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A Causal Model-based Planner for the Reconfiguration
of Continuous Processes

Christopher Reinartz1, Thomas Thuesen Enevoldsen1, Roberto Galeazzi1 and Ole Ravn1

Abstract— This paper presents a planning framework for
discrete planning of human operations in highly automated
industrial plants, where manual and automatic control coexist.
Based solely on qualitative knowledge of the controlled contin-
uous process represented through signed directed graphs, the
planner exploits a greedy algorithm to determine the optimal
action for the human operator upon changes in the process’
operating conditions or reconfiguration of the control system
due to faulty conditions. The planner results in a decision
support tool that instructs the human operator on the best
course of action. The planning framework and the resulting
planner are demonstrated on a quadruple-tank system.

I. INTRODUCTION

The operation of large industrial plants involves the in-
teraction between human operators and automated control
systems. The goal is to ensure production on a high level
of consistency, safety and economic efficiency that cannot
be achieved by either manual or fully automatic control.
Unit operations are commonly controlled using distributed
control schemes, with Supervisory Control and Data Ac-
quisition (SCADA) systems enabling human operators to
issue process commands. In nominal operation, the operator
configures the system for maximum profitability. In the
event of abnormal system behaviour the operator ensures
the return to safe operation or initiates the shut-down of
the plant. Current trends towards increased automation and
decreased human supervision of process plants challenge
this established method of operation. Increased automation
entails increased instrumentation and monitoring, which, in
theory, improves plant supervision capabilities. In practice,
the amount of monitoring exceeds what an operator can
process, leading to cognitive overload that can result in
slow or incorrect decision making, especially in unforeseen
situations. Automated condition monitoring and decision
support systems can be used to reduce the occurrence of such
situations by providing contextual information that facilitates
the decision making. The last decades have seen significant
progress in both quantitative model-based and data-driven
fault diagnosis, but the scalability of quantitative process
models to plant-scale and the lack of interpretability of
results generated from data-driven methods remain known
drawbacks. The demand for methods that yield explainable
results on a plant-scale requires re-evaluation and extension
of approaches that were previously shown to be capable of
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satisfying these properties, such as causality-based diagnosis
and reasoning systems [1].

Causal process models have been considered for root-
cause analysis and process supervision for a long time [2],
and nowadays, improved automated generation and valida-
tion techniques enable their application for a wide range of
processes. [3] presents the generation of causal models in
form of hierarchically structured directed graphs based on
transfer entropy, while [4] uses a Bayesian model to identify
optimal causal network structures for root-cause diagnosis. A
method for semi-automated generation of causal functional
models from existing documentation of plant topology in the
form of P&ID diagrams is presented in [5]. [6] presents how
cross-correlation and transfer entropy can be used to validate
manually or semi-automated models using process data.

The development of applications utilizing causal models
proceeded concurrently to the development of new modeling
strategies with a strong focus on techniques for root-cause
analysis of process faults. [4], [7] and [8] use causal graphs
for fault detection and root-cause analysis of a chemical
engineering benchmark process, highlighting the capability
of causal models to diagnose faults for which no historic pro-
cess data is available. The recent successes in the generation
of causal models and their use in process diagnosis promotes
an investigation of their further applicability for decision
support, especially in areas where other approaches perform
poorly, such as the automatic actuation and reconfiguration
of complex processes with limited quantitative knowledge. A
scheduling approach for coke gas systems based on a joint
application of causal-models and least-squares support vector
machines is proposed by [9].

A. Novelty and contribution

The paper proposes a novel planning framework for the
operation of continuous processes during transitions between
steady-states, where automatic and manual control contribute
to the regulation. A causal model in form of a signed directed
graph is created to describe the qualitative knowledge about
the impact of manual and automatic control actions onto
the process variables. This is encoded in an effect ma-
trix generated through an algorithm that propagates steady-
state process responses to disturbances and deliberate state
changes in the presence of control loops. A greedy planner
is adopted to find the locally optimal operator action based
on the minimization of a cost functional. The planner thus
results in a decision support tool for operators that suggests
the best course of action during changes in operating points
or process reconfiguration due to the occurrence of faults.



II. PLANNING FRAMEWORK

To design a planning framework that can mimic an oper-
ators role in process supervision, the planning environment
has to be set-up, such that the operators perception of the
system and his/her means of influence are represented. It is
assumed that the system under investigation is a continuous
process with input-dependent stationary operating points and
that the operator has complete knowledge of the means of
influencing the process, e.g. set-point changes or manual
adjustment of manipulated variables, and that he/she has at
least qualitative knowledge about the effects of said means.

The planning framework should be capable of defining
a plan based on qualitative effects, while remaining open
to extensions that integrate quantitative knowledge, such as
transition times and magnitudes. To remain open to such
extensions, the planning environment has to be quantitative
rather than qualitative. The following sections define the
main constituents of the planning framework.

A. State space

The state of a process, as an operator can perceive it,
is defined by the available process variables, meaning mea-
surements and manipulated variables. Each process variable
is bounded with known bounds. The state x is defined
as the vector containing a specific value for each process
variable xi ∈ [xi,min, xi,max]. The state space X ⊆ XB =
{[x1, ..., xn]|xi ∈ [xi,min, xi,max]} is the set of all possible
states the system can assume. If unity-based normalization
is applied to the process variables, the state space can be
defined as X ⊆ XB = [0, 1]n, where n is the number
of process variables. The state space X is the subset of
of all valid process configurations within the n-dimensional
cubic space XB that is formed by the bounds of the process
variables or, if only steady state operation is considered, the
subset of all valid steady state configurations of the process.
It is not possible to determine the exact shape of the subset
without quantitative knowledge of the system dynamics. For
steady state analysis it is possible to infer that the state
space forms a p-dimensional manifold within XB , where
p is equal to the degrees of freedom of the process. This
follows directly from the observation that for each unique
configuration of independent manipulated variables, and thus
degrees of freedom, the process will assume a unique station-
ary operating point, if the manipulated variables themselves
are included in the definition of the state.

B. Action space

The action space U contains all actions available to the
operator in a given situation. Some actions might only be
available for specific process configurations, resulting in a
state-dependent action space. Every action is defined as a
tuple (u′i, δui) of action identifier and action magnitude.
A typical example of an operator action, taking manual
control of a valve position, could e.g. be described by the
tuple (’open valve’, 10%). The operator has the option of
either increasing or decreasing any manipulated variable,
including control set-points, in the process. While decreasing

a manipulated variable can be represented by a negative
δu, it was decided to create separate actions for increasing
and decreasing actions, thus only allowing δu > 0. The
magnitude of each action is bounded by the difference
between the current state of the manipulated variable and its
maximum or the current state and its minimum for increasing
and decreasing actions, respectively.

C. Representing qualitative effects

In the context of this paper, a qualitative effect is defined
as an effect with a known direction of change but unknown
magnitude, which can be described by non-deterministic
state transitions [10]. Considering future extensions of the
planner that feature quantitative information, describing state
transitions non-deterministically seems impractical. Instead,
a deterministic state transition model that uses process feed-
back to account for uncertainty about the effect-magnitude
is used in this contribution.

D. State-transition function

The qualitative effects of all actions are summarized in an
effect matrix G(x) = [(gT (x, u1), ..., g

T (x, um)]T , an m×n
matrix for action and state spaces of m and n dimensions,
respectively. The state transition, without explicitly modeling
uncertainty, is written as x′ = f(x, u) = x + δug

T (x, u).
The uncertainty about the state transition can be modeled
explicitly as a nature action θ, which is a natural extension of
the presented planning framework, but not considered further
in this contribution.

E. Effect matrix

As mentioned in Section II-D, the effect matrix sum-
marizes the qualitative effect of the actions in the action
space on all variables in the state vector. Considering only
qualitative effects, actions must either increase or decrease
variables or leave them unaffected, so that the configuration
s of any process variable following an action must be within
the set {1, 0,−1}, where 1, 0 and -1 encode “increased”,
“not affected” and “decreased”, respectively. Given a causal
model of a system in form of a signed directed graph G =
(V,E), for which the set of vertices V includes the measured
and manipulated process variables and the set of signed
edges E describes their causal relations, the propagation
of effects originating in single process variables through
the system can be estimated using graph propagation, as
shown by [11]. Simple graph propagation, however, does not
consider the influence of control systems correctly and thus
leads to spurious results. Different approaches to describe
control systems in causal models have been presented in
e.g. [3] and [12], but typically involve additional modeling
effort. The propagation strategy presented in this paper in
Algorithm 1 correctly derives the steady-state development
of variables in closed-loop systems given knowledge of
the active control-loops. Control loops are indicated in the
causal model by marking controlled variables as “controlled”
and by labeling the edges from controlled to manipulated
variables as “control edges”. It is further assumed that the



Algorithm 1: propagate configuration
Given: G = (V,E), vstart ∈ V , s (vstart) ∈ {−1, 0, 1, {}}

1 A← [vstart], D ← {vstart}
2 while A 6= {} do
3 v ← A.pop first()
4 if is controlled(v) then
5 e← find control edge(G, v)
6 (v, w)← e
7 if w /∈ D then
8 s(w)← s(v) · sgn(e)
9 s(v)← 0

10 D ← D ∪ w
11 A.append(w)
12 continue

13 forall {e = (u,w) ∈ E|u = v} do
14 if w /∈ D then
15 s(w)← s(u) · sgn(e)
16 D ← D ∪ w
17 A.append(w)

18 forall v ∈ V do
19 if s(v) = {} then
20 s(v)← 0

configuration of a node is determined through the shortest
path from the root of the propagation, which is enforced by
maintaining a set D of already visited “dead nodes” while
propagating using a breadth first approach that maintains a
list of active nodes A. An example of the derivation of an
effect matrix is provided in Section IV-B.

F. Representing time

The inclusion of qualitative effects in the action space
entails that the duration of the actions can typically not be
estimated. Thus, it is sufficient to represent the sequence of
actions by an increasing stage index k.

G. Formalization

Having introduced the different components of the planner,
we can now formalize the planning framework. The state
space X is a nonempty, uncountably infinite set representing
all possible states the system under investigation could
assume. The action space U is a finite, nonempty set of,
possibly state dependent, actions. The action space includes
a termination action uT , which does not result in a state
change and is applied when the current state is within the
goal set XG. The state transition function yields a new state,
given the current state and action. A set of stages k denotes
the relative temporal ordering of the states that are part of the
devised plan. An explicit initial state xI ∈ X is defined for
each application of the planning problem. Different from the
initial state, the goal set XG ⊂ X is defined as a continuous
region. The cost L as a function of a state history x̃F and
action history ũK is defined as the sum of the state and action
dependent transition costs l(x, u) and the cost associated
with the state that is reached after the execution of the plan,
which is defined as a potential function φ(x) on the state
space.

1) State space: X ⊆ XB = [xi,min, xi,max]
n

2) Action space: U(x) = [(u1, δu,1), ..., (um, δu,m), uT ]

3) State transition function:
x′ = f(x, u) = x+ δu · gT (x, u)

4) Stages: k = 1, 2, ...,K + 1, F = K + 1
5) Initial state: xI ∈ X
6) Goal set: XG ⊂ X
7) Cost functional:

L(x̃F , ũK) =
∑K
k=1 l(xk, uk) + φ(xF )

l(xk, uk) ≥ 0
φ(x) ≥ 0,∀x ∈ X φ(x) = 0, iff x ∈ XG

III. QUADRUPLE-TANK SYSTEM

The quadruple-tank system is a multivariate laboratory
process presented by [13]. The process consists of four water
tanks, which are setup as shown in Fig. 1, where the water
level hi for all tanks is defined on the interval [0, 0.2] meters,
the valve voltages v1 and v2 between [0, 6] volts, and the
relative valve positions γ1 and γ2 between [0, 1].

The system is described by the following set of equations
dh1
dt

= − a1
A1

√
2gh1 +

a3
A1

√
2gh3 +

γ1k1
A1

v1 (1)

dh2
dt

= − a2
A2

√
2gh2 +

a4
A2

√
2gh4 +

γ2k2
A2

v2 (2)

dh3
dt

= − a3
A3

√
2gh3 +

(1− γ2) k2
A3

v2 (3)

dh4
dt

= − a4
A4

√
2gh4 +

(1− γ1) k1
A4

v1, (4)

The simulations are based on the controller and plant param-
eters specified in [13], with additional outputs for the water
levels h3 and h4. A clamping-based anti-windup scheme is
added to improve the performance of the integrator of the
implemented PI-controllers after extended periods of non-
rejectable steady-state error.

The voltages v1 and v2 are used by PI regulators to
regulate the water levels h1 and h2, while the valve positions
γ1 and γ2 are manipulated variables available to the human
operator to act on the process. When modifying the valve
positions, it has to be considered that the system is only
minimum phase for γ1+γ2 > 1, and that control performance
degrades for other configurations. Measurement noise on
the four tank levels is introduced as white Gaussian noise
N (0, σ2) with σ = 0.25mm.

(
1

−
γ
2
)

(
1

−
γ
1
)

γ2γ1

h4h3

h2h1 v2
v1

Fig. 1: Quadruple-tank system

IV. CASE-STUDY

The presented planning framework combined with a
greedy planner, which operates using a strict best-first ap-
proach [10], is applied to the quadruple-tank system. The



modeling uncertainty is expressed implicitly by using im-
mediate state-feedback after a one-stage planning process.
To emulate a human operator in the loop, a reference signal
generator is used to translate the actions recommended by
the greedy planner into set-points following a ramp profile
for the control-references and valve positions. The slopes for
the reference signals are set as 2.5e−4ms−1 and 2e−4s−1 for
the water levels and valve positions, respectively to consider
the dynamics of the controlled system.

A. State and action space

The eight process variables h1, h2, h3, h4, v1, v2, γ1, γ2
define a state space X = [0, 0.2]4 × [0, 6]2 × [0, 1]2, based
on the bounds of the water levels, voltages and valve
positions. Applying normalization, the state space becomes
Xnorm ⊂ [0, 1]8. In case of nominal closed-loop control,
an operator can influence the process by changing set-points
for h1 and h2 and manually interfacing with the process
through γ1 and γ2, so that the set of actions becomes
U = {h+1 , h+2 , γ+1 , γ+2 h−1 , h−2 , γ−1 , γ−2 }, where the super-
scripts ’+’ and ’-’ denote ”increase” and ”decrease”. The
magnitude of all actions in the normalized space is set to
δu = 0.005, so that the state transition function described in
Section II-D becomes f(x, u) = x+ 0.005gT (x, u).

B. Causal graph and effect matrix

The causal model for the quadruple-tank system, repre-
sented by the signed directed graph shown in Fig. 2, is
generated from (1)-(4) using the procedure shown by [11]
for the extraction of signed directed graphs from differential
equations. For the differential equation

dxi
dt

= fi(x1, ..., xn), (5)

the sign of edges of causally connected variables is given by

sgn (xj → xi) = sgn
[
∂fi/∂xj

∣∣
x0
1,...,x

0
n

]
, (6)

where ”sgn (xj → xi)” is the sign of the edge from xj to
xi. Graphs derived in this manner typically include both
cycles and self-cycles if applied to the analysis of continuous
processes. Cycles occur when closed-loop control systems
or recycle streams are represented, while self-cycles arise if

Fig. 2: Signed directed graph representing the qualitative
causal relations of the quadruple-tank system in closed-loop.
Green edges represent information transfer inside control
loops. Self-loops are not shown. Positive and negative edges
are indicated by continuous and dashed lines, respectively.

the derivative of a variable directly depends on the variable
itself, as e.g. the water levels h1-h4 in (1)-(4). We rely on
Algorithm 1 to correctly describe the effect of loops and self-
loops for steady-state propagation, resulting in the following
effect matrix for the system in closed-loop operation

Gcl(x) =



h1 h2 h3 h4 v1 v2 γ1 γ2

h+
1 1 0 −1 1 1 −1 0 0
h+
2 0 1 1 −1 −1 1 0 0
γ+
1 0 0 1 −1 −1 1 1 0
γ+
2 0 0 −1 1 1 −1 0 1
h−
1 −1 0 1 −1 −1 1 0 0
h−
2 0 −1 −1 1 1 −1 0 0
γ−
1 0 0 −1 1 1 −1 −1 0
γ−
2 0 0 1 −1 −1 1 0 −1


. (7)

To clarify, the steady-state propagation of an increase of
the control set-point for the tank level h1, summarized in
the first row of (7), is described. The graph propagation is
initialized by setting the configuration of the manipulated
variable belonging to the control-loop of tank 1 to s(v1) = 1
and marking node v1 as a dead node. The graph propagation
along the edges (v1, h1) and (v1, h4) yields s(h1) = 1
and s(h4) = 1. In the subsequent iteration, the control
edge (h1, v1) is not propagated because v1 was previously
marked as a dead node, but the propagation along (h4, h2)
results in s(h2) = 1. Because h2 is a controlled variable,
the corresponding subroutine in Algorithm 1 is activated,
resulting in the assignment s(v2) = −1 through the control
edge (h2, v2) and subsequent reassignment of s(h2) = 0,
indicating that the configuration of h2 will not change once
dynamics have settled, because the controller eventually
rejects the disturbance. The final assignment yields s(h3) =
−1 along the edge (v2, h3), since s(v2) = −1 was set in
the previous iteration. The iteration terminates following the
assignment of h3, because there are no edges leading to
nodes that are not marked as dead from h3, leading to the
default assignments s(γ1) = 0, s(γ2) = 0 for the remaining
two variables.

C. Cost function
It is assumed that state transitions entail no cost, so that

the cost of an action is defined as the cost of the resulting
state, φ(x′). The potential function serving as a heuristic for
the cost of a state, φ(x), is defined as the Euclidean distance
between the state and an ideal goal state xG ∈ XG, i.e.
φ(x) = ||x − xG||2. The cost function is not applied to the
full state vector, but to a subset of goal variables of the state
vector for which the goal state is known prior to the execution
of the plan. For the quadruple-tank system, a typical subset of
goal variables is {h1, h2, h3, h4}. The termination criterion
is met if the state lies within the defined goal set.

D. Greedy algorithm
The implemented planner searches using a greedy best-

first approach, as presented by [10]. At each planning step,
m potential new states are evaluated, where m is the number
of applicable actions in the current measured state x. The
locally optimal action ubest = argminu(l(x, u)+φ(g(x, u)))
is chosen for execution until the next iteration of the planning
algorithm.



E. Scenarios

Scenario 1, displayed in Fig. 4 describes the planning for
a change in operating point during nominal operation that
cannot be handled by changing only the control inputs v1 and
v2 for h1 and h2, but requires process modifications outside
the nominal control scheme. Scenario 2 describes the same
change in operating point as Scenario 1, and additionally
imposes constraints on the valid region of the state space,
requiring that the water level h2 < 0.11m, until the level
in tank 1 satisfies h1 > 0.13m. This constraint is im-
posed by defining a rectangular obstacle region Xobstacle =
[0m, 0.13m]× [0.11m, 0.2m] in the h1, h2 subspace of the
state space, which has to be avoided by the planner. This
scenario is meant to demonstrate how operational constraints
can be represented in the planning framework. Fig. 3 shows
the different developments of the water levels in tanks 1
and 2 that result from the additional constraints. Scenario
3 describes a reconfiguration of the process in case of a
diagnosed partial failure of pump 1. The pump capacity is
reduced by 75% at t = 200s, leading to a situation in which
the desired set-points of the water levels in the bottom tanks
cannot be reached and in which h1 is no longer controlled,
since pump 1 constantly operates at maximum efficiency.
This new configuration is accounted for by removal of the
control edge (h1, v1) in the causal graph and calculation of
a new effect matrix using Algorithm 1, which yields

Gpf (x) =



h1 h2 h3 h4 v1 v2 γ1 γ2

h+
2 1 1 1 0 0 1 0 0
γ+
1 1 0 −1 −1 0 1 1 0
γ+
2 −1 0 −1 0 0 −1 0 1
h−
2 −1 −1 −1 0 0 −1 0 0
γ−
1 −1 0 1 1 0 −1 −1 0
γ−
2 1 0 1 0 0 1 0 −1

. (8)

The goal of the planning algorithm is to reconfigure the
system such that the water levels in the bottom tanks are
returned to the states they were at before the pump failure.
Fig. 5 shows the reconfiguration of the system after the
activation of the planner at t = 1000 to the desired goal state
by compensating for the lack of pump 1 with an increase of
the flow through pump 2 and an adjustment of the three-
way valves γ1 and γ2. The initial and ideal goal states for
the scenarios are summarized in Table I. The set of relevant
goal variables is reduced from {h1, h2, h3, h4} in the first
two scenarios to {h1, h2} in the third scenario to account
for the reduced number of degrees of freedom resulting from
the partial pump failure. The bounds of the goal sets XG are
shown as dashed grey lines in Fig. 3, 4 and 5.

TABLE I: Initial and goal states for the tested scenarios.
’-’ indicates variables not included in the goal set.

h1 h2 h3 h4 v1 v2 γ1 γ2

xI,S1,2 0.1 0.1 0.0025 0.05 4.20 1.16 0.59 0.59
xG,S1,2 0.15 0.15 0.001 0.0025 - - - -
xI,S3 0.16 0.16 0.004 0.07 5.26 1.53 0.6 0.6
xG,S3 0.16 0.16 - - - - - -
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Fig. 3: Comparison between Scenario 1 (blue) and 2 (red),
representing a change of operating point without and with
constraints. Dashed lines indicate the goal region.

F. Results

The planner finds a feasible path from the initial to the
goal configuration for all presented scenarios. Scenario 2
illustrates that operational constraints can be considered as
part of the planning scheme as long as they can be formulated
as obstacles in the state space. Scenario 3 shows that the
planning framework is capable of re-configuring the system
in a fault scenario, if it is provided with the information
about the source of the fault. In practice, this requires a fault
diagnosis scheme which is capable of fault isolation.

G. Discussion

The planner activates in three situations: (i) the operator
changes the desired process operating-point, i.e. a new goal
set XG is defined; (ii) a fault is diagnosed which determines
the need of combined manual and automated action to steer
the process into the goal set; (iii) a disturbance enters the
control loop and the automatic control action does not suffice
to keep the process in the goal region. At the stage k the
planner assesses if the state is in the goal region and suggests
the locally optimal action uk ∈ U to the human operator.
The operator should then execute the suggested action and
leverage his/her expert knowledge to quantify its magnitude.
At the next iteration, based on the received feedback from
the process, the planner re-assesses the situation and sug-
gests a new locally optimal action uk+1 ∈ U , potentially
confirming the previous one, i.e. uk+1 = uk, to the operator.
The frequency upon which the planner is run is a tuning
parameter that depends on the dominant time constants of
the continuous process to be regulated.

While the results are promising, using a greedy planner
does not guarantee that a feasible path is found since there
is the risk of “getting stuck” in a local minimum of the
potential function φ(x). This problem could be addressed
by using tabu search or by combining greedy search with
random walks. Further, the planner may output a less reliable
plan for systems with fast transient dynamics since the
underlying state transition model is derived for steady-state
configurations.
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Fig. 4: Scenario 1: The control set-points and valve positions are changed to achieve a transition between the initial and
final steady-state operating conditions described in Table I. Dashed lines indicate the suggested reference and γ changes.
Blue lines indicate the system trajectories. Dashed grey lines indicate the goal region of the planner.
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Fig. 5: Scenario 3: Dashed lines indicate the suggested reference and γ changes. Blue lines indicate the system trajectories.
The dashed red line indicate the true performance of v1 once the fault occurs at t = 200s. The reconfiguration of the system
is initiated at t = 1000s. Transparent dashed lines indicate the goal region of the planner.

V. CONCLUSIONS

A framework for discrete planning of human operations in
automated continuous processes is presented. The framework
uses causal models in the form of signed directed graphs to
represent the effect of manual and automatic control actions
onto the process variables at steady state. This qualitative
knowledge is encoded in an effect matrix that underpins the
state transition function utilized to explore the state space
when the process changes its point of operation or needs
to reconfigure due to faults. The planning framework can
accommodate variable levels of quantitative knowledge about
the continuous process and can generate plans of variable
length. The planner’s performance using models that assume
very limited system knowledge was successfully demon-
strated on the quadruple-tank system, utilizing a greedy
search algorithm with a single-stage planning horizon (one
operator action) to compensate for modeling uncertainty. The
proposed causal model-based planner works as a decision
support tool for control room operators by providing a
qualitative proposal about the best course of action to regain
desired steady state operation after intentional or unexpected
changes of the process operating point.
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