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Abstract— In this paper we present a stochastic scenario-
based model predictive control (MPC) approach for the op-
eration of islanded microgrids with high share of renewable
energy sources. We require that the stored energy remains
within given bounds with a certain probability using risk-based
constraints as convex approximations of chance constraints.
We show that risk constraints can generally be cast as conic
constraints and, unlike chance constraints, can control both
the number and average magnitude of constraint violations.
Lastly, we demonstrate the risk-constrained stochastic MPC in
a numerical case study.

I. INTRODUCTION

The high share of renewable energy sources in islanded
microgrids (MGs) exposes them to increased uncertainty due
to the weather-dependent nature of energy production. The
pressing need to minimize the use of conventional generators
and maximize infeed from renewable sources while respect-
ing constraints on stored energy and power has led to a wide
adoption of model predictive control (MPC) [1]–[3]. MPC
additionally allows to make use of feed-forward information
using forecasting models (see, e.g., [4]) of wind speed, solar
irradiance and load demand.

Early works on deterministic MPC [1], [5], [6] are giving
way to methods that take the associated uncertainty into
consideration. Worst-case approaches [7], [8] can prove
overly conservative, especially in presence of higly uncertain
wind, irradiance and load. Expectation-based (risk-neutral)
stochastic MPC formulations have been proposed involving
either (typically independent) processes with continuous dis-
tributions [9] or scenario-based formulations [2]. Recently, a
multistage risk-averse approach was proposed in [3] to ac-
count for the fact that distributions are never known exactly.

In stochastic MPC formulations, constraints become
stochastic too. These can be imposed for all realizations of
uncertainty [2], [3]. A more appropriate and less conservative
approach is to require that the probability of constraints
violations is sufficiently small. Such chance-constrained
formulations are popular, e.g., in optimal power flow prob-
lems [10]. Chance constraints are generally nonconvex.
In certain cases, e.g., for certain continuous distributions
and linear systems, the inverse cumulative is known and
chance constraints can be simplified [9], [11]. The well-
know framework of Nemirovski and Shapiro [12] for con-
vex approximations of chance constraints is widely known.
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Fig. 1. Simple scenario tree from [16]. In this tree, nodes(0) = {0},
nodes(1) = {1, 2} and nodes(2) = {3, 4, 5}. Moreover, the child nodes
are child(0) = {1, 2}, child(1) = {3, 4}, child(2) = {5} and conse-
quently anc(3) = anc(4) = 1, anc(5) = 2, anc(1) = anc(2) = 0.

Some approximations have also been proposed such as the
stochastic tubes approach of [13] for constraint tightening,
and machine learning [14].

In this paper we propose a stochastic scenario-based MPC
scheme for the operation of islanded microgrids with a high
share of renewable sources. We formulate a stochastic MPC
problem with chance constraints on the state of charge of
storage units. Moreover, we employ the approach of [15]
to overapproximate chance constraints by convex conic con-
straints using coherent risk measures. Lastly, we demonstrate
the proposed chance-constrained MPC via realistic simula-
tions with high renewable share using real-world irradiance
and load data and time series forecast models.

Notation: Hereafter we denote by N, N0 and R the sets
of natural numbers, nonnegative integer and real numbers
respectively. We denote the set of integers between k and k′

by N[k,k′]. Let R>0 = {x ∈ R | x > 0}. Likewise define
R≥0, R≤0 and R<0. The Euclidean norm is ‖·‖2. Given a set
of indices N[k,k′], [xi]i∈N[k,k′] is shorthand for [xk, · · · , xk′ ].

II. MICROGRID MODEL

In what follows, some basics on scenario trees are intro-
duced. Moreover, the relation of model variables is discussed
and a detailed overview over the MG model is provided.

A. Introduction on scenario trees

In the context of this work, the probability distribution of
load and available renewable infeed is assumed to be given
in the form of a forecast scenario tree.

A scenario tree is formed of Nn ∈ N nodes. Each node
i ∈ N[0,Nn−1] is associated with prediction step j ∈ N[0,N ],
also referred to as stage, denoted as stage(i). All nodes
associated with stage j are collected in the set nodes(j). The
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TABLE I
MODEL-SPECIFIC VARIABLES

Symbol Explanation Unit Size

x Energy of storage units (state) pu h Ns

ut Control inputs of conventional units pu Nt

us Control inputs of storage units pu Ns

ur Control inputs of renewable units pu Nr

u Control inputs of all units pu Nu

δt Boolean control inputs of conv. units — Nt

v Vector of all control inputs — Nv

wr Uncertain available renewable power pu Nr

wd Uncertain load pu Nd

w Vector of all uncertain inputs pu Nw

pt Power of conventional units pu Nt

ps Power of storage units pu Ns

pr Power of renewable units pu Nr

p Power of all units pu Nu

pe Power over transmission lines pu Ne

number of nodes at stage j is nj = |nodes(j)|. Node i = 0
at stage j = 0 is referred to as the root node, and the nodes
at stage N , i.e., the elements of nodes(N), are referred to
as leaf nodes. Each node i ∈ nodes(j) at stage j ∈ N[1,N ] is
associated with an ancestor node i− ∈ nodes(j−1) at stage
j − 1 which can be accessed via i− = anc(i). All nodes at
stage j that share a common ancestor i ∈ nodes(j − 1)
are referred to as child nodes of i and are collected in
child(i) ⊆ nodes(j). Each node i is associated with a
probability π(i) ∈ (0, 1]. For all stages j ∈ N[0,N ], it
holds that

∑
i∈nodes(j) π

(i) = 1. The probability of node
i ∈ N[0,Nn−1] \ nodes(N) is linked to the probabilities of
its children via π(i) =

∑
i+∈child(i) π

(i+). An example of a
scenario tree is shown in Fig. 1.

B. Generic microgrid model

We consider an MG that comprises an arbitrary finite num-
ber of conventional and renewable generators, storage units
and loads. These components are connected to each other
via AC transmission lines. With the variables summarized in
Table I, the behavior of the MG is modeled for all nodes
i+ ∈ N[1,Nn−1] with i = anc(i+) by

x(i+) = Ax(i) +Bp(i+), (1a)

hx ≤ Hxx
(i+), (1b)

p(i+) = fp(v
(i), w(i+)), (1c)

hvp ≤ Hvp

[
v(i)

>
p(i+)>

]>
. (1d)

Here, x(i) represents the state, i.e., the energy stored in stor-
age units at node i. Moreover, u(i) = [u

(i)
t

>
u
(i)
s

>
u
(i)
r

>
]>

is a vector of real-valued control inputs and δ(i)t ∈ {0, 1}Nt

a vector of Boolean inputs that indicates whether con-
ventional unit l ∈ N[1,Nt] is enabled (δ(i)t,l = 1) or
disabled (δ(i)t,l = 0). The control inputs are collected in
v(i) = [u(i)

>
δ(i)

>]>. Finally, the uncertain input at node

i+ ∈ child(i) is w(i+) = [w
(i+)
r

>
w

(i+)
d

>
]> and the units’
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Fig. 2. Relation of variables in scenario tree. Source: [16].

power is p(i+) = [p
(i+)
t

>
p
(i+)
s

>
p
(i+)
r

>
]>.

The control input v(i) at node i ∈ N[0,Nn] \ nodes(N)
is present between time instants j = stage(i) and j + 1.
The uncertain input w(i+) and the power p(i+) at nodes
i+ ∈ child(i) are associated with the same time interval.
The reason for this is that power and uncertain input are
associated with the state x(i+) that they result in.

An example of this relation is illustrated in Fig. 2. Here,
the control input between instants j = 0 and j = 1 is v(0).
In the example, two realizations of the uncertain input are
predicted, w(1) and w(2). Thus, for the same control input
v(0), different values of load and available renewable infeed
can occur. The power of the units, which is collected in p(1)

and p(2), changes with the control input and the uncertain
input. Similarly, the state changes with these power values.
As shown in Fig. 2, x(1) is a function of x(0) and p(1) and
x(2) a function of x(0) and p(2).

Note that by introducing additional free variables, (1c) can
be transformed into a set of affine equality and inequality
constraints (see also Section II-D and [3]). Thus, (1) only
comprises affine constraints and can therefore be used to
formulate mixed-integer quadratic programs.

In what follows, we will discuss the equations used to
formulate the generic model (1). We start with the dynamics.

C. Dynamics

The dynamics of the stored energy x(i+) are mod-
eled using a discrete-time state model. With A = INs

and
B = [0Ns×Nt

−TsINs
0Ns×Nr ] the model reads

x(i+) = Ax(i) +Bp(i+) with x(0) = x0 (2)

and i = anc(i+). This is precisely Equation (1a).

D. Energy-related limits

The stored energy at all nodes i+ ∈ N[1,Nn] is limited by

xmin ≤ x(i+) ≤ xmax (3)

with xmin ∈ RNs

≥0 and xmax ∈ RNs

≥0. From these inequalities,
(1b) can be easily deduced.

E. Power of units

The units’ power is not only affected by the power set-
points but also by the uncertain load and available renewable
infeed. This is taken into account by considering different
realisations of the uncertain input w(i+) for each control



input v(i). The effects of the control input and the uncertain
input on the power enter the generic model (1) via function
fp which is implicitly defined by constraints (4)–(6).

1) Transmission network: A power equilibrium of gener-
ation, consumption and storage power must be ensured at all
times. This can be modelled by the equality constraint

1
>
Nt
p
(i+)
t + 1

>
Ns
p(i+)
s + 1

>
Nr
p(i+)
r + 1

>
Nd
w

(i+)
d = 0. (4)

2) Renewable units: The power of the renewable units
p
(i+)
r cannot exceed the weather-dependent available renew-

able infeed w
(i+)
r . The control input u(i)r allows to limit

p
(i+)
r below w

(i+)
r . If the available renewable power w(i+)

r,l

of unit l ∈ N[1,Nr] is below the power setpoint u(i)r,l , then
the infeed of this unit equals the available renewable power.
If the available renewable power w(i+)

r,l is above the power
setpoint u(i)r,l , then the infeed of this unit equals the power
setpoint. This can be modelled via

p(i+)
r = min(u(i)r , w(i+)

r ). (5)

3) Power sharing of grid-forming units: The lower control
layers of the MG are assumed to be designed such that fluc-
tuations of load and renewable infeed are distributed among
grid-forming storage and conventional units in a proportional
manner. This ensures that (4) holds in presence of uncertain
load and renewable infeed. It can be implemented using, for
example, decentralized droop control [17]. Typically, power
sharing is implemented on a much faster time scale than
operation control. Nevertheless, power sharing needs to be
considered in the constraints as it links the power of the
conventional and storage units to the fluctuations of the
uncertain input. Using the additional variable µ(i+) ∈ R,
it can be included in the MPC formulation by [3]

Ks(p
(i+)
s − u(i)s ) = µ(i+), (6a)

Kt(p
(i+)
t − u(i)t ) = µ(i+)δ

(i)
t . (6b)

As indicated in [3], (4)–(6) can be equivalently expressed
by affine equality and inequality constraints using additional
decision variables and the so-called Big-M method (see,
e.g., [18]). Consequently, fp(v(i), w(i+)) in (1c) can be used
to formulate mixed-integer optimization problems.

F. Power-related limits

The limits on power and power setpoints can be divided
into limits on units and limits on transmission lines. In detail,
(1d) is composed of the following inequalities.

1) Renewable units: Power and control input are limited
by pmin

r ∈ RNr

≥0 and pmax
r ∈ RNr

≥0, i.e.,

pmin
r ≤ p(i+)

r ≤ pmax
r , (7a)

pmin
r ≤ u(i)r ≤ pmax

r . (7b)

2) Conventional units: If a unit is disabled, then power
and setpoint are zero, otherwise power and setpoint are lim-
ited by a minimum and a maximum value. With pmin

t ∈ RNt

≥0
and pmax

t ∈ RNt

≥0, this can be expressed by

diag(pmin
t )δ

(i)
t ≤ p

(i+)
t ≤ diag(pmax

t )δ
(i)
t , (8a)

diag(pmin
t )δ

(i)
t ≤ u

(i)
t ≤ diag(pmax

t )δ
(i)
t . (8b)

3) Storage units: The power and the power setpoints are
limited by pmin

s ∈ RNs

≤0 and pmax
s ∈ RNs

≥0, i.e.,

pmin
s ≤ p(i+)

s ≤ pmax
s , (9a)

pmin
s ≤ u(i)s ≤ pmax

s . (9b)

4) Transmission network: The transmission network is
included using the linear DC power flow approximations
for AC grids (see, e.g. [16]). As the power equilibrium is
already implemented via (4), we can directly deduce the
power flowing over the transmission lines p(i+)

e via

p(i+)
e = F

[
p
(i+)
t p

(i+)
s p

(i+)
r w

(i+)
d

]>
with F ∈ RNe×(Nu+Nd). Naturally, p(i+)

e is bounded, i.e.,

pmin
e ≤ F

[
p
(i+)
t p

(i+)
s p

(i+)
r w

(i+)
d

]> ≤ pmax
e (10)

with pmin
e ∈ RNe

≤0 and pmax
e ∈ RNe

≥0.
This completes the introduction of the control-oriented

MG model. Based on this section, we will now formulate
a cost function for islanded MG with high renewable share.

III. OPERATING COSTS

The operating cost of the microgrid is motivated by [2].
It is composed of (i) fuels costs of the conventional units,
`ft, (ii) switching costs of the conventional units, `st, and (iii)
costs incurred by limiting potential renewable infeed, `r. For
scenario trees of the form described in Section II, the cost
associated with node i+ ∈ N[1,Nn] is

`(v(i), v(i−), p(i+)) =
(
`ft(v

(i), p(i+))+

`st(v
(i), v(i−)) + `r(p

(i+))
)
γstage(i+), (11)

with i = anc(i+) and i− = anc(i). Here, discount factor
γ ∈ (0, 1] is used to put an emphasis on near future decisions.

In (11), decision variables associated with different nodes
are used. The reason for this is that the power p(i+) depends
on control input v(i), i = anc(i+). In addition, the switching
costs associated with v(i) depend on the Boolean input δ(i−)t

at the previous time instant which is part of v(i−).
The fuel cost of conventional units is approximately [19]

`ft(v
(i), p(i+)) = c

>
t δ

(i)
t + c′t

>
p
(i+)
t + ‖diag(c′′t )p

(i+)
t ‖22

(12a)
with weights ct ∈ RT>0, c′t ∈ RT>0, and c′′t ∈ RT>0. Moreover,
the cost incurred by switching the conventional generators is

`st(v
(i), v(i−)) = ‖ diag(cst)(δ

(i−)
t − δ(i)t )‖22 (12b)

with weight cst ∈ RT>0. For nodes i+ ∈ N[1,Nn−1] with
anc(i+) = 0, (12b) becomes `st(v

(0), v(0−)). Here, v(0−) is
the input applied at the previous execution of the controller.



The goal in the operation of renewable units is to use as
much weather-dependent available power as possible. Using
pmax
r from Section II and weight cr ∈ RR>0, this can be

encoded into the cost function via

`r(p
(i+)) = ‖diag(cr)(p

max
r − p(i+)

r )‖22. (12c)

In favour of a more compact notation, we introduce the
cost variable Z(i+) for every node i+ ∈ N[1,Nn−1], i.e.,
Z(i+) = `(v(i), v(i−), p(i+)). The cost values at stage j can
be collected in Zj = [Z(i+)]i+∈nodes(j), which defines a
random variable on the probability space nodes(j). Using
the probabilities of stage j, πj = [π(i+)]i+∈nodes(j), the
expected cost at stage j is

Eπj (Zj) = π
>
j Zj . (14)

The total cost along the prediction horizon, Z ∈ R, is the
sum of expected costs over all stages of the tree, i.e.,

Z =
N∑
j=1

Eπj(Zj) =
Nn−1∑
i+=1

π(i+)Z(i+). (15)

Using the cost and the MG model from Section II, we
can now formulate a chance-constrained MPC problem for
islanded MGs.

IV. RISK-CONSTRAINED MODEL PREDICTIVE CONTROL

In this section we shall state the chance-constrained and
risk-constrained MPC problems.

A. Chance-constrained optimal control formulations

Consider the following stochastic optimal control problem
with horizon N

Minimize
v,x,p

Z (P)

subject to the system dynamics and constraints in Equations
(1) for all i+ ∈ N[1,Nn−1] with i = anc(i+), which consists
in minimizing the expected value of the cost defined in (15).
The minimization is carried out over x = [x(i)]i∈N[0,Nn−1]

,
v = [v(i)]i∈N[0,Nn−1]\nodes(N) and p = [p(i)]i∈N[1,Nn−1]

and given that the state at the root node, x(0), is equal to
the measured state. We need to impose that the state of
charge of each storage unit s ∈ N[1,Ns] at each stage j,
xs,j = [x

(i)
s ]i∈nodes(j), which is a random variable, remains

bounded between x̃min ≥ xmin and x̃max ≤ xmax in a
probabilistic sense. These tighter bounds serve to reduce
the range of the state of charge which typically comes with
positive effect on the aging of storage units (see, e.g., [20]).

To require that xs,j satisfies the constraints for all possible
realizations of the uncertain renewable infeed and load can
be overly conservative. A possible alternative is to require
that the probability of constraint satisfaction at every storage
unit s is adequately high, i.e.,

Pj
[
xs,j /∈ [x̃min, x̃max]

]
≤ α, (16)

for all stages j ∈ N[1,N ], for some α ∈ [0, 1], where Pj is the
probability measure of nodes(j) associated with probability

vector πj . This condition can be rewritten using the value-
at-risk operator of a random variable X on the probability
space nodes(j),

V@Rα[X] := inf{t : Pj [X > t] ≤ α}. (17)

In fact, the above probabilistic constraints are equivalent to

V@Rα [dj(xs,j)] ≤ 0, (18)

for all j ∈ N[1,N ], where dj is the distance-to-set func-
tion defined as dj(x) = miny∈[x̃min

s ,x̃max
s ] |x − y|. One-

sided constraints of the form Pj [xs,j > x̃max] ≤ α,
can be imposed by considering functions of the form
dmax
j (x) = miny≤x̃max

s
|x− y|.

Such probabilistic constraints are nonconvex, call for
additional binary variables and can lead to computationally
intractable optimization problems, while they limit the fre-
quency of violations, but not their magnitude. Indeed, in
order to impose the constraint of (16) we define the binary
variable τ (i)s ∈ {0, 1}nj which is such that

τ (i)s = 0 ⇐⇒ dj(x
(i)
s ) ≤ 0, (19)

for all i ∈ nodes(j). Using a standard big-M relaxation,
we choose M ≥ max(xmax − xmin), m ≤ 0 and a small
tolerance ε > 0 to rewrite (19) as

ε+ (m− ε)τ (i)j ≤ dj ≤M(1− τ (i)j ), (20)

for all i ∈ nodes(j). Then, for each storage unit s,

Pj [dj(x
(i)
s ) > 0] ≤ α ⇐⇒

∑
i∈nodes(j)

π(i)τ
(i)
s ≥ 1−α, (21)

which, by defining τs,j = [τ
(i)
s ]i∈nodes(j), can be equiva-

lently written as π>j τs,j ≥ 1 − α. In summary, the above
chance constraints are equivalent to

τ
(i)
s,j ∈ {0, 1}, dj(x

(i)
s,j) ≤ ξ

(i)
s , π>j τs,j ≥ 1− α,

ε+ (m− ε)τ (i)s,j ≤ ξ
(i)
s ≤M(1− τ (i)j ),

(22)

for i ∈ nodes(j), where we have introduced a relaxation of
dj(x

(i)
s,j) by introducing the auxiliary variables ξ(i)s . Note that

in order to impose chance constraints we need to introduce
as many binary variables as the nodes of the tree times
the number of storage units. Overall, the chance-constrained
optimal control problem reads

Minimize
v,x,p,ξ,τ

Z (Pcc)

subject to the system dynamics and constraints in (1)
and (22) for all i+ ∈ N[1,Nn−1] with i = anc(i+).
Note that the minimization is taken over v, x, p
and the auxiliary variables ξ = [[ξ

(i)
s ]s∈N[1,Ns]

]i∈N[1,Nn−1]
,

τ = [[τ
(i)
s ]s∈N[1,Ns]

]i∈N[1,Nn−1]
.

An alternative approach is to use risk-based constraints,
which can control both the occurrence and the magnitude of
violations.



B. Risk measures

A risk measure is an operator that maps random variables
to characteristic values. The risk of a random cost repre-
sents an “equivalent” fixed cost value. The expectation and
maximum operators are examples of risk measures.

A risk measure ρ on a finite probability space (Ω,P), with
Ω = {i}ni=1, is considered to be well-behaving if it is (i)
convex, that is, for all random variables X1, X2 and λ ∈
[0, 1], it is ρ(λX1 + (1− λ)X2) ≤ λρ(X1) + (1− λ)ρ(X2),
(ii) monotone, in the sense that ρ(X1) ≤ ρ(X2) whenever
P[X1 > X2] = 0, (iii) translation equi-variant, i.e., ρ(X +
c) = c + ρ(X) for all constants c ∈ R, and (iv) positive
homogeneous, that is ρ(aX) = aρ(X), for all a ≥ 0. Risk
measures that satisfy these requirements are called coherent
and can be represented as

ρ[X] = sup
µ∈A

Eµ[X], (23)

where Eµ is the expectation operator with respect to a
probability µ and A is a convex set of probabilities called
the ambiguity set of ρ [21, Theorem 6.5].

A widely used coherent risk measure is the average value-
at-risk at level α denoted by AV@Rα; its ambiguity set over
a finite, n-dimensional, probability space with probability
vector π ∈ Rn, is the polytope

Aα = {µ ∈ Rn :
∑n
i=1 µi = 1, 0 ≤ αµ ≤ π} . (24)

Note that A0 coincides with the whole probability simplex
and AV@R0[X] = maxi=1,...,n{Xi : πi 6= 0}, while A1 =
{π}, therefore AV@R1[X] = EP[X].

A noteworthy property of the average value-at-risk is that
it is a tight convex overapproximation of the value-at-risk,
that is AV@Rα[X] ≥ V@Rα[X], therefore the probabilistic
constraints of (18) are satisfied if

AV@Rα [dj(xs,j)] ≤ 0, (25)

for all j ∈ N[1,N ]. Unlike V@R-based constraints, AV@R-
based constraints are convex and do not lead to overly cum-
bersome optimization problems. For given α ∈ [0, 1], any
V@Rα-bounding risk measure with ρ[Z] ≥ V@Rα[Z] will
imply the satisfaction of the original probabilistic constraints.

The entropic value-at-risk, EV@Rα, is another example
of such a risk measure [22]; its ambiguity set over a fi-
nite, n-dimensional, probability space with probability vector
π is the set of probability vectors, µ ∈ Rn, such that
DKL(µ‖π) ≤ − lnα, where DKL is the Kullback-Leibler
divergence.

Lastly, the level of risk aversion can be determined from
available data using statistical methods [23].

C. Risk constraints

Given a coherent V@R-bounding risk measure ρj defined
on the probability space nodes(j), which is equipped with
the probability vector πj , probabilistic constraints of the form
given in (18) can be overapproximated the convex constraints

ρj [Cj ] ≤ 0, (26)
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Fig. 3. Simple microgrid with storage unit, renewable and conventional
generator as well as load. Source: [3].

where Cj = dj(xj), for j ∈ N[1,N ]. In this section we
have dropped the index s (cf. Equation (25)) for the sake
of simplicity. The associated risk-constrained optimal control
problem is

Minimize
v,x,p

Z (Prc)

subject to (26) for all j ∈ N[1,N ] and the system dy-
namics and constraints in (1) for all i+ ∈ N[1,Nn−1] with
i = anc(i+).

Since ρj is a coherent risk measure, there is a closed
convex set Aα,j such that

ρj [Cj ] = max
µ∈Aα,j

Eµ[Cj ] = max
µ∈Aα,j

µ>Cj . (27)

The ambiguity set Aα,j can generally be written in a conic
form as follows

Aα,j =

{
µ ∈ Rnj

∣∣∣∣ ∃ν ∈ Rrj such that
bα,j−Eα,jµ−Fα,jν ∈ Kα,j

}
, (28)

where bα,j , Eα,j and Fα,j have appropriate dimensions,
rj ∈ N0, Kα,j is a cone and it is implied that Aα,j is a
subset of the probability simplex of Rnj [15].

For example, for AV@Rα it is Eα,j = [Inj − Inj 1nj ]
>,

rj = 0, bα,j = [α−1π
>
j 0 1]> and Kα,j = R2nj ×{0}. From

convex duality, if there exist µ∗ ∈ Rnj and ν∗ ∈ Rrj so that
b − Eµ∗ − Fν∗ is in the relative interior of Kj , which is
a very weak assumption, then ρj [Cj ], for Cj ∈ Rnj can be
written as

ρj [Cj ] = min
y

{
y>bα,j

∣∣∣∣∣E>α,jy=Cj , F
>
α,jy= 0,

y ∈ K∗α,j

}
, (29)

where K∗j is the convex dual of Kj [24, Thm 2.4.1]. By virtue
of (29), constraints (26) are equivalent to the existence of a
yj ∈ K∗α,j such that E>α,jyj = Cj and F

>
α,jyj = 0. This

makes Problem (P) into a mixed-integer conic optimization
problem, yet without additional binary variables as it was the
case with chance constraints.

V. SIMULATIONS

In the closed-loop simulations, the grid in Fig. 3 was
considered. It is composed of a photovoltaic (PV) power
plant, a conventional generator, and a storage unit, i.e., all
basic components from Section II are included. The units are
connected to each other and to a load via transmission lines
that all have a rated power of 1.3 pu. For all transmission
lines a susceptance of -20 pu was considered. The remaining



TABLE II
UNIT PARAMETERS AND WEIGHTS OF COST FUNCTION.

Parameter Value Weight Value

[pmin
t , pmin

r , pmin
s ] [0.4, 0,−1] pu ct 0.1178

[pmax
t , pmax

r , pmax
s ] [1, 2, 1] pu c′t 0.751 1/pu

[xmin, xmax] [0, 4] pu h c′′t 0.0693 1/pu2

[x̃min, x̃max] [1, 3] pu h cst 0.3162

x0 3 pu h cr 1 1/pu
[Kt,Ks] [1, 1] γ 0.95

parameters of the units and the weights of the cost function
can be found in Table I.

The controllers and the MG model in Fig. 3
were implemented in MATLAB R2019b using
YALMIP R20200116 [25] and solved with Gurobi 9.0.2 on
a machine with a 3.70 GHz Intel® Xeon® E5-1620 v2 CPU
and 32 GB RAM. The computation times were reduced by
using the results of the previous iterations for a warm-start
of the solver. Moreover the binary variables used in the
model were relaxed for stages larger than or equal to j = 4
to speed up the solver. Note that the binary variables used to
formulate the chance constraints in (Pcc) were not relaxed.

The time series of load demand used in the simulations
was based on measurements from a real-world islanded MG.
For the PV power plant, irradiance data from [26] was
employed. The time series of load and irradiance were used
to train seasonal autoregressive integrated moving average
(ARIMA) models [4] that are employed to forecast load
and available renewable infeed for the MPC formulation.
In detail, for load an ARIMA(10, 0, 8)(7, 1, 7)48 model,
and for irradiance an ARIMA(6, 1, 2)(1, 1, 1)48 model were
used. From both models, scenario trees of the prediction
errors were constructed in a similar way as in [2], [27]. In
what follows, chance constraints and the corresponding risk
constraints are imposed separately for the upper and lower
bounds, that is, we use dmax

j (x) = miny≤x̃max
s
|x − y|, and

dmin
j (x) = miny≥x̃min

s
|x− y|.

A. Closed-loop simulations for α = 0.5

The results of the closed-loop simulations with the risk-
constrained MPC (α = 0.5) over a simulation horizon of
7 d, i.e., 336 simulation steps, are shown in Fig. 4. It can
be noted that during each day, PV infeed is used to charge
the storage unit. During this time, the conventional unit
is disabled. At the end of each day, the storage unit is
discharged as the infeed from the PV power plant decreases.
At night, the conventional unit is repeatedly enabled to
provide power to the loads and charge the storage units. In
theory, α = 0.5 allows for 50 % of the predicted values
to be above x̃max = 3 pu h at each stage and for 50 %
of the values to be below x̃min = 1 pu h. In the closed-
loop simulations, however, only 18 energy values outside the
interval [x̃min, x̃max] were observed with maximum distance
to the interval below 0.05 pu h.
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Fig. 4. Results of closed-loop simulations over one week with risk-
constrained MPC at α = 0.5.

TABLE III
ACCUMULATED VALUES OF CLOSED-LOOP SIMULATION WITH

SIMULATION HORIZON K = 336.

Chance-constr., α = Risk-constr., α =

0.1 0.2 0.5 0.1 0.2 0.5

Avg. costs ¯̀ 3.35 3.35 3.3 3.36 3.36 3.33
Avg. ren. share [%] 50 50 52.63 49.12 49.12 50

x /∈ [x̃min, x̃max] 9 12 43 7 8 18
Switching actions 15 15 39 15 15 48

Avg. solve time [s] 1.05 2.38 3.62 0.59 0.69 1.37
Max. solve time [s] 8.63 26.43 16.6 6.82 6.26 9.73

B. Comparison of closed-loop simulations for different α

The results of closed-loop simulations with the chance-
constraint MPC (Pcc) and the risk-constrained MPC (Prc) for
different values of α are shown in Table III. It can be noted
that with increasing α, the average closed-loop costs

¯̀=
336∑
k=1

`(v(k), v(k − 1), p(k)),

decrease. Comparing, for example, the risk-constrained MPC
for α = 0.11 and α = 0.5, one can see that the average cost
decreases about 1 %. Note that this decrease is reached solely
by allowing some energy constraints violations. As noted
earlier, the maximum violation of the chance constraints is
less than 0.05 pu h, so the decrease in price comes at the
acceptable disadvantage of very small violations of x.

It can be seen in Table III that the number of constraint
violations of the chance-constrained approach is smaller than
that of the risk-constraint approach. Moreover, the average

1Note that a uniform imposition of constraints via the chance-constrained
MPC with α = 0 also leads to an average cost of ¯̀= 3.36.
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Fig. 5. Distribution of constraint violations relative to bounds, i.e.,
x̃min − x(k) and x(k) − x̃max for chance constrained (CC) and risk
constrained (RC) MPC. Note that states that did not violate any constraint
were omitted.

closed-loop cost ¯̀ of the chance-constrained MPC is slightly
smaller than that of the risk-constrained approach. Both
effects are based on the fact that risk constraints overap-
proximate chance constraints. Furthermore, the average and
the maximum computing time of the solver are lower for
the risk-constrained approach. Unlike chance constraints, the
risk-based aporoach does not neccesitate additional binary
varibles. This leads to optimization problems that can acco-
modate an adequate number of storage units at a reasonable
computational cost.

In Fig. 5, distributions of values outside the interval
[x̃min, x̃max] are shown for the different MPC approaches
and values of α. It can be noted that, for the same value of α,
the risk-constrained controller typically comes with a smaller
number of violations. The largest violations of all simulations
occur using the chance-constrained controller. This indicates
that imposing risk constraints can help to prevent extreme
violations by taking their magnitude into account.

VI. CONCLUSIONS

This paper proposes a scenario-based stochastic model
predictive control formulation with stagewise risk-based con-
straints on the state of charge of the storage units of a micro-
grid. Unlike chance constraints, risk constraints can control
both the frequency and magnitude of constraint violations;
they can allow infrequent and mild violations of the state-of-
charge constraints leading to a lower operating cost. Lastly,
risk constraints are convex unlike chance constraints, which
necessitate the introduction of binary variables; as a result,
risk-constrained problems can be solved faster.
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