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Model Predictive Control for Micro Aerial Vehicles: A Survey

Huan Nguyen1, Mina Kamel2, Kostas Alexis1, and Roland Siegwart3

Abstract— This paper presents a review of the design and
application of model predictive control strategies for Micro
Aerial Vehicles and specifically multirotor configurations such
as quadrotors. The diverse set of works in the domain is
organized based on the control law being optimized over linear
or nonlinear dynamics, the integration of state and input con-
straints, possible fault-tolerant design, if reinforcement learning
methods have been utilized and if the controller refers to
free-flight or other tasks such as physical interaction or load
transportation. A selected set of comparison results are also
presented and serve to provide insight for the selection between
linear and nonlinear schemes, the tuning of the prediction
horizon, the importance of disturbance observer-based offset-
free tracking and the intrinsic robustness of such methods
to parameter uncertainty. Furthermore, an overview of recent
research trends on the combined application of modern deep
reinforcement learning techniques and model predictive control
for multirotor vehicles is presented. Finally, this review con-
cludes with explicit discussion regarding selected open-source
software packages that deliver off-the-shelf model predictive
control functionality applicable to a wide variety of Micro
Aerial Vehicle configurations.

I. INTRODUCTION

Micro Aerial Vehicles (MAVs) and especially systems of

the multirotor class, such as quadrotors and hexacopters,

correspond to a widely adopted type of aerial robot. Such

systems are nowadays extensively used for autonomous

inspection [1], surveillance [2] and other remote sensing ap-

plications, alongside tasks relating to physical interaction [3],

delivery [4] and more. Their success is attributed to a variety

of factors including their simplicity, low-cost, reliability,

and agile dynamics. Naturally, a key component relates to

the accuracy and robustness of the controller onboard such

systems which alongside the state estimation process are

the two most fundamental algorithms necessary to facilitate

autonomous navigation.

In response to this fact, a wide variety of control strategies

have been proposed for the problem of MAV flight control

including both model-free and model-based methods. In the

latter, both linear and nonlinear methods have been consid-

ered, alongside methods exploiting piecewise system models,

techniques tailored to robots undergoing physical interac-

tion, load transportation, and deep neural networks-based

reinforcement learning approaches. Among the multiple ap-

proaches, model predictive control has seen wide utilization
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Fig. 1. Indicative robots from previous work of the authors that have relied
on model predictive control for their position control.

and has presented outstanding results in terms of trajectory

tracking accuracy and robust performance. Figure 1 presents

examples of MAVs relying on model predictive control.

Model Predictive Control (MPC) [5–11] offers a collection

of properties of significant importance for MAVs. Being

a model-based method, it can exploit knowledge of the

dynamics model of the system. Based on the extensive

progress in the domain, MPC methods are now feasible

both for linear and nonlinear systems, alongside hybrid

model formulations. By optimizing over a horizon, MPC

can simultaneously optimize towards optimal tracking of the

reference trajectory and satisfy input and state constraints,

while retaining robust performance. Furthermore, state con-

straints may not be limited to box constraint formulations but

also model 3D obstacles as regions of the navigation space

that must be avoided. Additionally, MPC by nature relates to

approximate dynamic programming and is very relevant to

modern research in reinforcement learning, a fact reflected in

a multitude of new works of the community. Moreover, the

power of MPC has enabled it to solve complex problems in

MAV autonomy such as the recent perception-aware model

predictive navigation method in [12].

In this paper we provide a survey with respect to the

methods proposed for trajectory tracking control of MAVs

of quadrotor, hexarotor and other multirotor configurations.

We cover the domains of Linear Model Predictive Control

(LMPC) and Nonlinear MPC (NMPC), as well as MPC

for aerial manipulation and load transportation, fault-tolerant

control, alongside the interconnection between MPC and

neural networks-based reinforcement learning approaches.

We present selective comparison results which serve to pro-

vide design guidelines and further categorize a set of open-

source code packages that provide off-the-shelf functionality

for deploying MPC onboard micro aerial vehices.

The rest of this paper is organized as follows. A model
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of the multirotor dynamics is overviewed in Section II.

The survey presentation of MPC for MAVs is detailed in

Section III with subsections on linear and nonlinear methods,

strategies for fault-tolerance, load transportation, physical

interaction and works involving deep reinforcement learning.

Finally, Section IV outlines a selected set of open-source

packages, while conclusions are drawn in Section V.

II. MODELING OF MICRO AERIAL VEHICLES

A set of contributions have provided extensive means to

model multirotor MAVs at selective levels of fidelity. As

visually depicted in Figure 2, one may account to a different

extent for complex aerodynamic parameters, non-diagonal

inertia terms and other effects that have been detailed ex-

tensively in pioneering studies [13]. This modular approach

allows us to simplify, without loss of generality, the subse-

quent discussion by considering the hexarotor vehicle as a

particular instance of a multirotor system, while researchers

that build upon this presentation may decide independently

of components such as the propeller model. A hexarotor is

typically a platform consisting of six identical rotors and

propellers symmetrically configured. This propulsion system

generates the thrust and torque normal to the plane of the

vehicle, as required to facilitate stable control.

Fig. 2. Basic model components of MAV dynamics.

For the modeling derivations below we choose an inertial

reference frame I with unit vectors {~Ix,~Iy,~Iz} and a body

fixed frame B with unit vectors {~Bx, ~By, ~Bz}. The origin of

B is located at the Center of Mass (CoM) of the hexarotor

and is presented in Figure 3. For the rest of this process,

let us denote m as the total mass, J ∈ R
3×3 the inertia

matrix with respect to B, RIB ∈ SO(3) the rotation matrix

representing the vehicle orientation, ω ∈ R
3 the angular

velocity expressed in B, p ∈ R
3 the position of the vehicle’s

CoM in expressed in I, and υ ∈ R
3 the velocity of the CoM

expressed in I.

The dominant forces acting on the vehicle are generated

from the propellers. Under a set of common and well-proven

assumptions, each propeller is considered to generate thrust

proportional to the square of the propeller rotation speed and

angular moment due to the drag force. For each propeller i,

the generated thrust and moment take the form:

FT,i = knn
2
i ez (1)

Mi = (−1)i−1
kmFT,i

where ni is the rotor speed of the propeller, kn, km > 0 are

constants, and ez is a unit vector in the z direction.

This level of modeling fidelity for the forces applied on

a multirotor is the one most commonly found. However, if

Fig. 3. Hexarotor model and utilized coordinate frames.

we aim to consider dynamic maneuvers, then two additional

phenomena come into play. These effects are the blade

flapping and induced drag and introduce additional forces

in the x-y rotor plane and thus add more damping to the

MAV [14]. Combining these effects into one lumped drag

coefficient [15], we derive the following aerodynamic force

for propeller i:

Faero,i = fT,iKdragR
T
IBv (2)

where Kdrag = diag(kD, kD, 0), kD > 0, and fT,i is the z-

component of the i-th thrust force. Then the motion dynamics

take the form:

ṗ = υ (3)

υ̇ =
1

m



RIB

Nr
∑

i=0

FT,i−RIB

Nr
∑

i=0

Faero,i+Fext



+





0

0

−g



 (4)

ṘIB = RIB ⌊ω×⌋ (5)

Jω̇ = −ω × J + A









n2
1

.

.

.

n2
Nr









(6)

where Fext represents any external forces acting on the

vehicle, and A is the control allocation matrix and Nr

the number of propellers. The works in [16, 17] present

the control allocation matrix derivations for the case of

symmetric hexarotor and quadrotors respectively.

Attitude Subsystem: It is noted that commonly in application,

the attitude dynamics of a multirotor platform are controlled

with a fast embedded system running a rather simple to

calculate feedback loop often only involving fixed-gains.

Therefore, MPC is often deployed as a cascale position

controller commanding the closed loop attitude dynamics

which now should be identified. For that goal, the inner-loop

attitude model can be represented as a first-order model due

to the efficiency of onboard control and despite its otherwise

second-order nature [18]. The closed-loop attitude dynamics

to then be identified take the form:



φ̇ =
1

τφ
(kφφref − φ) (7)

θ̇ =
1

τθ
(kθθref − θ)

ψ̇ = ψ̇ref

where kφ, kθ and τφ, τθ are the dc-gains and time constants

of the roll and pitch closed-loop dynamics respectively, while

φref , θref represent the reference roll and pitch angles, and

ψ̇ref is the commanded yaw rate.

III. MODEL PREDICTIVE CONTROL FOR MAVS

In this section we overview some of the successful meth-

ods and strategies of applying model predictive control

for MAVs. In particular, linear and nonlinear schemes are

presented, methods for physical interaction and load trans-

portation, alongside techniques combining traditional MPC

and neural networks-based reinforcement learning.

A. Linear Model Predictive Control

The basic case of application of MPC for quadrotor control

relates to linear methods. Furthermore, in the most widely

adopted case, Linear Model Predictive Control (LMPC)

is deployed to handle the position dynamics of a MAV

assuming that an attitude controller is already deployed and

an associated closed-loop attitude dynamics model has been

identified as described in Eq. (7). Given this model we can

proceed to linearize the remaining system dynamics around

hover. We define the following state vector and control input:

x = [pT
υ

T
Iφ Iθ]

T
(8)

u = [Iφref Iθref Tref ]
T

(9)

where Tref is the commanded reference thrust, Iφ,I θ are

the roll and pitch angles expressed in the inertial frame. The

following relation with the robot roll and pitch angles holds:

[

φ
θ

]

=

[

cosψ sinψ
− sinψ cosψ

] [

Iφ

Iθ

]

(10)

Finally, after linearization and discretization the following

state-space form holds in which the effect of external forces

Fext,k and the disturbance matrix Bd are also considered:

xk+1 = Axk +Buk +BdFext,k (11)

Provided the above, the LMPC strategy repeatedly solves

the following Optimal Control Problem (OCP) assuming

that input constraints apply but no state constraints are

considered:

min
U

N−1
∑

k=0

(

‖xk − xref,k‖
2

Qx
+ ‖uk − uref,k‖

2

Ru

)

(12)

+ ‖xN − xref,N‖2
P

s.t. xk+1 = Axk +Buk +BdFext,k (13)

Fext,k+1 = Fext,k, k = 0, ..., N − 1

uk ∈ U

x0 = x(t0), Fext,0 = Fext(t0)

where Qx � 0,Ru � 0 are the state and input penalty

matrices, while P � 0 is the terminal state error penalty.

Furthermore xref,k,uref,k are the target state and target

control input uref,k = [Iφref,k, Iθref,k, Tref,k] respectively

at time k. The input constraints take the following form:

U =







u ∈ R
3|





φmin

θmin

Tref,min



 ≤ u ≤





φmax

θmax

Tref,max











(14)

Provided the derivation of the control law per iteration, the

method then applies the first control input u0 and the whole

process is repeated in a receding horizon fashion. Lastly, it is

noted that the derived thrust reference vector is nonlinearly

scaled to account for the projection of thrust when the system

roll and pitch are nonzero:

T̃ref =
Tref + g

cos φ cos θ
(15)

Disturbance Observer: A disturbance observer can be in-

corporated to the above design for offset-free tracking. This

is achieved by augmenting the system model with the dis-

turbances vector. Considering the need to track the system

output yk = Cxk and achieve offset-free tracking, a simple

observer to estimate such a disturbance takes the form:

[

x̂k+1
F̂ext,k+1

]

=

[

A Bd
0 I

]

[

x̂k
F̂ext,k

]

+

[

B

0

]

uk +

[

Lx
LFext

]

(Cx̂k − ym,k) (16)

where x̂k, F̂ext,k,ym,k are the estimated state, external dis-

turbances and measured output at time k, respectively, while

Lx,LFext
are the associated observer gains. Assuming a

stable observer, we can compute the steady-state MPC state

xref,k and control input uref,k at time k by solving:

[

A − I B

C 0

] [

xref,k

uref,k

]

=

[

−BdF̂ext,k

rk

]

(17)

where rk the output vector reference at time k.

Literature Review: The abovementioned derivation corre-

sponds to the most straightforward application of linear

MPC for the position control of MAVs. At the same time

the research community has explored a much more rich

set of methods. Early in the timeline of this research, the

authors in [19] proposed the application of such a receding

horizon scheme for the attitude control of a quadrotor

vehicle and further accounted for state constraints. As the

calculation of MPC subject to input and state constraints

can be expensive - especially in comparison to the fast

attitude dynamics - multiparametric approaches have been

investigated for the explicit derivation of the control law [20].

At a similar period, the authors in [21] proposed LMPC

methods with integral terms. Aiming to account for the

change in the system dynamics when the operating point

departs significantly from the hovering point - but still not



employing nonlinear methods - the works in [22, 23] present

a PieceWise Affine (PWA) modeling approach and associated

predictive control policy for the full control of a quadrotor

MAV. Furthermore, the work in [24] investigated the design

of robust MPC methods and presented extensive disturbance

rejection capabilities including the ability to handle slung

load disturbances. Currently, LMPC methods have presented

significant success and have managed to be utilized reason-

ably extensively at least in multirotors in research labs as

also visible in the discussion for open source packages in

Section IV. Connecting the domain of linear and nonlinear

MPC approaches, the work in [25] offers a flatness-based

approach which exploits feedback linearization and provides

agile flight capabiltiies across the flight envelope but with

the often reduced computational cost of linear methods.

Reachability Analysis: When safety-critical applications are

considered, guaranteed control performance is necessary.

Generally, for a dynamic system, the reachable set R for

a time t, inputs u, disturbances w and a set of initial states

S is the set of end states of trajectories starting in S after

time t [26]. Despite the importance of reachable set analysis

for MPC controllers, the literature in MPC application for

MAVs mostly lacks such considerations. Few directly or

indirectly relevant exceptions have examined the problem

either directly from a MPC standpoint or with regards to

learning-based methods [27, 28], yet it is believed that the

domain deserves further attention.

B. Nonlinear Model Predictive Control

Linear control methods are appealing due to their simplic-

ity and often reduced computational needs. Long experience

in the community has indicated that when a multirotor

MAV is largely operating around hovering/small-angles then

LMPC methods provide high performance and robustness.

However, nonlinear control has to be utilized if the complete

flight envelope of the system is to be exploited.

Towards that goal we derive a baseline formulation for

Nonlinear Model Predictive Control. We consider the fol-

lowing state and control vectors:

x = [pT
υ

T
Iφ Iθ Iψ]

T
(18)

u = [Iφref Iθref Tref ]
T

(19)

This in turn allows us to formulate the nonlinear OCP:

min
U

∫ T

t=0

‖x(t)− xref (t)‖
2

Qx
+ ‖u(t)− uref (t)‖

2

Ru
dt (20)

+ ‖x(T )− xref (T )‖
2

P

s.t. ẋ = f(x,u) (21)

u(t) ∈ U

x(0) = x(t0)

where f is composed by Eqs. (3) (4) (7). The controller

is implemented in a receding horizon fashion, where this

optimization needs to be solved in real-time. As typically this

corresponds to a computationally expensive task, especially

for the fast dynamics of MAVs and the often limited onboard

computational capabilities, direct methods [18] have gained

significant attention due to their reduced processing needs.

Multiple shooting techniques in particular have been used to

solve Eq. (20) [18] with the system dynamics and constraints

being disccretized over a coarse discrete time grid t0, ..., tN
within the interval [tk, tk+1] and for each interval solving

a Boundary Value Problem where additionally continuity

constraints are imposed.

Disturbance Observer: Analogous to the case of LMPC, we

can estimate the external disturbances Fext. This is now

achieved through an augmented state Extended Kalman Filter

(EKF) that includes the external forces. The EKF uses the

same model as in control design but further incorporates the

heading angle. The external force estimation in turn incor-

porates modelling errors and supports offset-free tracking.

Literature Review: Beyond this baseline formulation of

NMPC for MAVs, the research in the community has inves-

tigated further problems. The contribution in [29] considers

general MAV designs and an enhanced actuator model for

improved tracking performance. The work in [16] examines

the problem of applying NMPC directly for the inner attitude

dynamics of the system. The authors in [30] present a

NMPC approach formulated on the Special Euclidean group

SE(3), which has a single optimization layer and offers safe

trajectory tracking with obstacle avoidance capacity. The

work in [31] explicitly considers the role of input constraints

in NMPC design for multirotor MAVs. Towards agile perfor-

mance combined with lightweight computational needs, the

work in [32] presented a method for real-time, unconstrained

NMPC that combines trajectory optimization and tracking

control in a single, unified approach. It uses an iterative op-

timal control algorithm - namely Sequential Linear Quadratic

- in the MPC setting to solve the underlying nonlinear control

problem and simultaneously derive the optimal feedforward

and feedback terms. The authors demonstrate that the solver

can generate trajectories with a duration of multiple seconds

within only a few milliseconds. Focusing on the problem of

collision-free flight, the contribution in [33] applies NMPC

for the problem of obstacle avoidance for a quadrotor aerial

vehicle. Similarly, the work in [34] utilizes NMPC to enable

the avoidance of complex obstacles including those with

non-convex shape. Considering the specific need of carrying

external payloads, the work in [35] applies NMPC for slung

load oscillation suppression for a quadrotor MAV.

C. Comparison of Linear and Nonlinear MPC

As free-flight control is the main control task for a

multirotor MAV, in this section we present a comparison of

two baseline linear and nonlinear MPC approaches for the

position tracking problem of a hexarotor MAV.

More specifically, the Linear and Nonlinear MPC con-

trollers’ performance are compared using the C++ imple-

mentations presented in [36], with the simulated model

being an AscTec Firefly hexacopter based on the RotorS

open-source simulator [37]. The weight matrices Qx and Ru

are chosen the same for both controllers, while the terminal
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Fig. 4. Position responses of Linear and Nonlinear MPC with sinusoidal
input signal having frequency varied in the range [0.1, 0.33]Hz.

matrix P is calculated by solving the corresponding discrete

algebraic Ricatti equation. From Figure 4, it is observed

that the Nonlinear MPC outperforms the Linear MPC when

the trajectory is more aggressive (t ∈ [40, 48]s) since the

Nonlinear MPC can exploit the nonlinear dynamics of the

system when the tilt angles of the drone are large. The RMSE

errors of the Nonlinear and Linear MPC in this case are 8.6
and 19.0cm, respectively. The performance of the linear MPC

with parameter uncertainty, in this case the mass parameter,

is also verified and the results are illustrated in Figure 5.

It can be seen that even though the responses in x, y axes

are not affected much, there is offset in the z axis response

when the mass of the system is incorrect which necessitates

to incorporate a disturbance observer in practical use.
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Fig. 5. Step responses of Linear MPC when the mass of the MAV is set
correctly (m = 1.5kg) and when the mass is incorrect (m = 1.2kg and
m = 1.8kg). The disturbance observer is turned off in all cases. RMSE in
z-axis are 30.36, 42.3, and 45.1cm, respectively.

It is known that the number of prediction steps in the

MPC problem can greatly affect the feasibility and stability

of the closed-loop system. Specifically, increasing the pre-

diction horizon leads to larger region of attraction [38]. The

responses of the closed loop system with different prediction

horizons and input signal described in Figure 5 are illustrated

in Figure 6 and the RMSE values are given in Table I. It can

be seen that reasonably increasing the number of prediction

steps improves the tracking performance. However, solving

the MPC problem with larger prediction horizon requires

more computation time as described in the box plot in

Figure 7. The outlier values denoted by red crosses in

Figure 7 correspond to the cases when the control inputs are

close to the limits, which require the solvers to take more

iterations to find the solutions. Interestingly, the nonlinear

MPC solver based on [39] has smaller computation time

compared to the linear MPC solver based on [40].

Fig. 6. Step responses of Linear and Nonlinear MPC with different
prediction horizons (N = 10, 20, 30Tp with prediction step Tp = 0.1s).

TABLE I

RMSE VALUES OF THE xyz RESPONSES OF LINEAR AND NONLINEAR

MPC WITH REFERENCE SIGNAL GIVEN IN FIGURE 5

N = 10 N = 20 N = 30
LMPC (m) 1.06 0.78 0.78
NMPC (m) 0.79 0.74 0.74

LMPC N=10 LMPC N=20 LMPC N=30 NMPC N=10 NMPC N=20 NMPC N=30
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Fig. 7. Computation time of the control loop of Linear and Nonlinear
MPC with different prediction horizons on an i7 8th gen Intel CPU. The
reference signal is illustrated in Figure 5.

D. Fault-Tolerant MPC

Fault-tolerance is an essential property of every control

scheme. As MAVs can undertake critical roles, while their

airborne nature makes them potential risk factors, assess-

ing the fault-tolerance of their flight control is particularly

important. The work in [41] has demonstrated the potential

to retain full or partial controllability of a quadrotor MAV

degrees-of-freedom even subject to the loss of one, two or

even three propellers. Naturally, more control re-allocation

options arise with MAVs integrating additional actuators

(e.g., a hexacopter). In terms of MPC work, the contri-

butions in [16, 42, 43] demonstrated - following different

designs - the inherent capability of NMPC to retain dynamic

stability for a symmetric underactuated hexacopter subject

to propeller loss. Furthermore, the contribution in [44]

demonstrates the application of NMPC for a hexarotor with

three motor failures. The authors in [45] investigate the role

of partial loss of control effectiveness in the actuators of



a quadrotor and apply MPC with terminal constraints to

enable the accurate reference tracking despite the considered

faults. A fault detection and diagnosis system is designed to

assist MPC in its task. It is considered that the importance

of integration of MAVs in safety-critical applications or

the national airspace will increase the importance of fault-

tolerant predictive control design.

E. Deep Reinforcement Learning

MPC, which aims to find a solution of the constrained

finite-horizon optimization problem, is closely related to

Reinforcement Learning (RL), which learns how to make

sequential decisions to maximize a numerical reward signal

through trial-and-error search [46]. The interactive nature

of RL combined with the approximation ability of neural

networks, allow the replacement of each component in the

MPC scheme (or part of it) with this powerful representation.

The works in [47, 48] derive the terminal and transition

cost functions from the value function which is learned by

rolling out the current policy and collecting reward signals.

This reward signal can be a binary or sparse reward which

opens the opportunity to remove the need for hand-tuning

the cost matrices in MPC [49]. The authors in [50] use a

neural network to learn the dynamic function of the system,

while the contribution in [51] proposes a deep quantile

regression framework for learning bounds on distributions of

trajectories, demonstrated to generate an obstacle avoidance

path for a full-state quadrotor model subject to action noise.

The computation cost for solving the MPC problem can be

high with long prediction horizon, rendering it impractical to

be applied to many real-time control problems and in such

cases, deep RL can be used to compress the MPC policy. The

work in [52] uses an expert MPC in guided policy search to

control a MAV which not only reduces the computation time

compared to that of the expert MPC but also removes the

need for an explicit state estimation. The authors in [53]

propose a constrained neural network architecture to imitate

an explicit MPC law and then a policy gradient method

- with the advantage function calculated by utilizing the

terminal cost function in a MPC problem - is developed.

It is noted that the use of neural networks to represent the

optimal policy in critical constrained optimization problems

necessitates the need for verification methods to validate the

performance of the close loop systems. The work in [54]

demonstrates computing the 10-step forward reachable set

of a 6D quadrotor model controlled by a neural network

using Semidefinite Programming.

F. Load Transportation

Analogous to their manned counterparts, micro aerial vehi-

cles are considered for load transportation tasks [55]. Despite

the robustness of MPC and especially of certain design

variations of it [24], special control design is necessary

for high-performance load transportation using one or more

multirotor systems. The work in [56] presents a method

for cable-suspended load transportation using a quadorotor

vehicle. The authors in [3] present aerial pick-and-place

relying on MPC methods. Considering the benefits of tilt-

rotor systems, the works in [57, 58] propose MPC methods

for load transportation. As during a slung-load operation, it

is not only the aerial robot that can collide with the world but

also the load itself, the contribution [59] explicitly derives

safe paths for load transportation operations. Considering

the potential of multi-robot synergy in load transportation,

a possible MPC design is presented in [60] for two vehicles,

while a more general problem formulation is detailed in [61].

G. Physical Interaction

MPC methods have also found their way in the context of

research work relating to aerial robots physically interacting

with their environment. The authors in [62] derive a hybrid

systems-based formulation of a quadrotor that either navi-

gates in free-flight or comes in contact with the environment

in order to perform inspection tasks. The work first utilizes a

linearized model for the position dynamics of the quadrotor

in free-flight given the system identification of the closed-

loop attitude dynamics. This is combined with a linear

model of the system in contact with the environment by

accounting for the force applied from the physical surfaces.

The applicability of hybrid systems relates to the fact that

collision-dynamics are particularly fast and thus allow to

handle them as nonsmooth effects instead of stiff differential

equations [63]. A broader illustration is depicted in Figure 8.

Utilizing similar principles, the work in [64] performs force-

ful work-tasks using MPC and a tilt-rotor MAV.

Fig. 8. Physical interaction with micro aerial vehicles affords hybrid sys-
tems formulation. In free-flight the manipulator/end-effector-based induced
disturbances should also be accounted, while during physical interaction the
forces exerted by the environment have to be considered.

Investigating a more challenging task, the authors in [3]

proposed a MPC framework for a MAV performing aerial

pick-and-place tasks. Examining the problem of aerial ma-

nipulation, the authors in [65] propose a NMPC to follow

desired trajectories with the end-effecctor of a multirotor.

The work further examines the potential enabled by the

augmented kinematics the manipulator offers during free-

flight. Considering the explicit task of opening a door, the

contribution in [66] proposes a model predictive control

framework, albeit in simulation, for a quadrotor utilizing

an onboard arm to open a hinged door. Extending the

potential capacity of a MAV to perform work-tasks in its

environment, the work in [67] considers the problem of the

robot interacting with its environment through an elastic tool.



IV. OPEN-SOURCE MPC PACKAGES FOR MAVS

The success of MPC in the problem of trajectory

tracking for MAVs is also reflected in the extensive

utilization of relevant open-source packages released.

The work in [36] is associated with an open-source

Robot Operating System (ROS) package available at

https://github.com/ethz-asl/mav_control_rw

that offers both linear and nonlinear MPC laws. The code

in https://github.com/uzh-rpg/rpg_mpc

also provides MPC functionality for multirotors and

has extensions to perception-aware functionality [12].

Similarly, it is released as a ROS package. The work

in [68] is also released as an open-source contribution

and provides both multi-robot and single-robot control

such as NMPC for quadrotors. It can be found as a ROS

package at https://github.com/DentOpt/denmpc.

Last, an implementation for ARM CPUs [69] can be found

at https://github.com/klaxalk/multirotor-control-board.

Contributing a larger overall software library for

control, the work in [70] also provides an example

for MPC of quadrotors and can be found at

https://github.com/ethz-adrl/control-toolbox.

These works are indicative and more are available in the

community. Simultaneously, the interested researcher

can also directly refer to software packages for

general MPC design such as CVXGEN [40] available

at https://cvxgen.com/docs/index.html,

ACADO [39] available at

http://acado.sourceforge.net/doc/html/d4/d26/example_013.html,

YALMIP [71] available at

https://yalmip.github.io/, the

Multi-Parametric Toolbox [20] available at

https://www.mpt3.org/, do-mpc [72] found at

https://www.do-mpc.com/en/latest/ and other

both open-source and closed packages applicable to a variety

of programming languages and processor architectures.

V. CONCLUSIONS

A survey on the application and design considerations

of model predictive control for micro aerial vehicles was

presented. The literature in the domain includes both linear

and nonlinear controllers for the robot flight dynamics, meth-

ods for physical interaction and load transportation, fault-

tolerant control schemes and methods combining modern

reinforcement learning techniques. As the integration of

MAVs in important application domains becomes wider, we

anticipate that the study of novel MPC methods - especially

considering the uncertainties and risks in the robot navigation

process - will tend to be even more important and possibly

essential for achieving robust autonomous flight.
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[6] F. Allgöwer and A. Zheng, Nonlinear model predictive control.
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