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Abstract— Currently, the demand for a better alternative to
linear PID controllers is increasing due to the rising expecta-
tions of the high-tech industry. In literature, it has been shown
that Constant in gain Lead in phase (CgLp) compensators,
which are a type of reset element, have high potential to
improve the performance of systems. Although there are few
works which investigate tuning of these compensators, the
high order harmonics and steady-state performances have not
yet been considered in these methods. Recently, a frequency-
domain framework has been developed to analyze closed-loop
performances of reset control systems which includes high order
harmonics. In this paper, this frequency-domain framework is
combined with loop-shaping constraints to provide a reliable
frequency-domain tuning method for CgLp compensators. Fi-
nally, different performance metrics of a CgLp compensator
are compared with those of a PID controller on a precision
positioning stage. The results show that the presented tuning
method is effective, and the system with the CgLp compensator
achieves superior dynamic performance to that of the PID
controller.

I. INTRODUCTION

The fast rising high-tech industry leads researchers to find
a better alternative for linear controllers [1]. One of the
appropriate alternatives is reset element which has gained
a lot of attention due to its simple configuration [2]–[7].
In 1958, the first reset element was introduced by Clegg
[4]. Clegg Integrator (CI) is an integrator which resets its
state to zero when its input crosses zero. Then, First Order
Reset Element (FORE) [2], [8] and Second Order Reset
Element (SORE) [6], [8] have been developed to provide
more design freedom and applicability. Other reset conditions
such as reset band [9], [10] and fixed reset instants [11]
have also been studied. In order to soften non-linearities of
reset elements, several techniques like partial reset and PI+CI
approaches have been proposed [12].

Based on Describing Function (DF) analysis, it can be seen
that reset controllers provide less lag phase in comparison
with their base linear structures. This phase advantage is
utilized to introduce new compensators [8], [13], [14]. One
of these reset compensators is ’Constant in gain Lead in
phase’ (CgLp) whose gain is constant while providing a
phase lead [8], [15]. In these works, CgLp has been used
as an alternative for the derivative to compensate part of the
required phase lead. This is advantageous because the open-
loop will have higher gains at low frequencies and lower
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gains at high frequencies which results in higher precision
performances.

There are few studies which investigate tuning of CgLp
compensators [8], [15], [16]. In those works, CgLp is tuned
to get a specific amount of phase lead at the cross-over
frequency. However, as a result of the design flexibility of
reset controllers, various combinations of tuning parame-
ters could be used to provide the same open-loop phase
compensation at the cross-over frequency based on the DF
analysis. However, not all sets of tuning parameters result
in performance improvement. In addition, stability has not
been assessed in tuning method and has to be checked
with non-linear stability methods, separately. Furthermore,
the existence of the steady-state performance of the closed-
loop has not been assured in those works. Thus, there is a
lack of reliable tuning method for CgLp compensators.

Recently, a new frequency-domain framework is devel-
oped which analyzes the closed-loop steady-state perfor-
mances of reset control systems considering high order
harmonics [17]. Moreover, a frequency-domain method for
assessing the stability of reset elements has been pro-
posed [18]. In this paper, we combined the frequency-domain
framework [17], the frequency-domain stability method [18],
the DF method, and loop-shaping constraints to provide a
reliable tuning method for CgLp compensators. Finally, to
show the effectiveness of the proposed tuning method, a
CgLp compensator is tuned and implemented on a precision
positioning stage.

In the remainder of this paper, the tuning method is
elaborated in Section II. In Section III, a tuned CgLp com-
pensator is applied to a precision positioning stage, and its
performance is compared with a PID controller. Conclusions
and remarks for further study are provided in Section IV.

II. TUNING METHOD

In this section, first, frequency-domain descriptions for
reset elements, CgLp compensators, the stability condition,
and pseudo-sensitivities (sensitivity functions defined for
nonlinear controllers) are briefly recalled. Then the structure
of the controller is introduced, and the tuning method is
proposed.

A. Frequency Analysis of Reset Elements

The state-space representation of reset elements is
ẋr(t) = Arxr(t)+Bre(t), e(t) 6= 0,

xr(t+) = Aρ x(t), e(t) = 0,
u(t) =Crx(t)+Dre(t),

(1)
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Fig. 1: The DF of a CgLp compensator

in which Ar, Br, Cr and Dr are the state matrices of the
base linear system, e(t) and u(t) are the error input and
control input, respectively. The resetting matrix Aρ deter-
mines states’ values after reset action. Since reset elements
are non-linear, the DF analysis is popularly used in literature
to study their frequency behaviour. To have a well-defined
steady-state response, it is required that Ar has all eigenvalues
with negative real part and Aρ e

Arπ

ω has all eigenvalues with
magnitude smaller than one [3]. The sinusoidal input DF of
reset elements (1) is given in [3] as

N ( jω) =Cr ( jωI−Ar)
−1 Br (I + jΘ(ω))+Dr, (2)

where Θ is

Θ(ω)=
−2ω2

π
(I + e

πAr
ω )

(
(I +Aρ e

πAr
ω )−1Aρ(I + e

πAr
ω )

− I

)
(ω2I +A2

r )
−1. (3)

B. CgLp Compensator

A CgLp compensator (4) is constructed using a FORE or a
SORE with the series combination of a corresponding order
of a lead filter. Considering the DF analysis, this compensator
has a constant gain with a lead phase (Fig. 1) ( [8], [19]). In
this paper, we only consider the first order CgLp which is

CCgLp(s) =


�
�
���

γ

1
s

ωr
+1

( s
ωd

+1
s

ωt
+1

)
, (4)

where ωr is the corner frequency of the reset element, Aρ = γ

is the reset matrix, and ωd and ω f are the corner frequencies
of the lead filter. To have a constant gain, corner frequencies
ωd and ωr are almost equal (there is a small correction factor
which is provided in [8]) and ω f � ωr.

C. Hβ Condition

There are several theories to determine the stability of reset
control systems [5], [7], [12], [20]. Among those, the Hβ

condition presented in [5], [7], [18] gets a lot of attention.
In [18], a method is developed to examine the Hβ conditions
utilizing the frequency response of the plant. To this end,
consider L( jω) and CR( jω) as the base linear frequency

responses of the open-loop and of the reset element, respec-
tively. Then, the Nyquist Stability Vector (NSV=

#  »

N (ω) ∈
R2), for all ω ∈ R+, is

#  »

N (ω) = [Nχ Nϒ]
T in which

Nχ=

∣∣∣∣L( jω)+
1
2

∣∣∣∣2− 1
4
,

Nϒ=ℜ(L( jω) ·CR( jω))+ℜ(CR( jω)).

Theorem 1: Considering θ1 = min
ω∈R+

#  »

N (ω) and θ2 =

max
ω∈R+

#  »

N (ω). Suppose −1 < γ ≤ 1, then, the Hβ condition

for a reset control system is satisfied and its response is
uniformly bounded-input bounded-state (UBIBS) for any
bounded input if [18](
−π

2
< θ1 < π

)
∧
(
−π

2
< θ2 < π

)
∧ (θ2−θ1 < π). (5)

D. Pseudo-Sensitivities for Reset Control Systems

In linear systems, the relation between reference signal
r(t) to error e(t) can be calculated by sensitivity transfer
functions [21]. Although it is possible to use the DF of
the reset elements in those sensitivity transfer functions to
analyze the tracking performance of CgLp compensators, it
is not a reliable approach because high order harmonics
are neglected. In order to analyze reset control systems
more accurately, a pseudo-sensitivity function S∞( jω) for
a sinusoidal reference r = r0 sin(ωt) is defined in [17].

Theorem 2: A closed-loop reset control system has a well-
defined steady-state solution for any Bohl function input if
the Hβ condition is satisfied and reset instants have the well-
posedness property [17].
In addition, if Theorem 2 holds, the tracking error of the
reset control system is a periodic function with the period
2π

ω
. Thus, the pseudo-sensitivity for a reset control system

is defined as the ratio of the maximum tracking error of the
system to the magnitude of the reference at each frequency.

Definition 1: Pseudo-sensitivity S∞

∀ω ∈ R+ : S∞( jω) = emax(ω)e jϕmax ,
where

emax(ω)=

 max
tss0≤t≤tssm

(r(t)− y(t))

|r|

= sin(ωtmax)−
y(tmax)

r0
,

ϕmax =
π

2 −ωtmax, y(t) is the response of the closed-loop
reset control system, and tss0 and tssm = tss0 +

2π

ω
are the

steady-state reset instants of the closed-loop reset control
system (e(tss0) = e(tssm) = 0). In a similar way, the pseudo-
control sensitivity CS∞(ω), the pseudo-complementary sen-
sitivity T∞(ω), and the pseudo-process sensitivity PS∞(ω)
are defined in [17]. These calculations are embedded in a
user-friendly toolbox [22].

E. Problem Formulation

In this section, the tuning procedure is explained. For this
purpose, a CgLp compensator along with a PID controller is



considered for tuning as

CCgLp(s) = Kp


�
�
���

γ

1
αs
ωr

+1

( s
ωr

+1
s

ω f
+1

)
︸ ︷︷ ︸

CgLp

PI︷ ︸︸ ︷(
1+

ωi

s

) Lead︷ ︸︸ ︷( s
ωd

+1
s

ωt
+1

)
︸ ︷︷ ︸

PID

,

(6)
in which γ = Aρ determines the value of the reset state
after the reset action and (Kp,ωi,ωr,ωt ,ωd ,ω f ,γ) is the
tuning parameter set. It has been shown that the sequence
of controller filters has effects on the performance of reset
control systems [23]. In this research, the sequence of control
filters is the traditional approach in which the tracking error
is the input of the reset element and other linear parts
following in series. In this tuning method, the controller
is tuned given the following specifications: cross-over fre-
quency ωc, phase margin ϕm, and modulus margin Mm. Note
that these specifications are based on the DF analysis or
defined pseudo-sensitivities. Furthermore, since the scope of
this paper is tuning of the CgLp part, ωi and ω f are tuned
as

ωc

10
and 8ωc, respectively, to have acceptable tracking

and noise rejection performances [8], [21], [24]. To assure
stability and use of pseudo-sensitivities, the Hβ condition
(Theorem 1) has to be satisfied. In addition, a robustness
requirement in the form of iso-damping behaviour [1], [25]
requires that the phase behaviour of the system must follow

d( NCgLp( jω)PID( jω)G( jω))

dω

∣∣∣
ω=ωc

= 0. (7)

All constraints are summarized as
• Cross-over frequency constraint:

|NCgLp( jωc)PID( jωc)G( jωc)|= 1

• Phase margin constraint:

NCgLp(ωc)+ PID(ωc)+ G(ωc) = ϕm

• Modulus margin constraint: max |S∞( jω)|< Mm
• Iso-damping Behaviour: Equation (7)
• The Hβ condition: Equation (5) and −1 < γ ≤ 1

Eventually, we define a suitable cost function for the tuning
of the control structure (6). According to [26], to have an
appropriate tracking performance in the interested region of
frequencies, the following cost function is obtained as

J = max
ω≤ωl

∣∣∣S∞( jω)

ω

∣∣∣
dB
, (8)

in which ωl determines the interested region of frequencies
over which the reset control system is expected to track
references and reject disturbances. There are several methods
such as grid search, gradient methods, Genetic Algorithm,
etc., for solving this problem. Here, since the performance
of the controller is not so sensitive to a small change of
the tuning set parameter, we suggest to use a grid search
method for completing the tuning procedure. The parameter
Kp is determined by the cross-over frequency definition.
In addition, it is possible to find vectors lB and uB to set

ComputerCompactRIOIsolator Table

3 DOF Stage
Power Supply

Amplifier

Sensor Power

B3

A3
C1

A2

A1

B2

B1

D

Fig. 2: The whole setup including computer, CompactRio,
power supply, sensor power, amplifier, isolator, sensor and,
stage

lower and higher limits for (ωr ωd ωt) by the phase margin
definition and considering stability of the base linear of
the system (i.e. ωclB < [ωr ωd ωt ]

T < ωcuB). Then, with
a small resolution, we grid the parameters and provide a
parameter space. Now, we calculate constraints (3)-(6) for
every point in this space, and eliminate the points which
do not satisfy the constraints. Finally, suppose there are N
tuning parameter sets (Kp,ωr,ωt ,ωd ,γ) which satisfy the
aforementioned constraints, then the parameter set which has
the minimum J value is selected for designing the control
structure (6).

III. PRACTICAL EXAMPLE

To show the effectiveness of the proposed tuning method,
a precision positioning stage (Fig 2) is used as a benchmark
in this paper. In this stage, which is termed “Spider”, three
actuators are angularly spaced to actuate 3 masses (indicated
by B1, B2, and B3) which are constrained by parallel flexures
and connected to the central mass D through leaf flexures.
Only one of the actuators (A1) is considered and used for
controlling the position of mass B1 attached to the same actu-
ator which results in a SISO system. A linear power amplifier
is utilized to drive the Lorentz actuator, and Mercury M2000
linear encoder is used to obtain position feedback with the
resolution of 0.1 µm. The identified frequency response data
of the system is shown in Fig 3. As shown in Fig. 3, although
the plant is a collocated double mass-spring system, the
identified frequency response data is well approximated by
a mass-spring-damper system with the transfer function

G(s)≈ Ke−τs

s2

ω2
r
+ 2ζ s

ωr
+1

=
1.14e−0.00014s

s2

7627 +
0.05s
87.3 +1

. (9)

Note that to use relations provided in [17], the time delay
(e−0.00014s) is approximated by the first order Pade method

[27] as
−s+14400
s+14400

. The design requirements for this system
are:
• the cross-over frequency: ωc = 100 Hz
• the phase margin: ϕm = 30◦

• the modulus margin: Mm ≤ 6.5 dB
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Fig. 3: Identification of the stage

Now, the control structure (6) is tuned based on the described
method in Section II-E. To satisfy constraint (7), ωc ≤ ωt .
Also, in order to not eliminate the low-pass filter effects, ωt ≤
ω f . Considering 30◦ phase margin and stability of the base
linear system, it is obtained that

ωc

5
<ωd <ωc. Furthermore,

selecting a very small value for ωr leads to increase the
amplitude of high order harmonics at low frequencies which
are not desired [15]. Hence, we consider this parameter range
ωc[0.05 0.2 1]T < [ωr ωd ωt ]

T < [1 1 8]T ωc in the tuning
procedure. In addition, we take ωl =

ωc

10
as the maximum

limit of the interest region for tracking. The controller is
obtained through the proposed tuning method as

CCgLp=25.5


�
�
�
��>

0.3
1

s
111π

+1

 s
105.2π

+1
s

1600π
+1

(1+
20π

s

) s
105.2π

+1
s

260π
+1

 .

(10)
To compare the performance of the tuned controller with a
linear controller, a PID structure is also tuned with the same
method proposed in Section II-E. To have a fair comparison,
the structure of the PID controller is similar to the control
structure (6). Finally, the CPID is

CPID = 18.46

 1
s

1600π
+1

 s
77π

+1
s

520π
+1

(1+
20π

s

)
.

(11)
Figure 4 shows the open-loop frequency response of the
system with controllers CPID and the DF of the open-loop of
the system with the controller CCgLp. Two systems have the
same phase margin and are robust against the gain variation
(iso-damping behaviour) as shown in Fig. 4.

The closed-loop frequency responses of the systems with
the controller CCgLp including the pseudo-sensitivities and
the DF methods, and the closed-loop sensitivities of the sys-
tem with the controller CPID are shown in Fig. 5. These fre-
quency responses are obtained utilizing the toolbox in [22].
By T∞ (Fig. 5a), the noise rejection capability of the system
with the controller CCgLp must be better than that of the
controller CPID. Furthermore, as shown in Fig. 5b, the system
with the controller CCgLp has better tracking performance
than that one with the controller CPID at frequencies less
than 10Hz while the modulus margin of the system with the
controller CCgLp is less than that of with the controller CPID.
Also, there are discrepancies between the sensitivity DF and
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Fig. 4: Open-loop frequency responses of the system with
controllers CPID and CCgLp

pseudo-sensitivity in the frequency range (30 - 70 Hz) which
are due to the existence of high order harmonics.
Based on PS∞ (Fig 5d), the disturbance rejection capability
of the system with the controller CCgLp is better than that of
the controller CPID. As shown in Fig.5c, there is a significant
difference between the control input of the system with the
controller CCgLp and what is predicted by the DF method. In
addition, the control input of the system with the controller
CCgLp is more than one with the controller CPID. This is
explained by the fact that reset elements produce jumps in
their output and differentiation of jumps produces a large
control input.

A. Time Domain Results

In this part, the time domain results of the designed
controllers are compared with each other. To implement
controllers (Fig. 6), each controller is discretized with sample
time Ts =100 µs using the Tustin method [21], [24], [26].
Furthermore, to provide the well-posedness property [7],
[12], there are no reset instants in tandem.

The step responses (step of 10 µm) of the system with
these controllers are illustrated in Fig. 7. To assess iso-
damping behaviour of the system, the gains of the controllers
are varied between 80% to 120% of their nominal values. The
step responses have the same rise time while the overshoot
of the system with the controller CCgLp are less than that
of the controller CPID because the modulus margin of the
system with the CgLp compensator is less than one with
the PID controller. Furthermore, system with the controller
CCgLp has less settling time in comparison with that of
with the controller CPID. Besides, step responses of the
system with these controllers show iso-damping behaviour
indicating. However, CCgLp provides more robustness against
gain variation for the system.

In order to compare tracking performances of the systems
with both controllers, one triangular reference with the
amplitude of 400 µm (Fig. 8a) and one sinusoidal reference
r(t) = 111sin(10πt) µm (Fig. 8c) are applied to the system.
As was predicted by S∞ (Fig. 5b), the system with the
controller CCgLp has a better performance at 5Hz (Fig. 8d). In
addition, S∞ (Fig. 5b) precisely predicts the maximum error
of the system with the controller CCgLp for the sinusoidal
reference. Note that, for the sake of brevity, we only show
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y

Fig. 6: The block diagram of the whole system for im-
plementing the designed controllers (reset matrices are dis-
cretized)

the result at 5Hz while the tracking performance of the
system with the controller CCgLp is better than one with the
controller CPID for the sinusoidal reference for all frequencies
less than 10Hz. As shown in Fig. 8b, the system with the
controller CCgLp also has the better tracking performance
than that of the controller CPID for the triangular reference
(Fig. 8a) which is a combination of several frequencies. For
these trajectories, the tracking performance of the system is
improved by 30% using the controller CCgLp.

Figure 9 compares the noise and disturbance rejection
capabilities of the system with the designed controllers. To
study the noise rejection capabilities of the system with the
controllers, a white noise with a maximum amplitude of 5µm
is applied to the system. As was expected from T∞ (Fig. 5a),
the noise rejection capability of the system with the controller
CCgLp is better than one with the controller CPID (Fig. 9b).
It can be said that using CCgLp enhance the noise rejection
capability of the system by 40%. In order to evaluate the
abilities of the system with the designed controllers for
attenuating disturbances, a sinusoidal disturbance w(t) =
190sin(14πt) µA is applied to the system. Similar to the PS∞

prediction (Fig. 5d), the system with the controller CCgLp has
the optimal disturbance rejection performance (Fig. 9a). The
disturbance rejection capability of the system is improved by
30% using the controller CCgLp.

To wrap up, the system with the tuned CgLp compensator
has less overshoot, the same rise time, better tracking perfor-
mance for frequencies less than 10 Hz, less modulus margin,
better noise and disturbance rejection capabilities than those
of the system with the controller PID.

IV. CONCLUSION

This paper has proposed a frequency-domain tuning
method for CgLp compensators based on the defined pseudo-
sensitivities for reset control systems. In this method, a
PID+CgLp structure is considered, and its parameters are
tuned such that the pseudo-sensitivity is minimized under
several constraints. Also, the tuned CgLp compensator with
this method, makes the system robust against gain variations.
To show the effectiveness of the proposed approach, the
performance of this tuned CgLp is compared with a linear
PID. The results show that the frequency framework is reli-
able for tuning CgLp compensators. Furthermore, the tuned
CgLp can achieve more favourable dynamic performance
than the PID controller for the precision motion stage. The
tracking performance, the disturbance rejection capability,
and the noise rejection capability of the system are improved
by 30% using the CgLp compensator. Indeed, this method,
which allows for tuning in the frequency-domain, opens
doors for the implementation of reset controllers in industrial
applications.
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Fig. 7: The step responses of controllers with gain variation between 80% to 120% of their nominal values
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Fig. 8: Tracking performance of the designed controllers for a triangular and a sinusoidal references
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