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Control of rotation-floating space robots with flexible appendages for
on-orbit servicing

Sofiane Kraı̈em1 and Mathieu Rognant2 and Jean-Marc Biannic3 and Yves Brière4

difficult to obtain the flexible dynamics, controller robust to
unknown disturbances have been proposed [6].

Achieving attitude control during the manipulator ma-
neuvers remain a challenging task as in addition to ex-
ternal torques/forces, manipulator motions and appendages
vibrations may create undesired base rotations. Efficient
use of thrusters to compensate manipulator motions have
been studied through workspace adjustment strategies [7],
or simultaneous control of the global center of mass and
spacecraft attitude [8]. Likewise, when only the manipulator
is controlled reaction null-space control has been developed
to reduce interactions between the manipulator and the
spacecraft base [9]. In presence of flexible appendages, as
vibrations are partly due to manipulator motions, based on
coupling factors between the manipulator rigid dynamics and
the appendages flexible dynamics a control strategy has been
proposed to suppress the vibrations [10] or an optimization
of manipulator trajectories to minimize base disturbances has
also been suggested [11].

Moreover, future missions are expected to have longer
lifespan. Besides efficient propellant consumption strategies
of the flying space manipulators, a meaningful way to
increase the lifespan is the use of kinetic moment exchange
devices with electrical which are addressed as rotation free-
floating spacecraft-manipulator [12]. Controlling the ma-
nipulator capitalizing on the benefits of kinetic moment
exchange devices has raised an interest to deal with the
manipulation of relatively high mass and inertia such as
in capture or deployment scenarios. Through kinematic in-
dices, controlling the spacecraft attitude while controlling
the manipulator allows to increase its manipulability [13].
Combining reaction wheels and control moment gyroscopes
has been studied to maintain the satellite platform fixed
during manipulator motions [14].

This paper aims at developing the common control of
the spacecraft base and manipulator under structural distur-
bances for on-orbit deployment applications. An interest to
develop a common control is highlighted when considering
the system momentum distribution for different manipulator
configurations [13]. This paper contribution resides in the
integration of the flexible dynamics to the rigid dynamics,
allowing to develop an extended state observer to improve
the control performances, instead of an unknown disturbance
observer for a rigid system [6]. The system is then decoupled
and linearized with an NDI including the estimation of the
vibration disturbances and the spacecraft drift. Moreover the
synthesis of the control law and observer is developed for
realistic large dimension systems.

Abstract— On-orbit operations are facing a growing need for 
autonomous robotic systems. Debris removal, on-orbit servicing 
and in-space deployment/assembly are examples of applications 
considering the use of robot manipulators. This paper addresses 
design and control problems related to autonomous space 
manipulator systems when using kinetic moment exchange 
devices in presence of flexible appendages. The paper introduces 
a method to develop a common control of the spacecraft 
base and manipulator. An extended state observer is used in 
the Nonlinear Dynamic Inversion (NDI) in order to improve 
performances and reduce vibration disturbance impacts on the 
base attitude. A simultaneous synthesis of a control law and 
an observer gain is proposed with Linear Matrix Inequalities 
(LMI) resolutions which allow system variation considerations. 
Simulations are run on an actual assembly scenario to illustrate 
the proposed method.

I. INTRODUCTION

Robotic systems are predicted to play a key role in 
near-future space missions as unmanned missions and large
structures that cannot be self-deployed as a single piece will 
become more common [1]. Yet, for in-space capture, de-
ployment and on-orbit servicing operations, robotic systems 
will require to become autonomous to be a viable solution 
[2]. The recent evolution on space telescope programs allows 
to illustrate that need of new technologies for in-space
deployment. Recent studies consider the use of autonomous 
manipulators to allow the self-deployment of telescope’s 
mirror [3]. Future on-orbit deployed satellites will commonly 
have to be equipped with light and large appendages such 
as solar arrays, antennas and solar shields. Furthermore, the 
size and weight of each element will lead to some flexibility
to be considered to fulfill t he space mission objectives.

The appendages vibrations not only affect the base attitude
and drift but also the manipulator motions. Active control 
has been proposed to cancel vibrations, using piezoelectric
actuators placed on the flexible a ppendage [ 4] o r w ith joint 
variable stiffness control actuators [5]. Yet, active control
shows limitations for large on-orbit structures with limited 
actuators in order to compensate the vibrations in an energy
efficient w ay. I n t erms o f p assive c ontrol, a s i t m ay be
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This paper is organised as follows, firstly the dynamics of
a rotation free-floating spacecraft with a rigid manipulator
and flexible appendages are detailed, secondly a common
control of the manipulator and the spacecraft base attitude
is developed and thirdly the proposed method efficiency is
illustrated on an on-orbit telescope deployment.

II. SYSTEM OPEN-LOOP DYNAMICS

A. Problem statement
In this paper, a free-floating spacecraft actuated with nr

reaction wheels is considered. one serial-link manipulator
with nq degrees of freedom (DOF) is mounted on the satellite
base The manipulator joints are either prismatic or revolute
joints. Moreover, flexible appendages, such as solar arrays
or solar shields, are connected to the base spacecraft. In
this paper, the vibrations and the base linear dynamics are
not measured, only manipulator joint velocity and pose and
base attitude dynamics are available. In this study, neither
environmental nor external forces are considered here and
no initial momentum hypothesis are made.

Fig. 1: Illustration of the studied spacecraft [3]

B. Dynamics of a rigid space manipulator with flexible
appendages

The dynamics of a rigid multi-body system with no
external forces applied to it, can be expressed as in [13]:[

H0 H0q

HT
0q Hq

]
︸ ︷︷ ︸

H(q)

[
u̇0

q̈

]
+

[
C0 C0q

CT
0q Cq

]
︸ ︷︷ ︸

C(q,q̇,u0)

[
u0

q̇

]
=

[
0
τ q

]
(1)

where u0 =
[
ωT0 ṗT0

]T ∈ R6×1 is the base spacecraft
angular and linear velocity vector, q̇ =

[
q̇Tr q̇Tm

]T ∈
Rnq×1 (with nq = nr + nm) is the reaction wheels and
joint velocity vector and τ q =

[
τTr τTm

]T ∈ Rnq×1 the
actuator torques.

H is a nonlinear matrix, symmetric and positive-definite
corresponding to the generalized inertia matrix including
both the inertia coupling matrices between the base and the
manipulator, H0m, and between the base and the kinetic
moment exchange devices, H0r. C is the convective inertia
matrix which is a nonlinear matrix.

In order to incorporate the flexible dynamics of an ap-
pendage connected to the spacecraft base at point P , one
can use the generic second order equation of the hybrid-
cantilvered model [15].[
HP

0 LTP
LP Inη

] [
ap
η̈

]
+

[
0nη 0nη

diag(2ζiωi) diag(ω2
i )

] [
η̇
η

]
=

[
τPext
0

]
(2)

where η is the modal coordinate vector of the nη flexible
modes, ωi and ζi are respectively the angular frequency and
damping ratios of the ith mode, LP is the vector of the modal
participation at the connection point P , HP

0 is the spacecraft
base generalized inertial matrix expressed at the point P, and
ap and τPext are respectively the spacecraft acceleration screw
and the external forces expressed at the point P.

Combining (1) and (2) with the assumption of no external
forces/torques applied either on the system and on the links
between the flexible appendages and the spacecraft we obtain
the full dynamics of a rigid-flexible multi-body:

Hω HωL Hωq Hωη

HLω HL HLq HLη

H
T

ωq HT
Lq Hq 0

HT
ωη HT

Lη 0 Hη



ω̇0

p̈0

q̈
η̈



+


Cω CωL Cωq Cωη

CLω CL CLq CLη

C
T

ωq CT
Lq Cq 0

CT
ωη CT

Lη 0 Cη



ω0

ṗ0

q̇
η̇



+


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 Kη



θ0
p0

q
η

 =


0
0
τ q
0



(3)

We decompose the base angular and linear contribution
on the base in (3), using subscripts L and ω respectively to
indicate the linear and angular contribution of each matrix.

C. Simulation tools

In order to proceed to numerical simulations, a Matlab-
Simulink simulator has been developed based on the toolbox
SPART [16] and the Satellite Dynamic Toolbox (SDT) [15].
The toolbox SPART allows to evaluate the different terms of
equation (1) and most generally the toolbox allow, for a rigid
multi-body to compute the system: kinematics, differential
kinematics, dynamics and forward/inverse dynamics.

An integration of the SDT into SPART allows to compute
both rigid and flexible kinematics, differential kinematics,
dynamics and forward/inverse dynamics.

In order to obtain numerical simulations under Matlab,
each part of the robot is detailed in an Xml description.
The description includes sizes, mass, inertia and the flexible
mode information. Time-domain simulations are obtained
with Simulink.

III. CONTROL STRATEGY

Fig. 2: Schema of the proposed control



Towards accurately controlling the manipulator under base
vibration disturbances, a common attitude base and joint con-
trol is proposed. To tackle intern disturbances and improve
control performances, an observer is included in the feedback
linearization. In this section, a simultaneous synthesis of the
control law and observer is proposed.

A. Observer structure

In order to proceed to the feedback linearization, an esti-
mation of the vibrations (i.e. η̇,η) and the linear dynamics
(i.e. p̈0, ṗ0) is required. The observer is designed using the
measure of q̇, ω0 and the torques τ q . A re-writing effort
of (3) is required as the base angular accelerations are not
provided. From the first line of (3) one can express ω̇0 as:

ω̇0 = −H−1ω
[
HωL Hωq Hωη

] p̈0

q̈
η̈



−H−1ω
[
Cω CωL Cωq Cωη

] 
ω0

ṗ0

q̇
η̇


(4)

Injecting (4) into the last three lines of (3), one can obtain
the following dynamics:

H∗(q)

p̈0

q̈
η̈

+ C∗(q, q̇,u0)

ṗ0

q̇
η̇

+ K∗(q)

p0

q
η


+ F0(q, q̇,u0)ω0 =

 03×1
τ q

0nη×1

 (5)

To alleviate notation, one can pose H∗
−1

=[
H1
inv H2

inv H3
inv

]
with H1

inv ∈ R(3+nq+nη)×3,
H2
inv ∈ R(3+nq+nη)×nq , H3

inv ∈ R(3+nq+nη)×nη .
In order to estimate the vibrations and the linear
dynamics of the base, one can introduce the state vector
x =

[
ηT pT0 ṗT0 q̇T η̇T

]T
, the command vector

u = τ q and the output vector y = q̇ and with (5) one can
write:

ẋ =


[
0 Inη
I3 0

]
0 0

0 −H∗−1

C∗ −H3
invKη

x

+

[
0

H3
inv

]
u +

[
0

−H∗−1

F0

]
ω0

= Ae(q, q̇,u0)x + Be(q)u + B0(q, q̇,u0)ω0

y =
[
0nq×(nη+3+3) Inq 0nq×nη

]
x = Cex

(6a)

(6b)

The state x is estimated as xe through a linear observer
of gain L, with an LMI resolution as detailed in III-C. The
observer dynamic is given by:

ẋe = Ae(q, q̇,u0)xe + Be(q)u

+ B0(q, q̇,u0)ω0 + LCe(x− xe)
(7)

The dynamic of the observation error, εe = x − xe, is
obtained with (6) and (7) as:

ε̇e = (Ae(q, q̇,u0)− LCe)εe (8)

B. Control law structure

In the considered application, the joint and base attitude
poses and dynamics, subscripted with d, are provided by
a path planner. Moreover, in such application, the base is
actuated with slower dynamics than the manipulator, hence
the necessity of decoupling all the actuators through a feed-
back linearization. Our proposed linearization includes the
unavailable dynamics to improve the system performances.

In order to express the open-loop dynamics, a first re-
writing effort of (3) is necessary to get rid of the accelerations
p̈0, ω̇r and η̈. Similarly as (5) was obtained, (3) can be
rewritten thusly:

HLrη

p̈0

q̈r
η̈

+ Hωm

[
ω̇0

q̈m

]

+ Cxx + Cωm

[
ω0

q̇m

]
+ Crωr =

 0
τ r
0

 (9)

Finally combining (3) and (9), the open-loop model is
obtained as:

M∗(q)

[
ω̇0

q̈m

]
+ D∗ωm(q, q̇,u0)

[
ω0

q̇m

]
+ D∗x(q, q̇,u0)x

+ D∗r(q, q̇,u0)q̇r = J∗τ

[
τ r
τm

]
(10)

where the term D∗x(q, q̇,u0) expresses the impact of the
vibration disturbances and the spacecraft drift on the control
performances.

To simplify expressions of matrices in (10), one can
introduce:

H−1Lrη =

HL HLr HLη

HT
Lr Hr 0

HT
Lη 0 Hη

−1 =
[
∗ Mr

inv ∗
]

(11)

where Mr
inv ∈ R(3+nr+nη)×nr , and one can note that matrix

HLrη is an inertial matrix which by definition is invertible.
From (10), feedback linearization is now easily obtained

by posing (for a given desired dynamics v) the following
commanded torque τ c:

τ c = J∗
+

τ (M∗(q)v + D∗x(q, q̇,u0)xe + D∗r(q, q̇,u0)qr

+ D∗ωm(q, q̇,u0)

[
ω0

q̇m

]
)

(12)
where J∗

+

τ denotes the pseudo-inverse of J∗τ .
The considered torque includes the estimation of the

spacecraft drift and the vibrations which, by rejecting them
as well as the reaction wheels dynamics, allow to improve
performances on the manipulator and spacecraft attitude
control.

Introducing the tracking error, εc =

([
θ0
qm

]
d

−
[
θ0
qm

])
,

and denote v =

[
ω̇0

q̈m

]
d

+K

[
εc
ε̇c

]
, by injecting (12) into (10),



the closed-loop is obtained as:[
ω̇0

q̈m

]
= −M∗

−1

D∗xεe +

[
ω̇0

q̈m

]
d

+ K

[
εc
ε̇c

]
(13)

The dynamic of the tracking error is then given by:

ε̈c = M∗
−1

D∗xεe −K

[
εc
ε̇c

]
(14)

Introducing the state vector z =
[
εTc ε̇Tc

]T
, one can re-

write (14) as:
ż =

([
0 I
0 0

]
+

[
0
−I

]
K

)
z +

[
0

M∗
−1

D∗x

]
εe

= (Az + BzK)z + Bε(q, q̇,u0)εe

εc =
[
I 0

]
z = Czz

(15a)

(15b)

As illustrated by (15), the observer and control perfor-
mances are inter-dependent which is why a control and
observer synthesis is simultaneously developed.

C. Simultaneous synthesis
When considering on-orbit assemblies, the manipulator

motions are usually predefined. This allows to bound the state
vector

[
θT0 pT0 qTr qTm ηT

]T
and its derivatives and

consequently to bound M∗, D∗x, Ae(q, q̇,u0) and Be(q).
However, during arm maneuvers, inertia and convective ma-
trices may significantly fluctuate. To cover such variations,
it can be assumed that M∗

−1

D∗x and Ae(q, q̇,u0) belong to
bounded sets, so that the closed-loop system both including
controller and observer gains will read:{

ż = (Az + BzK)z + (Bε + ∆Bε)εe

ε̇e = ((Ae + ∆Ae)− LCe)εe

(16a)
(16b)

where ∆Bε and ∆Ae respectively correspond to the varia-
tion of Bε and Ae during the considered maneuver.

Using the extended state vector X =
[
zT εTe

]T
a

compact version is obtained:Ẋ =

[
Az + BzK Bε + ∆Bε

0 Ae + ∆Ae − LCe

]
X

εc =
[
Cz 0

]
X

(17a)

(17b)

We assume that the estimation error verifies εTe0Eεe0 ≤ 1
for a given positive definite matrix E, where εe0 is the
initial condition of the observer error. Based on the following
proposition, the observer and controller gain are obtained
with a LMI resolution to ensure both stability and perfor-
mance properties.

1) Proposition: If there exist symmetric positive definite
matrices Qz , Pε and matrices Wz , Wε such that for a given
scalar γ > 0:(AzQz + BzWz)

s (Bε + ∆Bε)
∗ (Pε(Ae + ∆Ae))

s

∗ ∗
QzC

T
z

− (WεCe)
s 0
−γ2I

 < 0

Pε < E

(18a)

(18b)

where Xs = X + XT , then the system is stable and the
outputs verify: ∫ ∞

0

εTc εcdt < γ2 (19)

for any conditions z(0) = 0 and εe0 ∈ {ε | εTEε ≤ 1}.
Moreover, the gains are obtained as:{

K = WzQ
−1
z

L = P−1ε We

(20a)

(20b)

2) Proof: Let us introduce the Lyapunov function:

V(X) = zTPzz + εTe Pεεe (21)

such that V̇ + γ−2εTc εc < 0 for a given γ > 0.
By integration:∫ Tf

0

(V̇ + εTc εc)dt < 0⇒
∫ Tf

0

εTc εcdt < γ2(V0 −VTf )

⇒
∫ ∞
0

εTc εcdt < γ2V0

(22)
with V0 = zT0 Pzz0 + εTe0Pεεe0 . For z0 = 02×(3+nm),
V0 = εTe0Pεεe0 and if εTe0Pεεe0 ≤ ε

T
e0Eεe0 ≤ 1 then (19)

is verified. This condition is enforced by Pε ≤ E.
The condition V̇ + γ−2εTc εc < 0 is equivalent to:[

(Pz(Az + BzK))s + γ−2CT
zCz

∗
Pz(Bε + ∆Bε)

(Pε(Ae + ∆Ae − LCe))
s

]
< 0

(23)

The Schur complement is given by:(Pz(Az + BzK))s Pz(Bε + ∆Bε)
∗ (Pε(Ae + ∆Ae − LCe))

s

∗ ∗
CT
z

0
−γ2I

 < 0

(24)

Pre and post multiplying the above matrix matrix by
diag(Qz, I, I) = diag(P−1z , I, I) and introducing the variable
changes We = PεL and Wz = KQz one obtains (18a)
which concludes the proof.

In order to resolve (18a), one can introduce the positive
constants ρ1 and ρ2 such that ‖∆Ae‖≤ ρ1 and ‖∆Bε‖≤ ρ2
and respectively replace in (18a) ∆Ae and ∆Bε by ρ1I and
ρ2I.

IV. ILLUSTRATION OF THE PROPOSED METHOD

In order to illustrate our proposed method, the on-orbit
deployment of the PULSAR telescope [3], represented in
Fig. 1, is considered. The deployment is divided in different
motions, in which either the manipulator moves a mirror tile
or a bundle of tiles or is reaching to grab a tile.

The PULSAR spacecraft is equipped with an 8 DOF
manipulator with a mass of 327 kg and an augmented
version of the CAESAR’s manipulator [17]. According to



the considered moment of the scenario, the manipulator end-
effector may handle a mirror tile weighting 44K kg. The base
attitude is actuated with 6 identical reaction wheels with an
angular momentum at nominal speed of 12 Nms. Between
the solar array and the beams of the solar shields, 22 flexible
modes are considered. Through the complete deployment
scenario, the inertia of the system is varying between Ixx ∈[
41077 45324

]
kg.m2, Iyy ∈

[
132030 203470

]
kg.m2,

Izz ∈
[
116870 192530

]
kg.m2 for a total mass of 6892

kg.

Fig. 3: a) Evolution of u̇m and u̇me ;b) Evolution of εc

Fig. 4: a)Terms of D∗xxe impacting on ω0; b)Terms of
D∗x(x− xe) impacting on ω0

Fig. 5: a) Evolution of ω0 and ω0d ;b) Evolution of τ r

Fig. 6: Evolution of the three most impacting modes, a)
Evolution of η and ηe;b) Evolution of the observer error
of the three most impacting flexible modes

The YALMIP toolbox [18] with the mosek solver is used
to solve the large dimension LMI in III-C.1 while minimising
the parameter λ.

As illustrated in Fig. 3, in which the manipulator joint
velocities and the evolution of the associated tracking error
ε̇c are plotted, the joint manipulator are precisely controlled
however the disturbances acting on the spacecraft base.
Likewise the proposed control allows to keep the base
attitude velocity at its initial rate of zeros rad/s as illustrated
in Fig. 5 where the evolution of Euler angles and ω0 are
plotted. Moreover the torques τ r are successfully maintain
under there saturated value of 0.12Nm [3]. The observer
performances are illustrated in Fig. 6 with the estimation
of the flexible modes impacting the most the spacecraft
base. Finally the proposed method interest is illustrated by
Fig. 4, in which the impacts of D∗xxe on ω0 control are
highlighted. Adding the estimation have allowed to reduced
the disturbance effects on the torques.



V. CONCLUSION

In this paper, the general tools for a common control of
the base and manipulator actuators are developed to achieve
high-precision manipulator control for on-orbit assembly
scenarios in presence of vibration disturbances and system
variations. The common control, motivated by our previous
work on system analysis [13], allows to improve the control
performances with a better use of actuators. By detailing the
rigid-flexible dynamics of the spacecraft, the disturbances
are tackled in the feedback linearization with a better effi-
ciency than with a classical unknown disturbance observer.
The proposed method has shown feasibility on a real on-
orbit deployment scenario and future works are expected to
consider larger system variations to be applied during the
complete deployment.

VI. APPENDIX

A. Detail of equation (5)

H∗ =

−HLωH
−1
ω HωL + HL −HLωH

−1
ω Hωm + HLq

−HT
ωqH

−1
ω HωL + HT

Lq −HT
ωqH

−1
ω Hωq + Hq

−HT
ωηH

−1
ω HωL + HT

Lη −HT
ωηH

−1
ω Hωq

−HLωH
−1
ω Hωη + HLη

−HT
ωqH

−1
ω Hωη

−HT
ωηH

−1
ω Hωη + Hη


C∗ =

−HLωH
−1
ω CωL + CL −HLωH

−1
ω Cωq + CLq

−HT
ωqH

−1
ω CωL + CT

Lq −HT
ωqH

−1
ω Cωq + Cq

−HT
ωηH

−1
ω CωL + CT

Lη −HT
ωηH

−1
ω Cωq

−HLωH
−1
ω Cωη + CLη

−HT
ωqH

−1
ω Cωη

−HT
ωηH

−1
ω Cωη + Cη


K∗ =

[
0(3+nq) 0(3+nq)×nη

0nη×(3+nq) Kη

]

F0 =

−HT
ωqH

−1
ω Cω + CLω

−HT
ωqH

−1
ω Cω + CT

ωq

−HT
ωηH

−1
ω Cω + CT

ωη


B. Detail of equation (10)

One can pose H�Lrη =

[
HωL Hωr Hωη

HT
Lm 0 0

]
H−1Lrη, then:

M∗ =

[
Hω Hωm

HT
ωm Hm

]
−H�Lrη

HLω HLm

HT
ωr 0

HT
ωη 0


D∗ωm =

[
Cω Cωm

CT
ωm Cm

]
−H�Lrη

CLω CLm

CT
ωr 0

CT
ωη 0


D∗x =

[
CωL 0 0 Cωη 0 0
CT
Lm 0 0 0 0 0

]

−H�Lrη

CL 0 0 CLη 0 0
CT
Lr 0 0 0 0 0

CT
Lη 0 0 Cη Kη 0



D∗r =

[
Cωr

0

]
−H�Lrη

CLr

Cr

0


J∗τ =

[
−
[
HωL Hωr Hωη

]
Mr

inv 0

−
[
HLT

Lm 0 0
]
Mr

inv I

]
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