
Real-time implementation of MPC for tracking in embedded systems:
Application to a two-wheeled inverted pendulum

Pablo Krupa, Jose Camara, Ignacio Alvarado, Daniel Limon, Teodoro Alamo

Abstract— This article presents the real-time implementation
of the model predictive control for tracking formulation to
control a two-wheeled inverted pendulum robot. This formula-
tion offers several advantages over standard MPC formulations
at the expense of the addition of a small number of decision
variables, which complicates the inner structure of the matrices
of the optimization problem. We implement a sparse solver,
based on an extension of the alternating direction method of
multipliers, in the system’s embedded hardware. The results
indicate that the solver is suitable for controlling a real system
with sample times in the range of milliseconds using current,
readily-available hardware.

Keywords: Model predictive control, embedded system,
extended ADMM

I. INTRODUCTION

The implementation of model predictive control (MPC)
in embedded systems has been a widely researched topic
in recent years due to the interest of being able to use this
advanced control strategy to control real systems using the
currently available embedded hardware. One of the main
challenges that needs to be overcome is the fact that MPC
requires solving an optimization problem at each sample
time, which can become an issue in systems with fast dynam-
ics, especially when considering the low computational and
memory resources typically available in embedded systems.

Recently, significant advances have been made in this field
thanks to the development of optimization algorithms suit-
able for their implementation in embedded systems. Some
examples of these tools being used to implement MPC in
embedded systems include [1], [2], [3]. Additionally, other
authors propose algorithms that are particularly tailored to
the MPC optimization problem, such as in [4], [5], [6], [7].
Finally, another approach is to use explicit MPC [8], which
computes the solution of the parametric MPC optimization
problem offline and stores it online as a lookup table.
However, this is only suitable for systems with few states
and a moderate number of constraints.

A common theme among the current research on this
topic, which is shared by the previously cited papers, is
that they typically only consider standard MPC formulations.
This paper, on the other hand, presents an implementation
of a non-standard MPC formulation called MPC for tracking
(MPCT) [9], which adds an artificial reference as an addi-
tional decision variable of the optimization problem. This

Systems Engineering and Automation department, University of Seville,
Spain. The corresponding author is Pablo Krupa (pkrupa@us.es).

This work was supported in part by the Agencia Estatal de Investigación
(AEI) under Grant PID2019-106212RB-C41/AEI/10.13039/501100011033,
by MINERCO-Spain and FEDER funds under Grant DPI2016-76493-C3-
1-R and by the MCIU-Spain and FSE under Grant FPI-2017.

formulation provides a series of advantages that make its
implementation in embedded systems particularly interesting.

Firstly, a common issue of standard MPC formulations
with stability guarantees is that the domain of attraction
of the controller can become insufficient if the prediction
horizon is chosen too small. However, the use of small
prediction horizons is desirable in order to help overcome
the computational and memory limitations typically imposed
by embedded systems. The MPCT formulation provides
significantly larger domains of attraction than standard MPC
formulations [10], especially for small prediction horizons.

Secondly, it intrinsically deals with references that are not
attainable (i.e. that are not a steady state of the system or
that violate the system constraints) [10]. In this case, it will
steer the system to the “closest” attainable steady state to
the reference, where the “closeness” is determined by the
selection of its cost function matrices. Additionally, it also
guarantees recursive feasibility of the closed-loop system
even in the event of a sudden reference change [9].

However, these advantages come at the cost of the ad-
dition of the artificial reference as new decision variables,
which complicates the inner structure of the matrices of
the quadratic programming problem when compared to the
standard MPC formulations.

In [11] the authors presented a sparse solver for the MPCT
formulation based on an extension of the classical alternating
direction method of multipliers (ADMM) [12] to problems
with three separable functions in the objective function [13].
The use of this method resulted in the ingredients of the
algorithm having simple structures that could be exploited
using a similar approach to the one used in [4], which
presented sparse solvers for standard MPC formulations. This
lead to a sparse solver with a small iteration complexity and
a small memory footprint that was included in the Spcies
toolbox [14] for Matlab, which is available at https:
//github.com/GepocUS/Spcies.

This paper presents the implementation of the above
MPCT solver in a Raspberry Pi to control a two-wheeled
inverted pendulum robot with a sample time of 20 mil-
liseconds. The closed-loop results suggest that the solver is
suitable for its implementation in current, readily-available
hardware for controlling systems with fast dynamics.

This paper is organized as follows. Section II provides the
problem formulation. The MPCT formulation is described
in Section III. For completeness, a brief description of the
solver is presented in Section IV. The two-wheeled inverted
pendulum robot and the closed-loop results are shown in
Section V. Finally, conclusions are provided in Section VI.

ar
X

iv
:2

10
3.

14
57

1v
1

 [
ee

ss
.S

Y
]

 2
6

M
ar

 2
02

1

https://github.com/GepocUS/Spcies
https://github.com/GepocUS/Spcies

Notation: Given two integers i and j with j ≥ i, Zji
denotes the set of integer numbers from i to j, i.e.
Zji

.
= {i, i+ 1, . . . , j − 1, j}. Given two vectors x ∈ IRn

and y ∈ IRn, x ≤ (≥) y denotes componentwise in-
equalities; and 〈x, y〉 denotes their standard inner product.
For a vector x ∈ IRn and a positive definite matrix A ∈
IRn×n, ‖x‖ .

=
√
〈x, x〉, ‖x‖A is its weighted Euclidean

norm ‖x‖A
.
=
√
〈x,Ax〉, and ‖x‖∞

.
= maxi=1...n |x(i)|,

where x(i) is the i-th element of x, is its `∞-norm. We
denote by (x1, x2, . . . , xN) the column vector formed by
the concatenation of column vectors x1 to xN . Given
scalars and/or matrices M1,M2, . . . ,MN , we denote by
diag(M1,M2, . . . ,MN) the block diagonal matrix formed
by the diagonal concatenation of M1 to MN .

II. PROBLEM FORMULATION

We consider a system described by a linear time-invariant
state-space model

xk+1 = Axk +Buk, (1)

where xk ∈ IRn and uk ∈ IRm are the state and input of
the system at sample time k, respectively, that are subject to
the box constraints

x ≤ xk ≤ x, u ≤ uk ≤ u. (2)

The control objective is to steer the system to the reference
(xr, ur) given by the user. This will only be possible if the
reference is a steady state of the system that satisfies the
constraints (2), i.e., if it is an admissible steady state. Other-
wise, we wish to steer the system to the closest admissible
steady state to (xr, ur), for a certain criterion of closeness.

III. MODEL PREDICTIVE CONTROL FOR TRACKING

This section describes the particular MPC formulation
that we consider in this paper, which is called MPC for
tracking [9]. For a given control horizon N , a current state
x ∈ IRn and a reference (xr, ur), the control law of
the MPCT controller is derived from the solution of the
optimization problem

min
x,u,
xs,us

N−1∑
i=0

‖xi−xs‖2Q+‖ui−us‖2R+‖xs−xr‖2T+‖us−ur‖2S

(3a)
s.t. x0 = x (3b)

xi+1 = Axi +Bui, i ∈ ZN−10 (3c)

x ≤ xi ≤ x, i ∈ ZN−11 (3d)

u ≤ ui ≤ u, i ∈ ZN−10 (3e)
xs = Axs +Bus (3f)
x+ εx ≤ xs ≤ x− εx (3g)
u+ εu ≤ us ≤ u− εu (3h)
xN = xs, (3i)

where x = (x0, x1, . . . , xN−1) and u = (u0, u1, . . . , uN−1)
are the predicted states and control actions throughout the
prediction horizon, respectively; (xs, us) is the artificial

reference; εx ∈ IRn and εu ∈ IRm are vectors with
arbitrarily small positive components which are added to
avoid a (possible) loss of controllability in the event of
active constraints at the equilibrium point [10]; and the
positive definite matrices Q, R, T and S are the cost
function matrices.

The main difference between MPCT and standard MPC
formulations is the introduction of the artificial reference
(xs, us) as additional decision variables. As can be seen
in (3), the discrepancy between the predicted states and
control actions with the artificial reference is penalized with
matrices Q and R. Additionally, the discrepancy between
the artificial reference and the reference (xr, ur) given by
the user is penalized with matrices T and S.

IV. EMBEDDED SOLVER FOR MPCT

This section briefly presents the sparse solver implemented
in the embedded system, which is a particularization of the
extended ADMM algorithm [13] to the optimization problem
(3). This solver, which was originally presented in [11] and
is available at [14], exploits the structure of the problem
to attain a very small memory footprint and an efficient
implementation. Due to space considerations, and to not
repeat the results presented in [11], only a very brief outline
of the solver is presented here. We refer the reader to the
above reference for an in-depth explanation.

A. Extended ADMM

The extended ADMM algorithm is, as its name suggests,
an extension of the classical ADMM algorithm [12] to prob-
lems with more than two separable functions in the objective
function. Specifically, we show its application to objective
functions that are the sum o three separable functions [13].

Let θi : IRni → IR for i ∈ Z3
1 be convex functions; Zi ⊆

IRni for i ∈ Z3
1 be closed convex sets; Ci ∈ IRmz×ni for

i ∈ Z3
1; and b ∈ IRmz . Consider the optimization problem

min
z1,z2,z3

3∑
i=1

θi(zi) (4a)

s.t.

3∑
i=1

Cizi = b (4b)

zi ∈ Zi, i ∈ Z3
1, (4c)

where zi ∈ IRni for i ∈ Z3
1 are the decision variables, and

let its augmented Lagrangian Lρ(z1, z2, z3, λ) be given by

Lρ(·) =

3∑
i=1

θi(zi)+

〈
λ,

3∑
i=1

Cizi−b

〉
+
ρ

2

∥∥∥∥∥
3∑
i=1

Cizi−b

∥∥∥∥∥
2

,

where λ ∈ IRmz are the dual variables and the scalar ρ > 0
is the penalty parameter.

Algorithm 1 shows the implementation of the ex-
tended ADMM algorithm. It returns a suboptimal solution
(z̃∗1 , z̃

∗
2 , z̃
∗
3) of problem (4) (assuming a solution point ex-

ists) as well as a suboptimal dual variable λ̃∗, where the
suboptimality is determined by the exit tolerance ε > 0,
since the exit conditions of step 9 serve as a measure of the

Algorithm 1: Extended ADMM
Require : z02 , z03 , λ0, ρ > 0, ε > 0

1 k ← 0
2 repeat
3 zk+1

1 ← arg min
z1
{Lρ(z1, zk2 , zk3 , λk) | z1∈Z1}

4 zk+1
2 ← arg min

z2
{Lρ(zk+1

1 , z2, z
k
3 , λ

k) | z2∈Z2}

5 zk+1
3 ← arg min

z3
{Lρ(zk+1

1 , zk+1
2 , z3, λ

k) | z3∈Z3}

6 Γ←
3∑
i=1

Ciz
k+1
i − b

7 λk+1 ← λk + ρΓ
8 k ← k + 1

9 until ‖Γ‖∞≤ε, ‖zk2−zk−12 ‖∞≤ε, ‖zk3−zk−13 ‖∞≤ε
Output: z̃∗1←zk1 , z̃∗2←zk2 , z̃∗3←zk3 , λ̃∗←λk

optimality of the current iterate [13, §5]. The superscript k
is used to indicate the value of the variable at iteration k of
the algorithm.

The extended ADMM does not necessarily converge under
the same assumptions as standard ADMM, as shown in [15].
In order to prove its convergence, additional conditions are
required. In particular, in [13, Theorem 3.1] it was shown
that the extended ADMM algorithm applied to (4) converges
under the following assumption if ρ is chosen appropriately
(as stated in the cited theorem).

Assumption 1 ([13], Assumption 3.1). The functions θ1 and
θ2 are convex; function θ3 is strongly convex; and C1 and
C2 are full column rank.

B. Solving MPCT using EADMM

This section explains how problem (3) can be recast into
(4) by a proper selection of decision variables. We do so by
defining variables x̃i

.
= xi−xs and ũi

.
= ui−us, which lets

us rewrite (3) as:

min
x̃,ũ,x,
u,xs,us

N∑
i=0

‖x̃i‖2Q + ‖ũi‖2R + ‖xs − xr‖2T + ‖us − ur‖2S

(5a)
s.t. x0 = x (5b)

x̃i+1 = Ax̃i +Bũi, i ∈ ZN−10 (5c)

x ≤ xi ≤ x, i ∈ ZN−11 (5d)

u ≤ ui ≤ u, i ∈ ZN−10 (5e)
x+ εx ≤ xN ≤ x− εx (5f)
u+ εu ≤ uN ≤ u− εu (5g)
xs = Axs +Bus (5h)

x̃i + xs − xi = 0, i ∈ ZN0 (5i)

ũi + us − ui = 0, i ∈ ZN0 (5j)
xN = xs (5k)
uN = us, (5l)

where we are introducing the new decision variables
x̃ = (x̃0, . . . , x̃N) and ũ = (ũ0, . . . , ũN). Note that we have

Fig. 1: Two-wheeled inverted pendulum robot. The angle φ
is zero if the pendulum is in a vertical position.

extended the summations in the cost function (and some con-
straints) to i = N . This is necessary to be able to construct
matrices Ci of (4) with a simple structure. However, note that
this additional term does not affect the optimization problem
due to constraints (5k) and (5l).

Problem (5) can then be recast as (4) by defining

z1 = (x0, u0, x1, u1, . . . , xN−1, uN−1, xN , uN), (6a)
z2 = (xs, us), (6b)
z3 = (x̃0, ũ0, x̃1, ũ1, . . . , x̃N−1, ũN−1, x̃N , ũN), (6c)

and casting the constraints (5b), (5i), (5j), (5k) and (5l) into
Ci and b; constraints (5d)-(5g) into Z1, (5h) into Z2 and (5c)
into Z3. Then, the functions θi are given by θ1(z1) = 0

θ2(z2) =
1

2
z>2 diag(T, S)z2 − (Txr, Sur)

>z2,

θ3(z3) =
1

2
z>3 diag(Q,R,Q,R, . . . , Q,R)z3,

We note that our selection of zi and Ci for i ∈ Z3
1 leads

to a problem (4) that satisfies Assumption 1.
The selection of the decision variables z1, z2 and z3 as

shown in (6) leads to matrices Ci with very simple structures
(see [11, Eq. (9)]) and to the optimization problems solved
in steps 3, 4 and 5 of Algorithm 1 to have explicit and
computationally efficient solutions [11, §5.2].

Remark 1 ([11], Remark 1). In [16, §5.2] it was shown
that the performance of ADMM can be improved if different
values of ρ are used to penalize some constraints more than
others, i.e., by taking ρ as a diagonal positive definite matrix.
In particular, for problem (5), the convergence improves
significantly if the equality constraints (5b), (5k), (5l), (5j)
for i = N , (5i) for i = 0 and i = N , are penalized more
than the others.

V. CASE STUDY

A. Two-wheeled inverted pendulum robot

The two-wheeled inverted pendulum robot, which is
shown in Figure 1, is a two-wheeled vehicle based on the
inverted pendulum configuration. The control objective is to
control the horizontal speed of the vehicle whilst keeping it
from toppling. Due to construction limitations of the robot, in

this paper we only consider forward and backward velocities,
i.e., both wheels have the same speed, making the robot
incapable of rotating sideways.

The specifics of the robot, including its construction and
components, are very similar to the description provided in
[17]. The chassis is made using a 3D printer, and its main
components are: a Raspberry Pi, an inertial measuring unit
MPU6050, an Arduino NANO, a microstepping motor driver
A3967 and two step motors Nema 17. The main difference
between this robot and the one described in [17] is the
inclusion of the Raspberry Pi for monitoring and controlling
the system, as we explain in further detail in Section V-B.

The non-linear dynamics of the systems, which are ob-
tained by applying Lagrange’s equation as in [18, Appendix
A], are given by the ordinary differential equation [17, §6]

(2a+ c cos (φ+ φ0))θ̈ + (c cos (φ+ φ0) + 2b)φ̈

− cφ̇2 sin(φ+ φ0)− d sin(φ+ φ0) = 0,
(7)

where φ is the tilt of the robot, θ is the angle of the wheels,
a = (3/2mr + 1/2)R2, b = ML2, c = RML, d = MgL,
mr is the mass of the wheels, M is the mass of the robot
without the wheels, R is the wheel’s radius, L is the distance
between the rotation axis of the wheels and the center of
mass, g = 9.81m/s2 is the gravitational acceleration and φ0
is the angle between the center of mass and the geometrical
center. The robot used in this case study, which is shown in
the right-hand-side of Figure 1, has the following values of
the parameters: mr = 0.064Kg, M = 0.975Kg, R = 0.05m,
L = 0.05m and φ0 is unmeasured but known to be small.

The state of the system is given by x = (φ, φ̇, θ̇) and
the control input is the angular acceleration of the wheels
u = θ̈. We consider the following constraints on the state
and control input,− 90

3602π
−4
−60

 ≤
φφ̇
θ̇

 ≤
 90

3602π
4
60

 , −80 ≤ θ̈ ≤ 80,

where the units are given in radians and seconds, accordingly.

B. Embedded system: Raspberry Pi

The Rapsberry Pi is a low-cost embedded system that
can be operated by a Linux-based operating system. In
particular, we use the Raspbian operating system provided by
the manufacturer, which is based on the Debian distribution.
The model used in this case study is Raspberry Pi 3 Model
B, which comes with a Quad Core 1.2GHz Broadcom
BCM2837 64bit CPU.

The Raspberry Pi is used as the monitoring and control
device of the robot. It receives the measurements of the
tilt angle φ and the tilt angular speed φ̇ from the inertial
measuring unit MPU6050, and the measurement of the speed
of the wheels θ̇ from the Arduino NANO board. The control
action is sent to the Arduino NANO board, which is in
charge of applying the corresponding PWM signals to the
step motors.

In order to ensure the real-time operation of the con-
trol system, we employ the Xenomai software, which is

TABLE I: Performance of EADMM

Iterations Computation time (ms)

Max. Min. Med. Avg. Max. Min. Med. Avg.

Fig. 2 44 1 15 15.12 8.64 0.195 2.99 2.99

Fig. 3 38 1 11 12.38 7.39 0.196 2.15 2.42

a dual-kernel configuration for Linux-based systems which
considers the Linux kernel as an idle task, and that will
ensure the accomplishment of the scheduled tasks within the
given deadlines. In short, it provides a real-time framework
to Linux-based systems, which we use to schedule the
measurement and MPCT controller routines in real-time.

C. Closed-loop results

We design the MPCT controller, taking the parameters
N = 12, Q = 5I3, R = 1, T = 1000I3 and S = 5. The
exit tolerance of the EADMM algorithm is ε = 0.001, and
the penalty parameter is ρ = 1000 for the constraints listed
in Remark 1, and ρ = 5 for the rest. The prediction model
of the MPCT controller is obtained by linearizing the non-
linear model (7) around the operating point x◦ = (0, 0, 0)
and u◦ = (0), i.e., the stationary vertical position, for a
sample time of 20ms.

The solver is obtained from the Matlab toolbox [14],
which automatically generates code for solving different
MPC formulations, including the solver discussed here. The
toolbox requires the state space model of the system (1),
its constraints (2), the ingredients of the MPCT formulation
(Q, R, T , S and N), and the parameters of the EADMM
algorithm (ρ and ε). It then generates library-free plain C
code containing the sparse solver for its direct implementa-
tion in the embedded system, which we compile using the
gcc compiler in the Raspberry Pi.

To test the performance of the proposed MPCT solver
we conduct two experiments on the real system: disturbance
rejection and reference tracking.

Figure 2 shows the disturbance rejection results. In this
experiment, the reference is set to the operating point, i.e.,
xr = x◦ and ur = u◦. The system is initially positioned at
the reference and is then repeatedly perturbed by manually
pushing it in either direction. Figures 2a and 2b show the
tilt of the system φ (in degrees), and the control action
θ̈, respectively. Figures 2c and 2d show the number of
iterations and computation time of the EADMM algorithm
at each sample time, respectively. As can be seen, the MPCT
controller steers the system back to the vertical position after
each push. Additionally, the control action reaches its upper
and lower bounds, which are marked in red lines, during the
first moments after each disturbance is applied. Note that the
number of iterations of the solver increases when the control
action bounds are active, as expected when using first-order
methods. However, the increase is not very significant.

Figure 3 shows the reference tracking results. In this
experiment, the system is started at the operating point and
then the reference for the wheel angular speed θ̇ is changed

0 2 4 6 8 10 12 14 16
-20

-10

0

10

20

(a) Tilte of the system.

0 2 4 6 8 10 12 14 16
-100

-50

0

50

100

(b) Angular acceleration of the wheels.

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

(c) Iterations of the MPCT solver.

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

(d) Computation times of the MPCT solver.

Fig. 2: Closed-loop results of the robot against external disturbances.

0 5 10 15 20
-40

-20

0

20

40

(a) Angular speed of the wheels.

0 5 10 15 20
-100

-50

0

50

100

(b) Angular acceleration of the wheels.

0 5 10 15 20
0

10

20

30

40

50

(c) Iterations of the MPCT solver.

0 5 10 15 20
0

2

4

6

8

10

(d) Computation times of the MPCT solver.

Fig. 3: Closed-loop results of the robot for changing reference of the angular speed.

in multiple occasions. Figures 3a and 3b show the speed
of the wheels θ̇, and the control action θ̈, respectively.
Figures 3c and 3d show the number of iterations and the
computation time of the EADMM algorithm at each sample
time, respectively. As can be seen, the MPCT controller
steers the system to the reference. A slight offset can be
observed for references other than the operating point due to

the difference between the prediction model (1) and the real
system. This offset could be corrected with the inclusion
of a state and disturbance estimator [4]. Once again, the
control action reaches its upper and lower bounds during the
first moments after each reference change, without having a
significant impact on the number of iterations.

Table I shows a detailed analysis of the number of itera-

tions and computation times of the algorithm during the two
experiments. We show the maximum, minimum, median and
average number of iterations and computation times.

VI. CONCLUSIONS

This paper presents the results of implementing the sparse
solver for the MPC for tracking formulation presented in
[11] in a Raspberry Pi to control an inverted pendulum
robot with fast dynamics. The proposed solver is available in
the Spcies toolbox [14] for Matlab at https://github.
com/GepocUS/Spcies.

The results indicate that the solver, which is based on
an extension of the ADMM algorithm, is suitable for its
implementation in embedded systems to control systems with
sample times in the order of milliseconds in real-time.

REFERENCES

[1] E. N. Hartley, J. L. Jerez, A. Suardi, J. M. Maciejowski, E. C. Kerrigan,
and G. A. Constantinides, “Predictive control using an FPGA with
application to aircraft control,” IEEE Transactions on Control Systems
Technology, vol. 22, no. 3, pp. 1006–1017, 2014.

[2] B. Huyck, L. Callebaut, F. Logist, H. J. Ferreau, M. Diehl, J. De Bra-
banter, J. Van Impe, and B. De Moor, “Implementation and experi-
mental validation of classic MPC on programmable logic controllers,”
in 2012 20th Mediterranean Conference on Control & Automation
(MED). IEEE, 2012, pp. 679–684.

[3] P. Krupa, N. Saraf, D. Limon, and A. Bemporad, “PLC implementation
of a real-time embedded MPC algorithm based on linear input/output
models,” in 21st IFAC World Congress, 2020.

[4] P. Krupa, D. Limon, and T. Alamo, “Implementation of model pre-
dictive control in programmable logic controllers,” IEEE Transactions
on Control Systems Technology, 2020.

[5] S. Lucia, D. Navarro, Ó. Lucı́a, P. Zometa, and R. Findeisen,
“Optimized FPGA implementation of model predictive control for
embedded systems using high-level synthesis tool,” IEEE Transactions
on Industrial Informatics, vol. 14, no. 1, pp. 137–145, 2018.

[6] H. A. Shukla, B. Khusainov, E. C. Kerrigan, and C. N. Jones,
“Software and hardware code generation for predictive control using
splitting methods,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 14 386–
14 391, 2017.

[7] H. Park, J. Sun, and I. Kolmanovsky, “A tutorial overview of IPA-
SQP approach for optimization of constrained nonlinear systems,” in
Proceeding of the 11th World Congress on Intelligent Control and
Automation. IEEE, 2014, pp. 1735–1740.

[8] P. Tøndel, T. A. Johansen, and A. Bemporad, “An algorithm for
multi-parametric quadratic programming and explicit MPC solutions,”
Automatica, vol. 39, no. 3, pp. 489–497, 2003.

[9] A. Ferramosca, D. Limon, I. Alvarado, T. Alamo, and E. Camacho,
“MPC for tracking with optimal closed-loop performance,” Automat-
ica, vol. 45, no. 8, pp. 1975–1978, 2009.

[10] D. Limon, I. Alvarado, T. Alamo, and E. F. Camacho, “MPC for
tracking piecewise constant references for constrained linear systems,”
Automatica, vol. 44, no. 9, pp. 2382–2387, 2008.

[11] P. Krupa, I. Alvarado, D. Limon, and T. Alamo, “Implementation of
model predictive control for tracking in embedded systems using a
sparse extended ADMM algorithm,” arXiv preprint: 2008.09071v2,
submitted to Transactions on Control Systems Technology, 2020.

[12] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction
method of multipliers,” vol. 3, no. 1, pp. 1–122, 2011.

[13] X. Cai, D. Han, and X. Yuan, “On the convergence of the direct exten-
sion of ADMM for three-block separable convex minimization models
with one strongly convex function,” Computational Optimization and
Applications, vol. 66, no. 1, pp. 39–73, 2017.

[14] P. Krupa, D. Limon, and T. Alamo, “Spcies: Suite of Predictive
Controllers for Industrial Embedded Systems,” Available at https:
//github.com/GepocUS/Spcies, Dec 2020.

[15] C. Chen, B. He, Y. Ye, and X. Yuan, “The direct extension of ADMM
for multi-block convex minimization problems is not necessarily
convergent,” Mathematical Programming, vol. 155, no. 1-2, pp. 57–79,
2016.

[16] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd,
“OSQP: An operator splitting solver for quadratic programs,” arXiv
preprint:1711.08013v4, 2020.

[17] J. A. Borja, I. Alvarado, and D. Muñoz de la Peña, “Low cost two-
wheels self-balancing robot for control education powered by stepper
motors,” in IFAC World Congress, 2020.

[18] C. González, I. Alvarado, and D. Muñoz La Peña, “Low cost
two-wheels self-balancing robot for control education,” IFAC-
PapersOnLine, vol. 50, no. 1, pp. 9174–9179, 2017.

https://github.com/GepocUS/Spcies
https://github.com/GepocUS/Spcies
https://github.com/GepocUS/Spcies
https://github.com/GepocUS/Spcies

	I Introduction
	II Problem Formulation
	III Model predictive control for tracking
	IV Embedded solver for MPCT
	IV-A Extended ADMM
	IV-B Solving MPCT using EADMM

	V Case study
	V-A Two-wheeled inverted pendulum robot
	V-B Embedded system: Raspberry Pi
	V-C Closed-loop results

	VI Conclusions
	References

