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Abstract— This paper studies the tracking control prob-
lem of networked and quantized control systems under both
multiple networks and event-triggered mechanisms. Multiple
networks are to connect the plant and reference system with
decentralized controllers to guarantee their information trans-
mission, whereas event-triggered mechanisms are to reduce
the information transmission via multiple networks. In this
paper, all networks are independent and asynchronous and
have local event-triggered mechanisms, which are based on local
measurements and determine whether the local measurements
need to be transmitted. We first implement an emulation-based
approach to develop a novel hybrid model for tracking control
of networked and quantized control systems. Next, sufficient
conditions are derived and decentralized event-triggered mecha-
nisms are designed to ensure the tracking performance. Finally,
a numerical example is given to illustrate the obtained results.

I. INTRODUCTION

The introduction of wired/wireless networks to connect
multiple smart devices leads to networked control systems
(NCS), the area of which includes three activities [1]: control
of networks; control over networks; and multi-agent systems.
The presence of networks improves efficiency and flexibility
of integrated applications, and reduces installation and main-
tenance time and costs [2]–[4]. Different smart devices may
be physically distributed and interconnected such that their
communications are via different types of networks, which
in turn result in many issues, such as transmission delays,
packet dropouts, quantization, etc. Therefore, the main chal-
lenge is how to design the control scheme to limit the effects
of the aforementioned network-induced issues and to achieve
the desired performances while keeping the information
transmission as minimal as possible. One suitable approach
in this context is periodic event-triggered control (PETC)
[5]–[7], combining time-triggered control (TTC) [8], [9] and
event-triggered control (ETC) [10]–[12]. The PETC allows
the triggering condition to be evaluated with a predefined
sampling period to decide the information transition, and
leads to a balance between TTC and ETC by avoiding the
continuous evaluation of the triggering condition [5], [7].
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Many existing results on NCS focus mainly on stabil-
ity analysis and stabilization control, and both TTC and
ETC/PETC have been addressed [3]–[5], [13]. However,
tracking control, as a fundamental problem in control the-
ory [14], [15], received less attention [16]–[18]. The main
objective of the tracking control is to design controllers
such that the plant can track the given reference trajectory
as close as possible [19], [20]. In the tracking control, the
controller consists of two parts [21]: the feedforward part
to induce the reference trajectory for the plant, and the
feedback part to drive the plant to converge to the reference
trajectory. As opposed to the traditional tracking control,
the main challenge of the tracking control of NCS is that
only local/partial information is transmitted to the plant due
to limited-capacity communication networks. In addition,
the information transmission via networks may be a error
source affecting the tracking performance [21]. Therefore,
both network-induced errors and local interaction rules need
to be considered simultaneously, and thus result in additional
difficulties in the tracking performance analysis.

In this paper, we study the event-triggered tracking con-
trol problem for networked and quantized control systems
(NQCS), where several issues caused by the network and
quantization are included [22]. To this end, we implement an
emulation-like approach as in [3], [14], [15], and develop a
novel hybrid model using the formalism in [23] to address the
event-triggered tracking control for NQCS, which is our first
contribution. In particular, a general scenario is considered:
multiple independent and asynchronous networks are applied
to ensure the communication among different components.
This scenario stems from many physical systems, where
different communication channels are applied to connect
sensors, controllers and actuators. Hence, this setting allows
to recover the architectures in [14], [15], [21] for NCS
and [17], [18], [24] for MAS as special cases. In partic-
ular, external disturbances are considered in [24], whereas
quantization effects are studied here. Based on this setting,
a general hybrid model is developed to incorporate all the
issues caused by multiple networks and decentralized event-
triggered mechanisms (ETMs). Our second contribution is
to apply the Lyapunov-based approach to investigate the
effects of these issues on the tracking performance. Specif-
ically, motivated by multiple Lyapunov functions approach,
some reasonable assumptions are provided, the decentralized
ETMs are designed to reduce the frequency of the informa-
tion transmission, and the tradeoff between the maximally
allowable sampling period (MASP) and the maximally allow-
able delay (MAD) is derived to guarantee the convergence of
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the tracking error with respect to the network-induced errors.
Preliminaries are presented in Section II. The tracking

problem is formulated in Section III, and a unified hybrid
model is developed in Section IV. Lyapunov-based condi-
tions and decentralized ETMs are derived in Section V. A
numerical example is presented in Section VI. Conclusions
and further research are stated in Section VII.

II. PRELIMINARIES

R := (−∞,+∞); R≥0 := [0,+∞); R>0 := (0,+∞);
N := {0, 1, 2, . . .}; N+ := {1, 2, . . .}. Given two sets A and
B, B\A := {x : x ∈ B, x /∈ A}. | · | denotes the Euclidean
norm. Given two vectors x, y ∈ Rn, (x, y) := (xT, yT)T

for simplicity of notation, and 〈x, y〉 denotes the usual inner
product. E denotes the vector with all the components being
1, I denotes the identity matrix of appropriate dimension,
and diag{A,B} denotes the block diagonal matrix made of
the matrices A and B. Given a function f : R≥0 → Rn,
f(t+) := lim sups→0+ f(t + s). A function α : R≥0 →
R≥0 is of class K if it is continuous, α(0) = 0, and strictly
increasing; it is of class K∞ if it is of class K and unbounded.
β : R2

≥0 → R≥0 is of class KL if β(s, t) ∈ K for fixed t ≥ 0
and β(s, t) decreases to zero as t → 0 for fixed s ≥ 0. A
function β : R3

≥0 → R≥0 is of class KLL if β(r, s, t) ∈ KL
for fixed s ≥ 0 and β(r, s, t) ∈ KL for fixed t ≥ 0.

Consider the hybrid system [23]:{
ẋ = F (x,w), (x,w) ∈ C,
x+ = G(x,w), (x,w) ∈ D,

(1)

where x ∈ Rn is the system state, w ∈ Rm is the external
input, F : C → Rn is the flow map, G : D → Rm is
the jump map, C is the flow set and D is the jump set.
For the hybrid system (1), the following basic assumptions
are presented: the sets C,D ⊂ Rn × Rm are closed; F
is continuous on C; and G is continuous on D. In (1),
x ∈ Rn is defined on hybrid time domain, which is denoted
by domx ⊂ R≥0 × N with the following structure: for each
(T, J) ∈ domx, domx∩ ([0, T ]×{0, . . . , J}) can be written
as
⋃

0≤j≤J−1([tj , tj+1], j) for some finite sequence of times
0 = t0 ≤ t1 ≤ . . . ≤ tJ = T . (t′, j′) � (t, j) if t′+j′ ≤ t+j.
A solution (x,w) to (1) is a function on the hybrid time
domain satisfying the dynamics in (1) with the following
property: domx = domw; x(·, j) with fixed j is absolutely
continuous; and w(·, j) with fixed j is Lebesgue measurable
and locally essentially bounded. A solution (x,w) is
maximal if it cannot be extended. Define ‖w‖(t,j) :=

max

{
ess. sup

(t′,j′)∈domw\Ξ(w),(0,0)�(t′,j′)�(t,j)

|w(t′, j′)|,

sup
(t,j)∈Ξ(w),(0,0)�(t′,j′)�(t,j)

sup |w(t′, j′)|

}
, and ‖w‖ :=

sup(t,j)∈domw ‖w‖(t,j), where Ξ(w) := {(t, j) ∈ domw :
(t, j + 1) ∈ domw}. Sw(x0) is the set of all the maximal
solutions to (1) with x0 = x(0, 0) ∈ C ∪D and finite ‖w‖.

Definition 1 ( [23]): The hybrid system (1) is input-to-
state stable (ISS) from w to x, if there exist β ∈ KLL and

γ ∈ K∞ such that |x(t, j)| ≤ β(|x(0, 0)|, t, j) + γ(‖w‖(t,j))
for all (t, j) ∈ domx and all (x,w) ∈ Sw(x0).

III. PROBLEM FORMULATION

In this section, we first state the tracking control prob-
lem for the NQCS studied in this paper, and then present
the detailed information transmission among the plant, the
reference and the controller via multiple networks.

A. Tracking Problem of NQCS

Consider the following nonlinear system

ẋp = fp(xp, u), yp = gp(xp), (2)

where xp ∈ Rnp is the system state, u ∈ Rnu is the control
input, and yp ∈ Rny is the plant output. Similar to [14]–[20],
the reference system tracked by (2) is of the form:

ẋr = fp(xr, uf), yr = gp(xr). (3)

where xr ∈ Rnr is the reference state (nr = np), uf ∈ Rnu is
the feedforward control input, and yr ∈ Rny is the reference
output (nyr = nyp ). Assume that the reference system (3) has
a unique solution for any initial condition and any input.

To track the reference system, the controller designed for
(2) in the absence of the network and quantizer is u = uc+uf,
where uc ∈ Rnu is the feedback item from the following
nonlinear feedback controller

ẋc = fc(xc, yp, yr), uc = gc(xc), (4)

where xc ∈ Rnc is the state of the feedback controller;
uf ∈ Rnu is the feedforward item and is related to plant
state and reference state [21]. We assume that fp and fc are
continuous; gp and gc are continuously differentiable.

Since the emulation-based approach is applied [3], [14],
[15], the feedback controller (4) is assumed to be designed
for the network-free and quantization-free case. Hence, the
objective of this paper is to implement the designed con-
troller over both ETMs and multiple networks and quantizers,
and to ensure that the assumed tracking performance of the
system (2)-(4) will be preserved for the NQCS under rea-
sonable assumptions and the designed decentralized ETMs.

B. Information Transmission over Multiple Networks

The information is sampled via the sensors, quantized
and then determined (by the ETM to be designed) to be
transmitted via the network. Since the sensors and actuators
may be of different types, the connection among the plant,
the reference and the controller may be via multiple net-
works (e.g., wired/wireless networks [2], [4]). Therefore, the
information is transmitted via multiple networks, which are
assumed to satisfy the following assumption.

Assumption 1: In the case that the ETM is implemented,
all the sensors and actuators are connected via N ∈ N+

independent and asynchronous networks.
For each network i ∈ N := {1, . . . , N}, the information

to be transmitted is denoted by zi := (yip, y
i
r , u

i
f , u

i
c) ∈ Rni

z

with niz := 2niy + 2niu. The dynamics of zi is written as

żi = f iz(zi, xp, xr, x
i
c), (5)



where f iz can be computed explicitly via (2)-(4). The de-
pendence of żi on xp and xr comes from the potential
dependence of yip (or yir ) on xp (or xr). Denote z :=

(z1, . . . , zN ) ∈ Rnz with nz :=
∑N
i=1 n

i
z , and ż = fz :=

(f1
z , . . . , f

N
z ) ∈ Rnz . Because of the band-limited capacity

of each network and spatial locations of its sensors and
actuators, all the sensors and actuators of each network are
grouped into `i ∈ N+ nodes to access to the network, where
i ∈ N [13], [25]. Correspondingly, zi is partitioned into `i
parts. For the i-th network, its sampling time sequence is
given by {tij : i ∈ N , j ∈ N+}, which is strictly increasing.
At tij , one and only one node is allowed to access to the
i-th network, and this node is chosen by an time-scheduling
protocol; see Subsection III-C. For the i-th network, the
sampling intervals are defined as hij := tij+1 − tij , where
i ∈ N and j ∈ N+. Since it takes time to compute
and transmit the information, there exist transmission delays
τ ij ≥ 0 such that the information is received at the arrival
times rij = tij + τ ij .

Assumption 2: For the i-th network, i ∈ N , there exist
constants Ti ≥ ∆i ≥ 0 and εi ∈ (0, Ti) such that εi ≤ hij ≤
Ti and 0 ≤ τ ij ≤ min{∆i, h

i
j} hold for all j ∈ N+.

In Assumption 2, Ti > 0 is called the maximally allowable
sampling period (MASP) for the i-th network, ∆i ≥ 0 is
called the maximally allowable delay (MAD), and εi > 0
is the minimal interval of two successive transmissions. The
constant εi is determined by hardware constraints [3], and
ensures the exclusion of Zeno phenomena. In the network-
free case [7], εi ≡ 0 and 0 < hij ≤ Ti in Assumption 2.
Note that the MASP and MAD are design parameters and
will be upper bounded in Subsection V-C.

The sampled information is quantized before being trans-
mitted. For each network, each node j ∈ {1, . . . , `i} has a
quantizer. The quantizer is a piecewise continuous function
q̄ij : Rn

i
j → Qij ⊂ Rn

i
j , where Qij is finite. The following

assumption is made for the quantizer; see also [26].
Assumption 3: For all i ∈ N and j ∈ {1, . . . , `i}, there

exist mij > nij > 0 and ni0j > 0 such that for all zij ∈ Rn
i
j : i)

|zij | ≤ mij ⇒ |q̄ij(zij)− zij | ≤ nij ; ii) |zij | > mij ⇒ |q̄j(zij)| >
mij − nij ; iii) |zij | ≤ ni0j ⇒ q̄ij(z

i
j) ≡ 0.

In Assumption 3, εij := q̄ij(zj) − zij is defined as the
quantization error. mij is the range of the j-th quantizer in
i-th network, nij is the bound on the quantization error. The
condition i) gives a bound on the quantization error when
the quantizer does not saturate. The condition ii) provides a
method to detect the possibility of saturation. The condition
iii) implies that if the signal is so small, then it is quantized
as zero. Based on the quantizer q̄ij and Assumption 3, the
quantizer applied in this paper is of the form:

qij(µ
i
j , z

i
j) = µij q̄

i
j(z

i
j/µ

i
j), j ∈ {1, . . . , `i}, (6)

where µij > 0 is a time-varying quantization parameter.
Assumption 4 ( [27]): The initial state (xp0, xr0, xc0) is

known a priori and bounded. The quantization parameter µij
is such that |zij | ≤ mijµ

i
j for all j ∈ {1, . . . , `i} and i ∈ N .

Assumption 4 is to ensure that the quantizer does not sat-
urate. This assumption is enforced easily for linear systems
[22]. See [28] for more details for the nonlinear case.

For the i-th network, combining all the quantizers
in `i nodes yields the overall quantizer: qi(µi, zi) :=
(qi1(µi1, z

i
1), . . . , qi`i(µ

i
`i
, zi`i)), where µi := (µi1, . . . , µ

i
`i

) ∈
R`i is evolving as

µ̇i(t) = 0, t ∈ (rij , r
i
j+1), (7)

µi(r
i
j

+
) = Ωiµi(r

i
j), Ωi := diag{Ωi1, . . . ,Ωi`i}, (8)

where Ωij ∈ (0, 1]. The quantized measurement is defined
as z̄i = (ȳip, ȳ

i
r , ȳ

i
c, ȳ

i
f ) := (qi(µi, y

i
p), qi(µi, y

i
r ), qi(µi, y

i
c),

qi(µi, y
i
f )); the quantization error is defined as εi :=

(εip, ε
i
r , ε

i
c, ε

i
f) = (ȳip − yip, ȳir − yir , ūic − uic, ūif − uif).

To reduce the transmission frequency, a local ETM is
implemented for each network. That is, at each sampling
time tij , only when the event-triggered condition for the i-
th network is satisfied can the quantized measurement be
transmitted. Denote by ẑ := (ŷp, ŷr, ûc, ûf) ∈ Rnz the
received measurement after the transmission, and the control
input received by the plant is û := ûc + ûf. The network-
induced errors are defined as ep := ŷp − yp, er := ŷr − yr,
ec := ûc−uc and ef := ûf−uf. From N networks, we denote
ẑ = (ẑ1, . . . , ẑN ) and e := ẑ − z = (e1, . . . , eN ) ∈ Rnz .

In the interval [rij , r
i
j+1], the received measurement ẑi via

the i-th network is assumed to be implemented via the zero-
order hold (ZOH) mechanism, that is,

˙̂zi(t) = 0, ∀t ∈
[
rij , r

i
j+1

]
. (9)

At rij , whether ẑi is updated via the latest information is
based on the local ETM at tij . Assume that the event-
triggered condition for the i-th network is given by Γi ≥ 0,
where the function Γi : R≥0 → R will be designed explicitly
in Subsection V-B. Γi ≥ 0 implies that the quantized
measurement needs to be transmitted, and ẑi is updated with
the latest measurement. That is, ẑi is updated by

ẑi(r
i
j

+
) =

{
z̄i(r

i
j) + hiz(κi(t

i
j), ei(t

i
j)), Γi(t

i
j) ≥ 0,

ẑi(r
i
j), Γi(t

i
j) < 0,

(10)

where κi : R≥0 → N is a counter to record the number
of the successful transmission events. That is, κi(tij

+
) =

κi(t
i
j) + 1 if Γi(t

i
j) ≥ 0, and κi(t

i
j
+

) = κi(t
i
j) otherwise.

hiz ∈ Rnz is the update function and depends on the time-
scheduling protocol as in Subsection III-C. Denote hiz :=
(hip,h

i
r ,h

i
c,h

i
f) from the definition of ẑi. Furthermore, we

can rewrite (10) as

ẑi(r
i
j

+
) = (1−Υ(Γi(t

i
j)))ẑi(r

i
j) + Υ(Γi(t

i
j))[z̄i(r

i
j)

+hiz(κi(t
i
j), ei(t

i
j))
]
, (11)

where Υ : R → {0, 1} is defined as Υ(Γi) = 1 if Γi ≥ 0



and Υ(Γi) = 0 otherwise. From (11), ei is updated by

ei(r
i
j

+
) = ẑi(r

i
j

+
)− zi(rij

+
)

= ei(r
i
j) + Υ(Γi(t

i
j))

× [hiz(κi(t
i
j),xi(t

i
j), ei(t

i
j), µi(t

i
j)) + z̄i(r

i
j)− ẑi(rij)]

= ei(r
i
j) + Υ(Γi(t

i
j))

× [hiz(κi(t
i
j),xi(t

i
j), ei(t

i
j), µi(t

i
j))− ei(t

i
j)],

where hiz(κi, xi, ei, µi) = εi + hiz(κi, ei) and xi =
(xip, x

i
r , x

i
c, u

i
f).

C. Time-Scheduling Protocols

Since each network has `i nodes with i ∈ N , the time-
scheduling protocol is introduced to decide the node to access
to the network. Similar to the analysis and the terminology in
[3], the function hiz(κi, ei) in (11) is treated as the protocol.
Based on `i nodes for the i-th network, ei is partitioned into
ei = (ei1, . . . , e

i
`i

). If the li-th node is granted to access to the
i-th network, where li ∈ {1, . . . , `i}, then the corresponding
component eili is updated and the other components are kept
constant. In the literature [3], [13], many time-scheduling
protocols can be modeled as hiz(κi, ei), and two commonly-
used protocols are recalled.

The first one is the Round-Robin (RR) protocol [13]. The
period of the RR protocol is `i, and each node has one and
only one chance to access to the i-th network in a period.
The function hiz is given by

hiz(κi, ei) := (I −Ψi(κi))ei(t
i
j) + Ψi(κi)εi(t

i
j),

where, Ψi(κi) = diag{Ψi
1(κi), . . . ,Ψ

i
`i

(κi)} and Ψi
li

(κi) ∈
Rnli

×nli ,
∑`i
li=1 nli = nie. Ψi

li
(κi) = I if κi = li + `i with

 ∈ N and li ∈ {1, . . . , `i}; otherwise, Ψi
li

(κi) = 0.
The second one is Try-Once-Discard (TOD) protocol [25].

For the TOD protocol, the node with a minimum index where
the norm of the local network-induced error is the largest is
to access to the network. The function hiz is given by

hiz(κi, ei) := (I −Ψi(ei))ei(t
i
j) + Ψi(ei)εi(t

i
j),

where, Ψi(ei) = diag{Ψi
1(ei), . . . ,Ψ

i
`i

(ei)}, and Ψi
li

(ei) =
I if min

{
arg max1≤k≤`i |eik|

}
= li; otherwise, Ψi

li
(ei) = 0.

IV. DEVELOPMENT OF HYBRID MODEL

After the presentation of the information transmission, we
construct the hybrid model for the event-triggered tracking
control of NQCS in this section. Since our objective is
to guarantee the convergence of xp towards xr, we define
the tracking error η := xp − xr ∈ Rnp , and the auxiliary
variable ea := (eη, ec) := (ep − er, ec) ∈ Rna with the
network-induced errors ep, er, ec defined in Section III, where
na = ny + nc. Combining all the variables and analyses in

Subsection III-B, we derive the following impulsive model:

η̇ = Fη(δ, η, xc, xr, ea, ef, er)

ẋc = Fc(δ, η, xc, xr, ea, ef, er)

ẋr = Fr(δ, xr, ef), µ̇ = 0

ėa = Ga(δ, η, xc, xr, ea, ef, er)

ėr = Gr(δ, η, xc, xr, ea, ef, er)

ėf = Gf(δ, η, xc, xr, ea, ef, er)


ti ∈ [rij , r

i
j+1], (12a)

µi(r
i
j

+
) = Ωiµi(r

i
j), δi(r

i
j

+
) = δi(r

i
j),

eia(r
i
j

+
) = eia(r

i
j) + Υ(Γi(t

i
j))[−eia(tij)

hia(κi(t
i
j), xi(t

i
j), ei(t

i
j), µi(t

i
j))],

eir(r
i
j

+
) = eir(r

i
j) + Υ(Γi(t

i
j))[−eir(tij)

+ hir(κi(t
i
j), xi(t

i
j), ei(t

i
j), µi(t

i
j))],

eif(r
i
j

+
) = eif(r

i
j) + Υ(Γi(t

i
j))[−eif(tij)

+ hif(κi(t
i
j), xi(t

i
j), ei(t

i
j), µi(t

i
j))],

(12b)

where ei := (eia, e
i
r , e

i
f), hia = (hip − hir , h

i
c), h

i
r = hir and

hif = hif . δ := (δ1, . . . , δN ) ∈ RN , and δi ∈ R≥0 is to model
the ‘continuous’ time of the i-th network and depends on uif
and/or its differential [14], [15]. All the functions in (12a)
can be derived by relevant calculations. Now, our objective
is to derive reasonable conditions and ETMs simultaneously
to guarantee ISS of the system (12) from (er, ef) to (η, ea).

To facilitate the analysis afterwards, we transform (12)
into a hybrid model in the formalism of [23]. Define
x := (η, xc, xr) ∈ Rnx and e := (ea, er, ef) ∈ Rne with
nx = np + nc + nr and ne = na + ny + nu. Define
m := (m1, . . . ,mN ) ∈ Rne with mi := hi(κi, ei) − ei ∈
Rni

e storing the information for the update, where ei :=
(eia, e

i
r , e

i
f) and hi := (hia, h

i
r , h

i
f) are defined in (12). Let

κ := (κ1, . . . , κN ) ∈ RN with κi ∈ N defined in (10);
µ := (µ1, . . . , µN ) ∈ RL with L :=

∑
i∈N `i and µi ∈ R

defined in (7)-(8); τ := (τ1, . . . , τN ) ∈ RN with τi ∈ R
defined as a timer to record both sampling intervals and
transmission delays for the i-th network; b := (b1, . . . , bN ) ∈
RN with bi ∈ {0, 1} to show whether the next jump is from
the sampling event or the update event. That is, for the i-
th network, bi = 0 means that the next event will be the
sampling event, while bi = 1 means that the next event will
be the update event. Denote X := (x, e, µ,m, δ, τ, κ, b) ∈
R := Rnx ×Rne ×RL×Rne ×RN ×RN ×RN ×{0, 1}N ,
and the hybrid model is given by{

Ẋ = F (X), X ∈ C,
X+ = G(X), X ∈ D,

(13)

where C :=
⋃N
i=1 Ci, D :=

⋃N
i=1(D1i ∪D2i),

Ci := {X ∈ R : (bi, τi) ∈ ({0} ×Ti) ∪ ({1} ×∆i)},
D1i := {X ∈ R : (bi, τi) ∈ {0} × [εi, Ti]},
D2i := {X ∈ R : (bi, τi) ∈ {1} ×∆i},

and Ti := [0, Ti],∆i := [0,∆i] with Ti > 0 and ∆i ≥ 0
from Assumption 2. The mapping F in (13) is defined as

F (X) := (f(δ, x, e), g(δ, x, e), 0, 0,E,E, 0, 0), (14)



where f := (Fη, Fr, Fc) and g := (Ga, Gr, Gf) are derived
from (12a). The mapping G in (13) is defined as

G(X) :=

{
G1(X), X ∈ D1,

G2(X), X ∈ D2,
(15)

with G1(X) =
⋃N
i=1G1i(X), D1 =

⋃N
i=1D1i, G2(X) =⋃N

i=1G2i(X), D2 =
⋃N
i=1D2i, and

G1i(X) :=





x

e

µ

M1i(x, e,m, κ)

δ

Λiτ

κ+ Υ(Γi)(I − Λi)E

b+ (I − Λi)E


, X ∈ D1i,

∅, X /∈ D1i,
(16)

G2i(X) :=





x

Ei(x, e,m, κ)

Ωiµ

M2i(x, e,m, κ)

δ

τ

κ

Λib


, X ∈ D2i,

∅, X /∈ D2i,

(17)

where Λi := diag{Λ1
i , . . . ,Λ

N
i } ∈ RN×N with Λki =

0 if k = i ∈ N and Λki = 1 otherwise; Ωi :=
diag{Ω1

i , . . . ,Ω
N
i } ∈ RL×L with Ωk

i = Ωi if k = i ∈ N
and Ωk

i = I otherwise;

M1i(x, e,m, κ) := Φim+ (I − Φi)M1i(x, e,m, κ),

M2i(x, e,m, κ) := Φim+ (I − Φi)M2i(e,m),

Ei(x, e,m, κ) := Φim+ Υ(Γi)(I − Φi)Ei(e,m).

Here, Φi := diag{Φ1
i , . . . ,Φ

N
i } ∈ Rne×ne , M1i :=

(M1
1i, . . . , M

N
1i ) ∈ Rne , M2i := (M1

2i, . . . ,M
N
2i ) ∈ Rne

and Ei := (E1
i , . . . , E

N
i ) ∈ Rne . If k = i, then Φki = 0,

Mk
1i = (1 − Υ(Γi))mi + Υ(Γi)(hi(κi, ei) − ei), Mk

2i =
−ei − mi and Eki = ei + mi. If k 6= i, then Φki = I and
Mk

1i = Mk
2i = Eki = 0.

For the hybrid model (13), the sets C and D are closed.
Since fp, fc, gp and gc are continuous in Subsection III-A,
the functions f and g in (14) are continuous, and thus the
flow map F in (14) is continuous. The jump map G in (15)
is continuous and locally bounded from the continuity of
G1i in (16) and G2i in (17). Hence, we can verify that the
hybrid model (13) satisfies the basic assumptions introduced
in Section II.

V. MAIN RESULTS

In this section, the main results are established. We first
present some necessary assumptions, then design the event-

triggered condition for each network, and finally establish
the convergence of the tracking error.

A. Assumptions

To begin with, two assumptions are presented for the
(ei, µi)-subsystem, and an assumption is given for x-
subsystem under the designed controller.

Assumption 5: There exist a function Wi : Rni
e × R`i ×

Rni
e × N × {0, 1} → R≥0 which is locally Lipschitz

in (ei, µi,mi) for all κi ∈ N, bi ∈ {0, 1}, αi ∈
K∞,  ∈ {1, . . . , 6}, and λi ∈ [0, 1) such that for all
(ei, µi,mi, κi, bi) ∈ Rni

e × R`i × Rni
e × N× {0, 1},

α1i(|eia|) ≤Wi(ei, µi,mi, κi, bi) ≤ α2i(|ei|), (18)
Wi(ei, µi, hi(κi, ei)− ei, κi + 1, 1)

≤ λiWi(ei, µi,mi, κi, 0) + α3i(|eif |) + α4i(|eir |), (19)
Wi(ei +mi,Ωiµi,−ei −mi, κi, 0)

≤Wi(ei, µi,mi, κi, 1) + α5i(|eif |) + α6i(|eir |). (20)
Assumption 6: There exist a continuous function Hibi :

Rnx × Rne → R>0, σ1ibi , σ2ibi ∈ K∞ and Libi ∈ [0,∞)
such that for all (x, κi, bi) ∈ Rnx × N × {0, 1} and almost
all (ei, µi,mi) ∈ Rni

e × R`i × Rni
e ,〈

∂Wi(ei, µi,mi, κi, bi)

∂ei
, gi(δ, x, e)

〉
≤ Hibi(x, e)

+ LibiWi(ei, µi,mi, κi, bi) + σ1ibi(|eif |) + σ2ibi(|eir |).
(21)

Assumptions 5-6 are on the ei-subsystem, whose prop-
erties are described via the function Wi. Assumption 5 is
to estimate the jumps of Wi at the discrete-time instants.
Specifically, (19) is for the successful transmission jumps
(i.e., Γi ≥ 0) at the sampling instants tij , and (20) is for
the update jumps at the arrival instants rij . Assumption 6
is to estimate the derivative of Wi in the continuous-time
intervals, and the coupling is shown via the function Hibi .
Since Assumptions 5-6 are applied to the ei-subsystem, (19)-
(20) hold with respect to the additional items eir and eif , which
are parts of ei and treated as the internal disturbances caused
by the network. Similar conditions have been considered in
existing works [3], [14], [15], where however only a common
communication network and TTC are studied.

Assumption 7: There exist a locally Lipschitz function V :
Rnx → R≥0, α1V , α2V , ζ1ibi , ζ2ibi , ζ3ibi , ζ4ibi ∈ K∞, and
µ, θibi , γibi > 0, L̄ibi ∈ R such that

α1V (|η|) ≤ V (x) ≤ α2V (|x|), ∀x ∈ Rnx , (22)

and for all (ei, µi,mi, κi, bi) ∈ Rni
e×R`i×Rni

e×N×{0, 1}
and almost all x ∈ Rnx ,

〈∇V (x), f(δ, x, e)〉 ≤ −µV (x)−
N∑
i=1

[
H2
ibi(x, e)

+ (γ2
ibi − θibi)W

2
i (ei, µi,mi, κi, bi)−Kibi(x, e, µ,m)

−ϕibi(zi) + ζ1ibi(|eif |) + ζ2ibi(|eir |)
]
, (23)

〈∇ϕibi(zi), f iz(δ, x, e)〉 ≤ L̄ibiϕi(zi) +Kibi(x, e, µ,m)

+H2
ibi(x, e) + ζ3ibi(|eif |) + ζ4ibi(|eir |), (24)



where Hibi is defined in Assumption 6, ϕibi : Rni
z → R≥0

is a locally Lipschitz function with ϕibi(0) = 0, and Kibi :
Rnx × Rne × RL × Rne → R≥0 is a continuous function.

Assumption 7 describes the property of the x-subsystem
via the function V . Under the designed controller, (22)-
(23) imply that the η-subsystem satisfies the ISS-like prop-
erty from (

∑N
i=1Wi, ef, er) to η. This assumption is rea-

sonable due to the implementation of the emulation-based
approach, where the controller is assumed to be known a
priori to ensure the tracking performance robustly in the
network-free case. Hence, in the presence of the network,
(
∑N
i=1Wi, ef, er) is treated as a whole disturbance from the

interior of the plant. Moreover, (24) provides the growth
bound on the derivative of the function ϕibi on the flow. Note
that the information of multiple networks is not required in
Assumption 7, and that the function ϕibi will be applied to
design the ETMs. Finally, for the linear case, Assumptions
5-7 can be represented as a whole linear matrix inequality;
see e.g. [29].

B. Decentralized Event-Triggered Mechanisms

With Assumption 5-7, we next show how to design the
ETM for each network based on the functions Wi and V .
To this end, the function Γi in (11) is defined as a mapping
from Rni

z × Rni
e × R`i × Rni

e × N× {0, 1} to R:

Γi(zi, ei, µi,mi, κi, bi) := (1− 2bi)γibiW
2
i (ei, µi,mi, κi, bi)

− (1− bi)ρiλ̄iϕibi(zi), (25)

where Wi is defined in Assumption 5, ϕibi is defined in
Assumption 7, ρi ∈ R≥0 is a design parameter satisfying
ρi ∈ [0, ρ̄i), and

λ̄i := max

{
λi,

ρiγi0
1− ρiL̄i0

}
, (26)

ρ̄i :=

{
1, L̄i0 ≤ −γi0,
min

{
1, (L̄i0 + γi0)−1

}
, L̄i0 > −γi0,

(27)

with λi in Assumption 5 and γi0, L̄i0 in Assumption 7.
With the function (25), the event-triggered condition is

Γi(zi, ei, µi,mi, κi, bi) ≥ 0. The proposed event-triggered
condition is similar to those in [10], [12], [29] for the
ETC in different contexts. One difference between (25)
and the existing ones lies in the local logical variable bi,
which leads to two cases in (25). Since the case bi =
1 implies that the update event will occur at the arrival
instant, the ETM is not needed and Γi(zi, ei, µi,mi, κi, 1) =
−γi1W 2

i (ei, µi,mi, κi, 1) < 0, which thus implies that
the ETM will not be implemented in this case. In con-
trast, for the case bi = 0, the next event is the trans-
mission event, and the ETM is implemented to deter-
mine whether the sampled measurement will be transmitted.
Hence, Γi(zi, ei, µi,mi, κi, 0) = γi0W

2
i (ei, µi,mi, κi, 0) −

ρiλ̄iϕi0(zi) ≥ 0 will be verified in this case. As a result,
the parameters in (26)-(27) only depend on the case bi = 0,
and all the designed event-triggered conditions are consistent
with the transmission setup and decentralized since only local
information is involved in each event-triggered condition.

Remark 1: In (25), if ρi ≡ 0 for some i ∈ N , then Γi is
always positive, and thus the proposed ETC is reduced to the
TTC as in [14], where Ti is called the maximally allowable
transmission interval. Since all the networks are independent,
both TTC and ETC can be combined by allowing that some
networks perform the TTC while the others perform the ETC,
which is a potential extension of this paper. �

Finally, consider the following differential equation

φ̇ibi = −2Libiφibi − γibi((1 + %ibi)φ
2
ibi + 1), (28)

where i ∈ N , Libi ≥ 0 is given in Assumption 6, and γibi >
0 is given in Assumption 7. In (28), %ibi ∈ (0, λ̄−2

i φ−2
ibi

(0)−
1), and thus the initial values φibi(0) ∈ (1, λ̄−1

i ), where λ̄i is
given in (26). From Claim 1 in [30] and Claim 1 in [15], the
solutions to (28) are strictly decreasing as long as φibi ≥ 0.

C. Tracking Performance Analysis

Now we are ready to state the main result of this section.
Theorem 1: Consider the system (13) and let Assumptions

1-7 hold. If the MASP Ti and the MAD ∆i satisfy

γi0φi0(τi) ≥ (1 + %i1)λ̄2
i γi1φi1(0), τi ∈ Ti, (29a)

γi1φi1(τi) ≥ (1 + %i0)γi0φi0(τi), τi ∈∆i, (29b)

where φibi is the solution to (28) with φibi(0), φibi(Ti) > 0,
then the system (13) is ISS from (er, ef) to (η, ea). That
is, there exist β ∈ KLL and ϕ1 ∈ K∞ such that for all
(t, j) ∈ R≥0 × N,

|(η(t, j), ea(t, j))| ≤ β(|X(0, 0)|, t, j) + ϕ1(‖ef‖(t,j))
+ ϕ2(‖er‖(t,j)). (30)

The proof is omitted due to the space limitation; see
[14], [15] for the similar proof strategy. The proof strat-
egy is to construct the Lyapunov function U(X) :=
V (x) +

∑N
i=1 max{γibiφibi(τi)W 2

i (ei, µi,mi, κi, bi), (1 −
bi)ρiϕibi(zi)} based on Assumptions 5-7, then to show
that the function U(X) is decreasing on the flow and non-
increasing at the jumps, and finally to guarantee the con-
vergence of U(X) via hybrid systems theory [23]. Theorem
1 implies the convergence of the tracking error to a region
around the origin, and the size of the convergence region
depends on the network-induced error (er, ef). If the feed-
forward control inputs are transmitted directly to the plant
and reference system, then ef = 0, ϕ1 ≡ 0, and thus the
convergence region can be further smaller.

Comparing with previous works [4], [14], [15], [19],
[29] on NCS and [16], [17] on MAS, the event-triggered
tracking control problem is studied here for NQCS under
decentralized ETMs and network constraints. In particular,
quantization effects and/or time delays are not considered
in [4], [15]–[17], [19], [29], and the time-triggered tracking
control is addressed in [14], [15]. Therefore, a unified model
is developed here and the tracking performance is achieved
via less communication, which is shown via the numerical
example in the next section.



Fig. 1. Tracking errors under the RR protocol case and the ETMs (33),
where T1 = T2 = 0.01 and ∆1 = ∆2 = 0.0015.

VI. NUMERICAL EXAMPLE

Consider two connected single-link robot arms, whose
dynamics are presented as (i = 1, 2)

q̇i1p = qi2p ,

q̇i2p = −ai sin qi1p +
2∑
j=1

bij(q
1j
p − q2j

p ) + ciui,
(31)

where qip := (qi1p , q
i2
p ) ∈ R2 with the configuration coordi-

nate qi1p and the velocity qi2p , both of which are measurable,
ui ∈ R is the input torque, and ai, ci > 0, bij ∈ R are certain
constants. The references are given by

q̇i1r = qi2r ,

q̇i2r = −ai sin qi1r +

2∑
j=1

bij(q
1j
r − q2j

r ) + ciu
i
f ,

(32)

where qir := (qi1r , q
i2
r ) ∈ R2 are the measurable reference

state, and uif = 5 sin(5t) is the feedforward input. In the
network-free case, the feedback controller is designed as
uic = −c−1

i [ai(sin(qi1p )−sin(qi1r ))−(qi1p −qi1r )−(qi2p −qi2r )]
such that the tracking error is asymptotically stable.

Here, we consider the case that the communication be-
tween the controller and the plant is via the ETMs and two
communication networks and quantizers. The controller is
applied via the ZOH devices and the networks are assumed
to have `i = 3 nodes for qi1p , qi2p and ui, respectively. Set
maxi∈{1,2},j∈{1,2,3} n

i
j = 0.8 and maxi∈{1,2},j∈{1,2,3} Ωij =

0.6. Hence, the applied feedback controller is given by
uic = −c−1

i [ai(sin(q̂i1p )−sin(q̂i1r ))−(q̂i1p − q̂i1r )+(q̂i2p − q̂i2r )].
uif is assumed to be transmitted to (32) directly, and q̂i1r , q̂

i2
r

are implemented in the ZOH fashion. That is, uic knows but
does not depend on qi1r , q

i2
r .

Based on (31)-(32), we obtain that Fη = (F 1
η , F

2
η ) with

F iη = (ηi2,−ai[sin(ηi1 + qi1r ) − sin(qi1r ) − sin(ηi1 + qi1r +
ei1η + ei1r ) + sin(qi1r + ei1r )] − (ηi1 + ei1η ) − (ηi2 + ei2η ) +∑
j=1,2 bij(η1j − η2j) + cie

i
f + cie

i
c), Fr = (F 1

r , F
2
r ) with

F ir = (qi2r ,−ai sin qi1r +
∑
j=1,2 bij(q

1j
r − q2j

r ) + ciu
i
f),

Ga = (−Fη, 0), Gr = −Fr and Gf = −(u̇1
f , u̇

2
f ). In

addition, |Gia| ≤ Di|ei| + |ηi2| + |(bi1 − 1)ηi1 + (bi2 −
1)ηi2| + |bi1η(3−i)1| + |bi2η(3−i)2| + 2ai|eir| + ci|eif | with
Di =

√
3 max{1 + ai, ci}. From [14], we choose the

appropriate Lyapunov function Wi(ei, µi,mi, κi, τi, bi). For

Fig. 2. Tracking errors under the TOD protocol case and the ETMs (33),
where T1 = T2 = 0.014 and ∆1 = ∆2 = 0.0025.

instance, Wi(ei, µi,mi, κi, τi, bi) := ωi|eia| + |µi| for the
TOD protocol, where ωi ∈ (0, (1 − maxj Ωij)/maxj n

i
j).

|∂W (ei, µi,mi, κi, τi, bi)/∂ei| ≤Mi with Mi =
√
`i for the

RR protocol case and Mi = 1 for the TOD protocol case.
Assumption 5 holds with λi = max{

√
(`i − 1)/`i, ωimin

i
j+

Ωij} and α3i = α4i = α5i = α6i = 0. Assumption 6
holds with Li0 = MiDi, Li1 = M2

i Di/λi, Hi0(x, e) =
Hi1(x, e) = Mi(|ηi2| + |(bi1 − 1)ηi1 + (bi2 − 1)ηi2| +
|bi1η(3−i)1|+ |bi2η(3−i)2|), σ1i0(v) = σ1i1(v) = ciMiv and
σ2i0(v) = σ2i1(v) = 2aiMiv for v ≥ 0.

To verify Assumption 7, define V (η) :=
∑2
i=1 φi1η

2
i1 +

φi2ηi1ηi2 + φi3η
2
i2, where φi1, φi2, φi3 are chosen to make

V satisfy (22). Assume that there exist time-varying pa-
rameters âi, ãi ∈ [−ai, ai] such that ai[sin(ηi1 + qi1r ) −
sin(ηi1 + qi1r + ei1η + ei1r )] = âi(e

i1
η + ei1r ) and ai[sin(qi1r )−

sin(qi1r + ei1r )] = ãie
i1
r . Thus, using twice the fact that

2ab ≤ ca2 + b2/c for all a, b ≥ 0 and c > 0, we get that
〈∇V (η), Fη(δ, x, e, µ)〉 ≤

∑2
i=1[−φi1η2

i1 + (2φi1 − 2φi3 −
φi2)ηi1ηi2 − (2φi3 − φi1)η2

i2 + (φi2ηi1 + 2φi3ηi2)(bi1(η11 −
η21)+bi2(η12−η22))+0.5(%−1

i0 +%−1
i1 )(φi1ηi1 +2φi3ηi2)2 +

0.5%i0Di|ei|2 + %i1(4a2
i |eir |2 + c2i |eif |2)], where %i0, %i1 >

0 are defined in (28). Therefore, if φ1, φ2, φ3 are chosen
such that (22) holds and −H2

ibi
(x, e) − Kibi(x, e, µ,m) −

ϕibi(zi) ≥ −φi1η2
i1 + (2φi1 − 2φi3 − φi2)ηi1ηi2 − (2φi3 −

φi1)η2
i2 + (φi1ηi1 + 2φi3ηi2)(bi1(η11 − η21) + bi2(η12 −

η22))+0.5(%−1
i0 +%−1

i1 )(φi1ηi1 +2φi3ηi2)2, then Assumption
7 is verified with θibi(v) = πiv

2, γi0 =
√
πi + %i0D2

i ,
γi1 =

√
πi + %i1MiD2

i /λ
2
i , ζ1ibi(v) = %i1a

2
i |v|2, ζ4ibi(v) =

%i1a
2
i |v|2 and πi > 0 is arbitrarily small.

To satisfy the aforementioned conditions, we choose
φ11 = 8, φ12 = 12, φ13 = 6, φ21 = 5, φ22 = 7, φ23 =
9, a1 = 9.81 ∗ 0.2, a2 = 9.81 ∗ 0.3, c1 = 2, c2 = 4, πi =
0.005, %i0 = 0.05 and %i1 = %i0Mi/λ1. Thus, L10 =
8.8860, L11 = 18.8501, L20 = 12, L21 = 25.4558, γ10 =
22.9436, γ11 = 48.6706, γ20 = 30.9839, γ21 = 65.7267 for
the RR protocol case; L10 = 5.1303, L11 = 10.8831, L20 =
6.9282, L21 = 14.6969, γ10 = 22.9436, γ11 = 28.1, γ20 =
30.9839, γ21 = 37.9473 for the TOD protocol case. By the
detailed computation, ρ1 = 0.0501 and ρ2 = 0.0371 for RR
and TOD protocols. Hence, ρi ∈ (0, ρi), and the ETM is

Γi = −biγi|(eiη, eir , µi)|2 + (1− bi)ρiλ̄i|ηi|2 ≥ 0. (33)

Set φ10(0) = φ11(0) = 1.1023 and φ20(0) = φ21(0) =
0.8816 for the RR protocol case, and we have T1 =



TABLE I
COMPARISON OF TRANSMISSION NUMBERS IN DIFFERENT TRIGGERING

CASES

Network Event-triggering Time-triggering
RR case TOD case [14], [15]

Network 1 887 1606 2000
Network 2 1448 1838 2000

0.0256,∆1 = 0.0064, T2 = 0.0161, and ∆2 = 0.0026.
Set φ10(0) = φ11(0) = φ20(0) = φ21(0) = 1.0468 for
the TOD protocol case, and we have T1 = 0.0279,∆1 =
0.00445, T2 = 0.02115, and ∆2 = 0.0032. To simplify the
simulation, the transmission intervals and the transmission
delays are constants. Under the ETM (28), Figs. 1-2 show
the convergence and boundedness of tracking errors in RR
and TOD protocol cases, respectively.

The numbers of information transmission in different cases
are presented in Table I. Note that we consider 23 units of
time for the RR case and 32 units of time for the TOD
case. Therefore, the transmission numbers are the same (2000
times) in the time-triggered case [14], [15], whereas the
transmission numbers are reduced to different extents in the
event-triggered case. In particular, the transmission numbers
of two networks in the RR case are less than these in the
TOD case.

VII. CONCLUSIONS

We presented a Lyapunov-based emulation approach for
the event-triggered tracking control problem of NQCS, where
the information communication is via multiple asynchronous
networks. To deal with the considered problem, we pro-
posed a new hybrid model, and then established sufficient
conditions and designed decentralized event-triggered mech-
anisms. The tradeoff between the MASP and the MAD
was determined to guarantee the tracking performance. The
effectiveness of the proposed approach was illustrated via a
numerical example.
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