ∆z are the horizontal
and vertical distance between grid points and rotor centre.

The rotor averaged turbulence intensity Ieff and resultant
shear magnitude δ are defined as

Ieff =
σU eff

Ūeff
, δ =

√
δ 2

h +δ 2
v . (2)

where Ūeff denotes the mean value and σU eff is the standard
deviation of the rotor averaged wind speed.

B. Wind Condition Estimation

Torque balance method is commonly utilised to estimate
the rotor averaged wind speed since it does not require
additional sensors. The basic measurements of the generator
reaction torque Qg, the rotor speed Ω and the pitch angle β

are sufficient [16]. In addition, the rotor averaged wind speed
Ueff can also be estimated according to the thrust balance
equation, in which additional blade root load sensors are
required:

FT =
1
2

Ct (β ,λ )ρU2
effAd . (3)

where Ct (β ,λ ) denotes the thrust coefficient that is a func-
tion of the pitch angle β and the tip-speed ratio λ , ρ and Ad
represent the air density and rotor disk area, respectively.

The thrust is the dominant source of each blade root out-
of-plane (oop) bending moment Moop,i:

Moop,i =
1

2Nb
Ct (β ,λ )ρU2

b,iAdReq, (4)

where Nb denotes the number of blades, Ub,i is blade-
equivalent wind speed and Req is the equivalent radius. The
contribution of the gravity, inertia loading are neglected in
Eq. (4) due to the aerodynamic loading is more significant.
Meanwhile, the impact of yaw misalignment and inflow
angle are not included. The moment Moop,i is considered as
an integral result of the thrust force along the blade span-wise
direction. Hence, the equivalent radius Req is determined by
assuming the single equivalent concentrated loads applied to
that position, where it produces approximately the equivalent
aerodynamic loads as the actual span-wise distribution of
thrust. The equivalent radius Req is defined based on the
steady-state response:

Req =
Moop(Ū)∫ Rb

0 Foop (r,Ū)dr
. (5)

where Ū denotes mean wind speed, Rb is rotor radius,
Moop (Ū) is the blade root out-of-plane bending moment,
Foop (r,Ū) is the the distributed out-of-plane force along the
blade span-wise direction r, which can be calculated by
the steady-state response of the turbine using aero-elastic
analysis code HAWCStab2 [17].

From the blade load measurement, the blade-equivalent
wind speed Ub,i can be estimated according to Eq. (4), which
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Fig. 2: Histogram of the shear estimation errors.

can also be expressed as the combination of the wind speed
and shear:

Ub,i =Ueff−δhReq sin(ϕ +
2π

3
(i−1))

+δvReq cos(ϕ +
4π

3
(i−1)).

(6)

Subsequently, the rotor averaged wind characteristics are
derived by transforming Ub,i into non-rotating coordinate:[

Ûeff, δ̂v, δ̂h
]T

= Q
[
Ub,1,Ub,2,Ub,3

]T
, (7)

where the symbol ˆ(.) denotes the estimation results, the
superscript (.)T denotes the transpose of a matrix, the matrix
Q is expressed as:

Q =
2

3Req

 Req
2

Req
2

Req
2

cos(ϕ) cos
(
ϕ + 2π

3

)
cos
(
ϕ + 4π

3

)
−sin(ϕ) −sin

(
ϕ + 2π

3

)
−sin

(
ϕ + 4π

3

)
 . (8)

C. Validation of Estimation Method

To assess the accuracy of the proposed estimation method,
the estimation procedure is carried out for all the DLCs
described in Section II-B. The calibration is performed to
remove the constant errors from the unmodeled dynamics
as mentioned in Section III-B. All time series are divided
into 6 segments, in total of 216 segments. The histogram of
estimation errors for δv and δh is shown in Fig. 2. Although
there are some small deviations, the estimation accuracy is
acceptable in general.

The magnitude-squared coherence is used to indicate how
well estimation corresponds to actual wind condition at each
frequency. The coherence Cxy( f ) is a function of the power
spectral densities, Pxx( f ) and Pyy( f ), and the cross power
spectral density, Pxy( f ), of the signals x and y:

Cxy( f ) =
|Pxy( f )|2

Pxx( f )Pyy( f )
. (9)

The coherence results, including the Ueff, δv and δh, are
shown in Fig. 3. The frequency at which the coherence equals
0.5 is around 0.07-0.09 Hz, indicating that the estimation
can capture the general trend of actual value. The good
correlation between estimation and actual wind provides the
foundation for the turbulence-based control concept. The
estimation results will be further discussed in Section V-B.
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Fig. 3: Magnitude-squared coherence between actual and
estimated wind characteristics.
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Fig. 4: Relationship between extreme load and mean wind
speed. From top to bottom: tower, blade, hub. Notice that
the sign of the blade root Moop is negative.

IV. RELATIONSHIP BETWEEN LOAD AND TURBULENCE

Three major components of wind turbine are considered in
this work: tower bottom fore-aft bending moment Mx,t, blade
root out-of-plane bending moment Moop, hub tilt bending
moment Mx,h.

To identify the relationship between loads and wind condi-
tion, the extreme load and wind condition are extracted from
the previously divided 216 segments. The load distribution in
Fig. 4 illustrates a clear trend in NTM and ETM loads. The
ETM cases always produce larger extreme loads around rated
wind speed. The extreme loads exist around the rated wind
speed 11.4 m/s, hence in this work the wind speed range
is focused on U ∈ [ULB,UUB],ULB = 8 m/s,UUB = 16 m/s
where the subscripts ’LB’ and ’UB’ represent the lower and
upper bound.

For assessing whether the estimated wind characteristics
can be used to detect the extreme wind condition, Fig. 5
presents the statistical quantities including the rotor averaged



6 8 10 12 14 16 18
0

0.05

0.1

0.15

0.2

NTM

ETM

6 8 10 12 14 16 18
0

0.005

0.01

0.015

0.02

80% quantile

6 8 10 12 14 16 18

0.02

0.03

0.04

0.05

0.06

Fig. 5: Statistical quantities in ETM and NTM cases. From
top to bottom: rotor averaged TI, standard deviation of
resultant shear, averaged value of resultant shear.

turbulence intensity Ieff, mean and standard deviation of the
resultant shear δmean, δstd. It is generally observed that the
differences between ETM and NTM for the quantities δmean
and δstd are more obvious than that for Ieff, especially around
the rated wind speed. It is somewhat surprising that Ieff in
ETM is close to that in NTM, which reveals that it is not
sufficient to detect extreme wind condition solely from Ieff.
The shear information would apparently be better indicators.
The 80% quantile is shown as the dashed line. ETM and
NTM sets are to some extend separable by a threshold, which
can be used for control purpose in Section V.

V. TURBULENCE-BASED LOAD ALLEVIATION CONTROL

The turbulence-based control concept is presented in
Fig. 6, wherein the first feature block is the estimation of
the rotor averaged wind condition as described in Section III.
The next three blocks contain the control logic for identifying
the extreme wind conditions and determining the control pa-
rameters, including coherence-based filter, statistical analysis
and set points or parameters determination.

A. Controller Design

The estimated wind information should be filtered by
the second-order low-pass filter to only keep the highly
correlated information, so the optimal cutoff frequency is
chosen to be the frequency around 0.5 coherence as in Fig. 3.

The statistical quantities δ̄avg or δ̄std in a buffer are defined

as:

δ̄avg =
1

NL

k

∑
k−NL

δ (t), δ̄std =

√√√√ 1
NL

k

∑
k−NL

(δ (t)− δ̄avg)2.

(10)
where k is the current discrete time step and NL is the total
samples in each time averaging buffer. Two different lengths
of the buffers are described as follows.

1) For short-term extreme load purpose: To prevent the
extreme load induced by the extreme wind shear events,
the short-term buffer TBS = 60 s is proposed. While the
wind speed U ∈ [ULB,UUB], the percentage of power down-
regulation Psp is calculated as:

Psp(X) =


1− 1− plim

δUB−δt,X
(X−δt,X ), δt,X ≤ X ≤ δUB,

1, X < δt,X ,

plim, X > δUB.
(11)

where X represents either δ̄avg or δ̄std , δUB is the upper
bound, the value 1 represents the power set point equals to
rated power, while the value plim denotes the maximum der-
ating percentage. Wind-dependent thresholds δt,X are chosen
based on following guidelines: a) minimizing the influence
on power production during normal operation in NTM cases;
b) reducing the loads due to the extreme turbulence in ETM.

The Psp sent to DTUWEC is determined by the same
degree of importance of δ̄avg and δ̄std in Eq. (12), which
could be improved in the future work:

Psp = min(Psp(δ̄ave),Psp(δ̄std)). (12)

The down-regulation strategies are described in [16],
including both torque-based and rotor-speed-based down-
regulation strategies. For the sake of brevity, the methods
of implementation are not presented here.

2) For long-term fatigue load purpose: A long-term
buffer TBL is required to represent the relatively long-term
wind condition, which might be caused by long-term extreme
weather. For instance, the wind condition is collected in
each TBL = 10 min buffer for several hours. If the turbine
is constantly operating in extreme wind condition, down-
regulation mode should be enabled for a longer period,
avoiding the frequent switching between rated and derated
power mode as in the control logic with short-term buffer.

Furthermore, the Proportional-Integral (PI) gains of con-
ventional pitch regulated controller are gain-scheduled by
pitch angle or wind speed [18], which can be tuned more
aggressively during the long-term extreme turbulence event,
in case of avoiding over-speeding and reducing load cycle
magnitude. Thus, the PI gain Kp and Ki can be scheduled
according to K function:

[Kp,Ki] = K(Psp,Ueff,δ ). (13)

The stability and robustness of different combination of
control feature are not considered, which remain topics of
future work.
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Fig. 6: Conceptual diagram of turbulence-based load alleviation control.

B. Performance Evaluation

The performance of the TLAC algorithm is analyzed by
performing the simulation in DLC 1.2 and DLC 1.3. In order
to achieve the optimal trade-off between power production
and extreme load reduction, the threshold δthres is chosen to
be the 80% quantile of the corresponding variable (dashed
line in Fig. 5). It can be observed that the thresholds lie above
the δ̄avg and δ̄std for most of the NTM cases, which are as
expected for minimizing the power loss during the normal
operating condition. If further load reduction is required, the
TLAC can be triggered occasionally in DLC 1.2 by reducing
the threshold, then a certain amount of power production will
be sacrificed.

The effectiveness of TLAC during the extreme turbulence
condition is clearly demonstrated in Fig. 7. It demonstrates
that the general trend of the wind condition can be captured
by the proposed estimation method in Fig. 7 (a). The TLAC
is triggered quite a lot in this ETM case as seen in Fig. 7
(b). While the TLAC is triggered, the turbine power is down-
regulated to 80%, thus several extreme load peaks have been
mitigated around 200 s and 500 s. At some time steps,
the extreme events are not well captured by the estimated
wind condition, as seen around 150 s. The TLAC is seldom
triggered during normal power production with the current
threshold settings, in this way, the load reduction is achieved
without the loss of annual energy production.

The TLAC can affect the shape of the exceedance proba-
bility Pexd of load distribution, as plotted in Fig. 8, including
the extreme loads of tower, blade and hub. The obvious
reduction can be seen in the tower bottom fore-aft bend-
ing moment and the blade root flapwise bending moment.
However, the TLAC has little impact on the shaft imbalance
moment. This result may be explained by the fact that power
down-regulation will reduce the thrust but has little influence
on imbalance loads. Overall, the higher structural reliability
can be achieved by this load reduction effect.

VI. CONCLUSION

The aim of the present research is to develop a feasible
extreme turbulence indicator, which can be integrated into an
adaptive controller to provide extreme load reduction benefits
in extreme wind conditions. The results have confirmed that
TLAC can effectively decrease the exceedance probability of
extreme loads. Thus, the method is feasible to improve the
structural reliability of a wind turbine.

The scope of this work was limited in terms of shear-based
derating control, continued efforts are needed to explore
the method to adapt the controller to the various wind
condition, and to achieve the optimal trade-off between

energy production and components loads. A further study
with more focus on the potential of using LiDAR to obtain
the measurement of approaching extreme wind condition is
therefore suggested.

REFERENCES

[1] S. Loew, D. Obradovic, A. Anand, and A. Szabo, “Stage Cost Formu-
lations of Online Rainflow-counting for Model Predictive Control of
Fatigue,” in European Control Conference 2020, ECC 2020. Institute
of Electrical and Electronics Engineers Inc., may 2020, pp. 475–482.

[2] P. F. Odgaard, T. G. Hovgaard, and R. Wiesniewski, “Model predictive
control for wind turbine power boosting,” 2016 European Control
Conference (ECC), pp. 1457–1462, 2016.
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