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Tutoring Reinforcement Learning via Feedback Control

Francesco De Lellis1, Giovanni Russo2,∗, Mario di Bernardo1,∗

Abstract— We introduce a control-tutored reinforcement
learning (CTRL) algorithm. The idea is to enhance tabular
learning algorithms by means of a control strategy with limited
knowledge of the system model. By tutoring the learning
process, the learning rate can be substantially reduced. We
use the classical problem of stabilizing an inverted pendulum
as a benchmark to numerically illustrate the advantages and
disadvantages of the approach.

I. INTRODUCTION

Reinforcement learning (RL) [1], [2] is increasingly used

to learn control policies from data [3]–[5] in a number of

different applications. Despite the several advantages of this

approach to control, one of its key drawbacks lies is the

requirement of performing a typically large number of trials

to explore the state-action space and hence learn a sub-

optimal control policy for the plant of interest. In particular,

the control policy is found by exploring the Markov Decision

Process encapsulating the control problem, thus accepting

possible failures while learning. Unfortunately, in control

applications, long training phases are often unacceptable

and failures while learning might lead to unsafe situations.

Moreover, these applications are often characterized by a

continuous state-space, and using RL as is requires a dense

discretization of the system state space or a function approx-

imation that is also subject to the learning process.

To overcome these limitations, many different flavours of

RL have been developed in the increasingly vast literature on

the problem. First and foremost, model-based reinforcement

learning where the introduction of some mathematical model

of the plant is used to guarantee some degree of stability of

the learning process and partially solve some of the issues

mentioned above, e.g. [6]–[10]. Other extensions include

Deep Learning strategies such as the Deep Q-Network

(DQN) approach presented in [11] and the Actor-Critic

paradigm [1], [12], [13] among many others.

In this paper, we present an alternative model-based

approach, we name Control-Tutored RL (CTRL), where a

feedback control strategy designed with only limited or

qualitative knowledge of the system dynamics is used to

assist the RL algorithm when needed. For the sake of clarity,

we focus on Q-learning (QL) as a RL algorithm and discuss

the resulting control-tutored Q-learning (CTQL) algorithm

showing that it is well apt to deal with continuous or

large state spaces while retaining many of the features of

1Department of Electrical Engineering and ICT, University of Naples
Federico II, Italy

2 Department of Information and Electrical Engineering and Applied
Mathematics, University of Salerno, Italy

∗Corresponding authors. mario.dibernardo@unina.it,
giovarusso@unisa.it

a tabular method. We wish to emphasize that our algorithm

is complementary to other existing model-based approaches

such as [14], [15]. Indeed, in our setting, the control-tutor

supports the process of exploring the optimization landscape

by suggesting possible actions based on its partial knowledge

of the system dynamics. The learning agent can then deploy

the policy suggested by the control-tutor whenever it is

unable to find a better action by querying the Q-table.

With this respect, the control-tutor supports the process of

filling in the elements of the Q-table when it is needed,

speeding up as a result the convergence of the learning

process when compared to that of the Q-learning when

used without the tutor. A related but different idea was

independently presented in [10] where RL is mirrored with a

Model Predictive Controller (MPC) and a different strategy

is used to orchestrate transitions between RL and MPC. To

validate our approach, we apply CTQL to solve the classical

benchmark problem of stabilizing an inverted pendulum

comparing its performance with Q-learning and the feedback

strategy used as a tutor. We find that CTQL obtains better

performance and convergence than Q-learning or feedback

control on their own, solving the stabilization problem even

when they are unable to do so by themselves.

II. PRELIMINARIES

Reinforcement learning is an area of machine learning

aimed at studying how sub-optimal policies can be computed

from data [2], [16] in order to solve dynamic programming

problems involving uncertain dynamics [1], [2]. By closely

following [17], we formulate the RL control problem as a

constrained optimal control problem of the form:

max
π

E[Jπ
N ], (1)

s.t. xk+1 = fk(xk, uk, wk), (2)

uk = πk(x0:k, u0:k−1), (3)

xk ∈ X , uk ∈ U , (4)

where xk ∈ X is the state of the system, uk ∈ U is the

control input, wk ∈ W is some process noise, fk : X ×U ×
W 7→ X is the system vector field, x0:k = {x0, x1, ..., xk}
is the system state trajectory from step 0 to step k, u0:k =
{u0, u1, ..., uk} is the sequence of control inputs fed to the

system from step 0 to step k. The objective function Jπ
N in

(1) is defined as follows:

Jπ
N = rN (xN ) +

N−1
∑

k=1

rk(xk−1, uk−1, xk), (5)

where N is the time horizon, rk : X 2 × U 7→ R is some

reward function, r̂N : X 7→ R is the reward associated to
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the terminal state xN ∈ X and π = {π0, π1, ..., πN−1} is

the control policy with πk : X k+1 × Uk 7→ U being a

randomized mapping. The expected value E[Jπ
N ] in (1) is

taken with respect to the control policy π and the random

variables (x0, w0:N ) assumed to be defined over a common

probability space with known and independent distributions.

In many applications of RL to control problems, the system

dynamics encoded by fk is often unknown so the problem

(1)-(4) cannot be directly solved. In this situation, strategies

can be used such as the Q-learning algorithm [18]. This

algorithm seeks to learn an approximation of the reward-

to-go function. Such approximation is often carried by a

tabular representation, known as the Q-table, which is filled-

in online by successive trial and error experiments. In order

to succeed, the method requires enough trials so that the

learning agent can explore a large enough region of the

optimization landscape and hence identify an approximation

of the optimal policy.

In what follows, we discuss how a feedback control

law with limited knowledge of the plant model can be

embedded in the learning process assisting the learning agent

in identifying a sub-optimal solution to the control problem

in a lesser number of trials.

III. THE CONTROL-TUTORED REINFORCEMENT

LEARNING

Our approach starts from the observation that in many

control problems it is reasonable to assume the knowledge of

a mathematical model that partially describes the dynamics

of the system. That is, we make the following:

Assumption 1. Only an estimate, say f̂k(xk, uk), of the

system vector field fk(xk, uk, wk) is available and

fk(xk, uk, wk) = f̂k(xk, uk) + δk(xk, uk, wk),

where δk(xk, uk, wk) is a vector field encompassing all the

unknown terms in the dynamics (e.g. higher order terms,

unmodelled dynamics etc.)

Using f̂ we construct a feedback control strategy (or

control-tutor policy) that the learning agent can use to decide

what the next action to take should be. Namely, as shown in

Figure 1, the algorithm will pick either the action suggested

by the control-tutor policy, πC or that proposed by the RL

algorithm, πR, according to which yields the lower expected

value of the objective function, Jπ
N .

Remark 1. A key difference between the approach presented

here and the one of e.g. [19], [20] is that we do not seek to

learn an approximation for δk(xk, uk, wk). Interestingly, as

we shall see, the presence of the tutor makes it possible to

learn an optimal policy without learning the uncertainty.

Given the set-up described above, the problem of design-

ing a model-based control-tutor for the RL algorithm (simply

termed as the CTRL problem in what follows) can be stated

System

Reinforcement

Learning

Control Tutor

xkuk

πR
k

ζ

πC
k

Fig. 1: Schematic of the Control-Tutored Reinforcement

Learning (CTRL) algorithm. At each k, the agent selects

its next control action uk from a given system state xk . This

is done by choosing either the control action suggested by

the control-tutor policy πC
k or the one suggested by the RL

policy πR
k . The choice is made in accordance to a boolean

variable, ζ, that will be formally defined in Section IV.

by adapting the formulation (1)-(4) as follows:

max
π

E[Jπ
N ], (6)

s.t. xk+1 = fk(xk, uk, wk), (7)

uk = πk(x0:k, u0:k−1, ζ) (8)

=

{

πR
k (x0:k, u0:k−1) if ζ is true,

πC
k (x0:k, u0:k−1) otherwise,

(9)

xk ∈ X , uk ∈ U , (10)

where the control policy πk is now selected between πR
k :

X k+1 × Uk 7→ U , i.e. the randomized mapping defined

according to the RL algorithm, and πC
k : X k+1 × Uk 7→ U

which is a randomized mapping defined by the feedback

control law, and ζ is a Boolean condition based on the

expected value of the reward-to-go.

IV. CONTROL-TUTORED Q-LEARNING (CTQL)

IMPLEMENTATION

As a representative implementation of CTRL, we develop

a control-tutored Q-learning (CTQL) approach by extending

the Q-learning approach, briefly described in Sec. II, to solve

a stabilization problem. We make the standard assumption

that the policy is time-invariant and that the Markov property

holds.

We select the boolean switching criterion in (9) as

ζ =

{

1 if max
u∈U
{Q(xk, u)} > 0,

0 otherwise,
(11)

where Q(xk, u) is the value stored in the Q-table for the

state-action pair (xk, u) that approximates the reward-to-go

from that state. In this way at step k, given the state xk,



the learning agent checks the sign of the entries of the Q-

table for all actions u ∈ U . If at least one of these entries is

positive, then the control action uk is selected according to

the classic ε-greedy Q-learning algorithm [1]:

πR(xk) =

{

argmax
u∈U

Q(xk, u) with probability (1− ε),

rand(u) with probability ε.
(12)

Intuitively, this means that the approximate reward-to-go

from the current state stored in the Q-table is positive and

hence a reward increase is possible by taking this choice.

Otherwise, if the current approximation contained in the

Q-table has no positive values, the action is chosen according

to the one suggested by the control-tutor via the policy

πC(xk) which we also choose as a ε-greedy policy of the

form:

πC(xk) =

{

argmin
u∈U
‖v(xk)− u‖ with probability (1− ε),

rand(u) with probability ε,
(13)

where v is the control input generated by a feedback con-

troller designed using the model estimate f̂ available to the

control-tutor. As such input does not necessarily belong to U ,

the policy function πC(xk) selects the action u ∈ U which

is closest to v(xk).
Once the action is selected from either πR(xk) or πC(xk),

the corresponding expected reward is then computed and

used to update the Q-table. The pseudo-code of the CTQL

algorithm is given in Algorithm 1.

Note that to preserve the spirit of the Q-learning algorithm

both policies πC(xk) and πR(xk) contain some degree of

randomness to favour exploration. We are currently studying

whether this guarantees that, when implemented, the policy

selection function of the CTQL is still within the scope of

the probabilistic proof of convergence available for the Q-

learning algorithm and described in [2], [18].

Algorithm 1 control-tutored Q-learning

Initialize Q(x, u) = 0, ∀x ∈ X , u ∈ U
Detect intial state x0

for k = 0 to N do

Compute ζ via (11)

if ζ then

uk ← πR(xk)
else

uk ← πC(xk)
end if

Observe and store xk+1 and rk
Q(xk, uk)← (1− α)Q(xk, uk) + α[rk+

+γmax
u∈U

Q(xk+1, u)]

end for

To illustrate the viability and effectiveness of CTQL, we

apply it to solve the problem of stabilizing an inverted

pendulum and discuss its performance by comparing it to

a traditional (untutored) Q-learning approach.

V. APPLICATION TO THE INVERTED PENDULUM

We consider the problem of stabilizing the physical pen-

dulum provided by the OpenAI Gym framework [21], [22]

in its inverted position.

A. Problem Formulation

To achieve the control objective we define the reward

function in (5) as:

rk(xk, xk−1) = − [V (xk)− V (xk−1)] + ρ(xk), (14)

where xk = [xk,1, xk,2] is the system state with xk,1 and

xk,2 being the angular position and angular velocity of the

pendulum respectively, meanwhile V : X 7→ R is a scalar

quadratic function defined as:

V (xk) = k1x
2
1,k + k2x

2
2,k, (15)

ρ(xk) is an additional term of the reward function that

accounts for a positive prize p that the agent receives if the

pendulum falls in a sufficiently small neighborhood of the

upward position. Specifically, such a term is defined as:

ρ(xk) =

{

p if x1,k ∈ [−ǫ, ǫ],

0 otherwise,
(16)

Also, we let rN (xN ) = ρ(xN ) in (5).

Remark 2. Substituting (14) in (5) we get, in the expression

for Jπ
N , the sum -

∑N−1

k=0
V (xk+1) − V (xk) = −(V (xN ) −

V (x0)). In the special case where the function V (·) is

the Lyapunov function for the system, maximizing this term

implies finding a solution to the optimization problem in (1)-

(4) that minimizes the N -step derivative of the Lyapunov

function. We note how, in the example described in this

section, the CTQL is able to stabilize the upward equilibrium

of the inverted pendulum even if V (·) is not chosen a

Lyapunov function for the system1.

We start by implementing the classical Q-learning algo-

rithm. The state space is defined as X := D × G, where

D is the set of angular positions and G is the set of angular

speeds. The action space U is the set of possible values of the

control input uk. In our implementation, the sets D,G and U
are obtained by discretizing the continuous state space and

control input of the pendulum as described in the Appendix.

The results of the Q-learning implementation on its own

are shown in Fig. 2 and Fig. 3. The design of the tutor

control law requires some model of the expected dynamics.

We assume that only the linearized version of the inverted

pendulum model around the upward position xk = [0, 0]T

is available to the control-tutor. Specifically we assume the

following model of the pendulum dynamics is available to

the tutor:

xk+1 = f̂(xk, vk) = Axk +Bvk, (17)

1We leave for future research the problem of finding analytical conditions
on V (·) that make it a viable choice for the CTQL algorithm to solve a
given problem.
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Fig. 2: Value of the objective function obtained by using the

CTQL (blue) or the Q-learning (red) algorithms. The figure

was obtained by running the algorithms S = 5 times for

6000 episodes. The figure shows the average (dashed) and

the standard deviation (shaded areas).

with B = [0, dt 1I ]
T and A defined as:

A =

[

0 1 + dt
g l
2I dt 1

]

, (18)

where dt is the sampling time, I = m l2

3
is the inertia of the

homogeneous rod, g is the gravitational constant and l and

m are the length and the mass of the rod respectively. All

parameters values chosen for this study can be found in the

Appendix.

The control-tutor is then designed as the state-feedback

control input:

vk = −Kxk, (19)

with the control gains selected as K = [5.83, 1.83]T in order

to render the origin of the linearized system a stable node

with a settling time of 10s (corresponding to about 200 steps

in our discretization). The control input vk defined in (19)

is then used in (13) to obtain the control-tutor policy. The

results of the CTQL implementation are shown in Fig. 2 and

Fig. 4.

B. Comparison between CTQL and Q-learning

The numerical validation is carried out on the Pendulum-

V0 environment [22]. We define the training sessions set

S = {1, ..., S}, the episodes set E = {1, ..., E} and the

simulation set N = {1, ..., N}. Each episode corresponds

to a simulation of N steps of the pendulum starting from

the initial condition on the stable downward position. More

details on the simulation parameters can be found in the

Appendix.

The numerical results are used to evaluate both the data

efficiency of the learning process and the control perfor-

mance. In what follows we use the superscript e to denote the

episode at which the variables are evaluated. We denote as

M the set of consecutive episodes where the learning agent

is able to maintain the pendulum position x1,k, and velocity,

x2,k in a ball of radius ǫ in the time window k ∈ [N/2, N ].
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Fig. 3: Time evolution within one episode (consisting of 400
steps) of (a) the angular pendulum position, (b) the angular

velocity and (c) the control input when the policy from Q-

learning is used. The figure was obtained by controlling the

pendulum via Q-learning, with the Q-table obtained after the

training of Fig. 2. In the simulation dt = 0.05s.

We then assume the learning phase ends if the following

condition is satisfied:

∑

e∈M

(

reN (xN ) +

N−1
∑

k=N/2

rek(xk, xk−1)
)

≥M
N

2
p, (20)

where M is the minimum number of successful consecutive

episodes we set as a satisfactory threshold (see the Appendix

for the value we chose in our implementation).

1) Learning performance: to evaluate the sample ef-

ficiency and to make a proper comparison between the

strategies proposed, we define the following metrics:

λ1 = max
e∈E

Jπ,e
N , (21)

λ2 =
1

E

∑

e∈E

Jπ,e
N , (22)
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Fig. 4: Time evolution within one episode (400 steps) of

(a) the angular pendulum position, (b) the angular velocity

and (c) the control input when the controller is trained using

a CTQL approach. The control performance is comparable

to that shown in Fig. 3 although the CTQL converges to a

viable control solution in a much lesser number of episodes

(see Table I). In the simulation dt = 0.05s.

where λ1 is the maximum value of the objective function

Jπ
N , λ2 is the average value of the objective Jπ

N with respect

to the total number of episodes.

We also define λ3 as the number of episodes after which

the terminal condition (20) is satisfied.

The metrics defined above are averaged over S = 5 runs

of the algorithms with E = 6000 episodes each for both Q-

learning on its own and CTQL. The results are summarized

in Table I showing that both achieve a comparable value

of λ1 but CTQL guarantees a better average value of the

objective function across all episodes (metric λ2), fulfilling

the terminal condition (20) after a notably smaller number of

episodes (metric λ3). To further compare the two strategies

we show in Fig. 5 the number of times per episode in which

TABLE I: Data efficiency and learning performance compar-

ison between Q-learning and CTQL

λ1 λ2 λ3

QL 1552 763 2730

CTQL 1521 1240 417

the action suggested by the control-tutor is taken by the

learning agent. We observe that the control-tutor policy is

most deployed by the agent during the initial episodes with

the number of implemented actions coming from the tutor

decreasing as the agent converges towards a suitable control

strategy fulfilling the control goal.
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Fig. 5: Number of times, for each episode, where the action

suggested by the control-tutor policy is adopted when CTQL

is used. Each episode contains a total number of N = 400
steps.

2) Control performance: finally, we define a set of metrics

to evaluate and compare the performance of the controller

obtained at the end of the learning stage using the CTQL and

QL algorithms. Specifically, the control metrics are defined

as follows:

• the settling time η1 defined as the first step such that

‖xk‖ ≤ 0.05 ∀k ≥ η1; (23)

• the average value η2 of the mismatch between the state

and the target equilibrium (i.e. the origin) over the last

Γ = 100 steps:

η2 =
1

Γ

N
∑

k=N−Γ

‖xk‖; (24)

• the value of the objective computed over the trajectory

as defined in (5), i.e. η3 := Jπ
N .

The control performances metrics were evaluated by run-

ning the controller after the end of the learning phase to

swing up the pendulum from its stable downward position.

The results are summarized in Table II where we see that the

control performance of controller trained using the CTQL is

comparable to that of the controller obtained by running the

QL algoritm; the notable difference being therefore the much

quicker learning times of CTQL as summarized in Table I.



TABLE II: Control performance comparison between the

controller trained using Q-learning and that trained using a

Control-Tutored Q-learning approach

η1 η2 η3
QL 125 0.00968 1384

CTQL 129 0.00901 1359

VI. CONCLUSIONS

We introduced an extension of reinforcement learning

where the policy selection function is enhanced by means

of a control-tutor that, using a feedback control law with

limited knowledge of the system dynamics, is able to support

the exploration of the optimization landscape guaranteeing

better convergence and shorter learning times. To illustrate

the effectiveness of the approach, we tutored the Q-learning

algorithm via a state feedback controller to solve the classical

benchmark problem of stabilizing an inverted pendulum. In

our experiments, the tutor only had access to a linearized

model of the pendulum about its inverted position. In this

situation, we showed that our CTQL strategy is able to swing

up the pendulum and globally stabilize its inverted position

with the learning process converging towards a viable control

solution after a much shorter number of episodes than the

QL when deployed on its own. Ongoing work is focused

on refining this approach with the aim of giving theoretical

guarantees, obtaining a better understanding of its advantages

and limitations for future applications.
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APPENDIX

We give here all the parameters that were used for the

numerical simulations reported in the paper. We define the

training set composed of S = 5 learning sessions each of

them composed of E = 6000 episodes, each corresponding

to a simulation of N = 400 steps of the pendulum starting

from its stable downward position. The Q-learning update

rule is implemented as showed in Algorithm 1 with param-

eters set to α = 0.8 and γ = 0.97 while the randomness

parameter in the policies πR(·) and πC(·) is set to ε = 0.02.

The parameters of the reward function are set to k1 = 1, k2 =
0.1 while the price for reaching a state in the neighborhood

of the upward position is set as p = 5 and it is given in the

region x1 ∈ [−ǫ, ǫ] with ǫ = 0.05. The terminal condition is

met when the agent stabilizes the pendulum for at least half

of the N = 400 steps for M = 20 consecutive episodes.

The state space X discretization is non-uniform and chosen

as follows. The angular position is discretized in 16 equally

spaced values when x1 ∈ [−π,−π
9
]∪ (π

9
, π] while it is split

in 14 discrete values for x1 ∈ (−π
9
,− π

36
] ∪ [ π

36
, π
9
) and
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10 equally spaced values for x1 ∈ (− π
36
, π
36
). The angular

velocity is discretized in 20 equally spaced values when

x2 ∈ [−8,−1) ∪ (1, 8] and 18 equally spaced values when

x2 ∈ [−1, 1]. The control action space U discretization is

discretized as follows: 18 equally spaced values for u ∈
[−2,−0.2] ∪ [0.2, 2] and 8 equally spaced values for u ∈
(−0.2, 0.2).
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