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A Finite Test for the Linearizability of Two-Input Systems by a

Two-Dimensional Endogenous Dynamic Feedback

Conrad Gstöttner1 Bernd Kolar1 Markus Schöberl1

Abstract— We propose an algorithmic test to check whether
a two-input system is linearizable by an endogenous dynamic
feedback with a dimension of at most two. This test furthermore
provides a procedure for systematically deriving flat outputs for
this class of systems.

I. INTRODUCTION

Flatness was introduced in control theory by Fliess, Lévine,

Martin and Rouchon, see e. g. [1], [2]. The flatness prop-

erty allows an elegant systematic solution of feed-forward

and feedback problems, see e. g. [2]. Roughly speaking, a

nonlinear control system

ẋ = f(x, u)

with dim(x) = n states and dim(u) = m inputs is flat,

if there exist m differentially independent functions yj =
ϕj(x, u, u1, . . . , uq), uk denoting the k-th time derivative of

u, such that x and u can locally be parameterized by y and

its time derivatives. For this parameterization we write

x = Fx(y, y1, . . . , yr−1)

u = Fu(y, y1, . . . , yr)

and refer to it as the parameterizing map with respect to the

flat output y. For a given flat output, Fx and Fu are unique.

If the parameterizing map is invertible, i. e. y and all the

time derivatives of y present in the map can be expressed

solely as functions of x and u, the system is static feedback

linearizable. In this case we call y a linearizing output of

the static feedback linearizable system. The static feedback

linearization problem has been completely solved, see [3],

[4]. However, there do not exist verifiable necessary and

sufficient conditions for flatness, except for certain classes of

systems, including driftless systems with two inputs [5] and

systems which are linearizable by a one-fold prolongation

of a suitably chosen control [6]. Necessary and sufficient

conditions for (x, u)-flatness of two-input control affine

systems with four states can be found in [7].

It is well known that every flat system can be ren-

dered static feedback linearizable by an endogenous dynamic

feedback. If a flat output is known, such a linearizing

feedback can be constructed systematically, see e. g. [8]. In

this contribution we propose an algorithmic test to check

whether a two input system is linearizable by an endogenous

dynamic feedback with a dimension of at most two. This

test furthermore provides a procedure for systematically
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deriving flat outputs of such systems. The main idea of

our algorithmic test is to successively split off or add

endogenous dynamic feedbacks to the system in order to

obtain a static feedback linearizable system. If the algorithm

does not yield a static feedback linearizable system, i. e. if

the test fails, the considered system is not linearizable by

an endogenous dynamic feedback with a dimension of at

most two. The linearizing outputs of the eventually obtained

static feedback linearizable system are then flat outputs of

the original system. In the literature, constructive approaches

for deriving flat outputs can be found, see e. g. [9], [10] or

[11]. All these procedures are applicable to a broad variety

of systems and are not restricted to the two-input case.

However, there usually occur degrees of freedom, which

may lead to an infinite number of branches. In contrast to

that, in every step of our procedure, a certain action has to

be applied depending on easily verifiable properties of the

system. We will see that systems which are linearizable by

an endogenous dynamic feedback with a dimension of at

most two are actually linearizable by a special subclass of

endogenous dynamic feedbacks, namely prolongations of a

suitably chosen control. In [12], a complete solution for the

flatness problem of two-input systems linearizable via a one-

fold prolongation of a suitably chosen control is provided. In

[13], two-input systems linearizable via a two-fold prolonga-

tion of a suitably chosen control are considered. The present

contribution is greatly influenced by these results. However,

in [13] a complete solution for the flatness problem of two-

input systems linearizable via a two-fold prolongation is not

provided, due to Assumption 2 therein. Our procedure also

applies to the cases which are not covered by the results in

[13]. In Section V, we apply our procedure to three examples,

to none of which the results in [13] are applicable. In [14]

we proposed a structurally flat triangular form based on the

extended chained form. Our first two examples turn out to

be static feedback equivalent to the proposed triangular form,

which provides another way for systematically deriving flat

outputs for our first two examples. However, the results in

[14] are not applicable to our third example.

II. NOTATION

Let X be an n-dimensional smooth manifold, equipped with

local coordinates xi, i = 1, . . . , n. Its tangent bundle is

denoted by (T (X ), τX ,X ), for which we have the induced

local coordinates (xi, ẋi) with respect to the basis {∂xi}. We

make use of the Einstein summation convention. By ∂xh we

denote the m×n Jacobian matrix of h = (h1, . . . , hm) with

respect to x = (x1, . . . , xn). The k-fold Lie derivative of a
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function ϕ along a vector field v is denoted by Lk
vϕ. Let

v and w be two vector fields. Their Lie bracket is denoted

by [v, w]. Let furthermore D1 and D2 be two distributions.

By [v,D1] we denote the distribution spanned by the Lie

bracket of v with all basis vector fields of D1, and by

[D1, D2] the distribution spanned by the Lie brackets of all

possible pairs of basis vector fields of D1 and D2. The i-
th derived flag of a distribution D is denoted by D(i) and

defined by D(0) = D and D(i+1) = D(i) + [D(i), D(i)]
for i ≥ 0. We denote the Cauchy characteristic distribution

of D by C(D). It is spanned by all vector fields c which

belong to D and satisfy [c,D] ⊂ D. We make use of multi-

indices, in particular, by R = (r1, r2) we denote the unique

multi-index associated to a flat output of a system with two

inputs, where rj denotes the order of the highest derivative

of yj needed to parameterize x and u by this flat output,

i. e. y[R] = (y1, y11 , . . . , y
1
r1
, y2, y21 , . . . , y

2
r2
). Furthermore,

we define R ± c = (r1 ± c, r2 ± c) with an integer c, and

#R = r1 + r2.

III. PRELIMINARIES

Throughout, we assume all distributions to have locally con-

stant dimension, we consider generic points only. Consider

a nonlinear two-input system of the form

ẋ = f(x, u) , (1)

with dim(x) = n, dim(u) = 2 and rank(∂uf) = 2. Let

yj = ϕj(x, u, u1, . . . , uq), j = 1, 2 be a flat output of (1)

and
x = Fx(y[R−1])

u = Fu(y[R])
(2)

the parameterizing map with respect to this flat output.

The parameterizing map (2) is a submersion. We denote

the difference of the dimensions of the domain and the

codomain of (2) by d, i. e. d = #R + 2 − (n + 2) =
#R − n. In [12] and [13], the number #R + 2 is called

the differential weight of the flat output. (The differential

weight of a flat output with difference d is thus given by

d + n + 2.) The difference d is the minimal dimension of

an endogenous dynamic feedback needed to render (1) static

feedback linearizable such that y forms a linearizing output

of the closed loop system. The endogenous feedback can

be constructed systematically, see e. g. [8]. If d = 0, the

map (2) degenerates to a diffeomorphism and the system

is static feedback linearizable with y being a linearizing

output. A flat output y is called a minimal flat output if

the difference d is minimal compared to all other possible

flat outputs of the system. We define the difference d of a

flat system to be the difference of a minimal flat output. The

difference d of a system (1) therefore measures its distance

from static feedback linearizability, i. e. d is the minimal

possible dimension of an endogenous dynamic feedback

needed to render the system static feedback linearizable. For

(1), we define the distributions D0 = span{∂u1 , ∂u2} and

Di = Di−1+[f,Di−1], i ≥ 1 on the state and input manifold

X × U , where f = f i(x, u)∂xi .

Theorem 1: The two-input system (1) is linearizable by

static feedback if and only if all the distributions Di are

involutive and dim(Dn−1) = n+ 2.

For a proof of this theorem, we refer to [4]. The involu-

tivity of Di−1 implies the invariance of Di with respect to

regular input transformations ū = Φu(x, u). In particular,

since D0 = span{∂u1 , ∂u2} is always involutive, D1 =
D0 + [f,D0] is always feedback invariant, also when the

system is not static feedback linearizable. A special case of

(1) are affine input systems (AI-systems)

ẋ = a(x) + b1(x)u
1 + b2(x)u

2 . (3)

Lemma 1: The system (1) allows an AI representation (3)

if and only if D0 ⊂ C(D1).
It follows from the proof of this lemma, which can be

found in Section VII, that the input transformation ūj =
f j(x, u), j = 1, 2, which may require a renumbering of the

state variables, yields an AI representation if an AI represen-

tation is indeed possible. For AI-systems, we can omit ∂uj

in D1, i. e. for AI-systems we define D1 = span{b1, b2},

where bj = bij(x)∂xi are vector fields on the state manifold

X . A central role in this contribution plays the more general

form
ẋ = a(x, u1) + b(x, u1)u2 , (4)

in which at least the input u2 occurs affine. This form was

introduced in [9] and we refer to it as partial affine input

form (PAI form)1.

Lemma 2: The system (1) allows a PAI representation (4)

if and only if the condition

(α1)2∂2
u1f + 2α1α2∂u1∂u2f + (α2)2∂2

u2f
!
∈ D1 , (5)

admits nontrivial solutions αj(x, u) and at least one of the

vector fields vc = α1∂u1+α2∂u2 obtained from a solution of

(5) meets vc ∈ C(∆1) where ∆1 = span{∂u1 , ∂u2 , [vc, f ]}.

A proof of this lemma is provided in Section VII, where

we also discuss a crucial property of the condition (5),

namely that for systems which do not allow an AI repre-

sentation, i. e. D0 6⊂ C(D1), the condition (5) admits at most

two independent nontrivial solutions and thus, it yields at

most two non-collinear candidates for a vector field vc. To

each vector field vc which actually fulfills vc ∈ C(∆1), there

exists a corresponding PAI representation. To derive it, apply

the following two steps:

1) Straighten out the distribution span{vc}, i. e. apply a

suitable input transformation ū = Φu(x, u) such that

span{vc} = span{∂ū2}.

2) Normalize one equation which explicitly depends on

ū2 (i. e. introduce e. g. ũ2 = f̄1(x, ū1, ū2), which may

require a renumbering of the states of the system).

Based on the fact that at most two non-collinear vector fields

vc exist and that to every PAI representation of the system,

a vector field vc belongs, it can be shown that there exist at

most two fundamentally different PAI representations of the

system, all others are equivalent to one of those two by a

transformation of the form

x̄ = Φx(x)

ū1 = g1(x, u1)

ū2 = g2(x, u1) +m(x, u1)u2 .

(6)

1In [15] it is shown that the existence of a PAI representation is actually a
necessary condition for flatness and this necessary condition is not restricted
to systems with two inputs. See also [16].



IV. FINITE ALGORITHMIC TEST

The main idea of our test for flatness with d ≤ 2 is to

successively split off or add endogenous dynamic feedbacks

to the system, in order to eventually obtain a static feedback

linearizable system. The linearizing outputs of the eventually

obtained static feedback linearizable system are then flat

outputs with d ≤ 2 of the original system. As we will see

in the next section, for systems with d ≤ 2, there always

applies one of the following cases.

1) The system allows an AI representation (3) with an

involutive input distribution D1 = span{b1, b2}. In this

case, straighten out D1 by a suitable state transformation

x̄ = Φx(x), in order to obtain a decomposition of (3) into

the form

Σ1 : ˙̄xi1
1 = f̄ i1

1 (x̄1, x̄2) , i1 = 1, . . . , n− 2

Σ2 : ˙̄xi2
2 = f̄ i1

2 (x̄1, x̄2, u) , i2 = 1, 2 .
(7)

Continue the analysis with the subsystem Σ1 with the

state x̄1 and the input x̄2.

2) The system allows an AI representation (3) but the input

distribution D1 = span{b1, b2} is non-involutive. Two

subcases are possible. If dim(D1) = 3, construct a

nontrivial linear combination bc = α1b1 + α2b2 such

that [a, bc] ∈ D1. If dim(D1) = 4, construct a nontrivial

linear combination bc = α1b1 + α2b2 such that bc ∈
C(D

(1)
1 ). In either subcase, introduce the new input ū1 =

α2u1−α1u2 and one-fold prolong it, i. e. add the equation
˙̄u1 = ū1

1. Continue the analysis with the prolonged system

ẋ = a(x) + b̄1(x)ū
1 + b̄2(x)ū

2 , ˙̄u1 = ū1
1 (8)

with the state (x, ū1) and the input (ū1
1, ū

2).
3) The system only allows a PAI representation (4). Trans-

form the system into PAI form and one-fold prolong

the non-affine occurring input ū1, i. e. add the equation
˙̄u1 = ū1

1. Continue the analysis with the prolonged system

ẋ = a(x, ū1) + b(x, ū1)ū2 , ˙̄u1 = ū1
1 (9)

with the state (x, ū1) and the input (ū1
1, ū

2). If two non-

equivalent PAI representation exist, we have to continue

with both of them (branching point).

The procedure succeeds if a static feedback linearizable sys-

tem is obtained. In the next section, we explain in detail the

effects of the individual steps which are applied depending

on which case applies. As we will see, the subsystem Σ1

in (7) which is obtained if case 1 applies, has the same

difference d as the complete system. Such a step therefore

only reduces the dimension of the state, but not the distance

from static feedback linearizability. In contrast to that, if for

a system with d ≤ 2 the cases 2 or 3 apply, we obtain

a prolonged system (8) or (9) with a difference of d − 1
compared to the non-prolonged system. If case 3 applies,

we may encounter a branching point since there may exist

two non-equivalent PAI representations which both have to

be considered. Nevertheless, at least one of the AI-systems

obtained by prolonging the non-affine input has a difference

of d− 1 compared to the non-prolonged system. Therefore,

applying the procedure to a system with d ≤ 2, after

at most two steps which actually decrease the difference

(cases 2 and 3), we must obtain a static feedback linearizable

system. Otherwise, the original system has a difference of

d ≥ 3 or is not flat.

A. Necessity and sufficiency for systems with d ≤ 2

In the following, we explain why applying the procedure to

a system with a difference of d ≤ 2 necessarily yields a

static feedback linearizable system, and why the linearizing

outputs of the obtained static feedback linearizable system

are flat outputs with d ≤ 2 of the original system. We have

the following three results, which are proven in Section VII.

Lemma 3: Every flat output with difference d of the

complete system (7) is also a flat output with the same

difference d for the subsystem Σ1 in (7). Conversely, every

flat output of Σ1 is also a flat output of the complete system

and the differences again coincide.

Lemma 4: For an AI-system with a difference of d ≤
2 which has a non-involutive input distributions D1 =
span{b1, b2}, we either have dim(D1) = 3 and there exists a

non-trivial vector field bc = α1b1 +α2b2 satisfying [a, bc] ∈
D1, or we have dim(D1) = 4 and there exists a non-trivial

vector field bc = α1b1 + α2b2 satisfying bc ∈ C(D
(1)
1 ).

Furthermore, the prolonged system (8) has a difference of

d − 1 (i. e. it is either static feedback linearizable or has a

difference of 1). The linearizing outputs or flat outputs with

difference 1 of the prolonged system are flat outputs with

difference 1 or 2 of the original system.

Lemma 5: A system with d ≤ 2 which does not allow an

AI representation allows a PAI representation. There exist at

most two non-equivalent PAI representations and at least one

of the prolonged systems (9) obtained from these possibly

two PAI representations has a difference of d − 1 (i. e. it is

either static feedback linearizable or has a difference of 1).

The linearizing outputs or flat outputs with difference 1 of

the prolonged system are flat outputs with difference 1 or 2
of the original system.

Based on these results, we first explain why the procedure

necessarily succeeds when it is applied to a system with a

difference of d ≤ 2. Assume we have a system (1) with

d ≤ 2. If the system allows an AI representation, its input

distribution D1 = span{b1, b2} can either be involutive or

not. If it is involutive, case 1 applies, which according to

Lemma 3 yields a system with the same difference d as

the original system. We can exclude the case dim(D1) ≤ 1,

since then we effectively have a single input system which is

either static feedback linearizable or not flat at all, see [17].

Furthermore, we can exclude the case that the subsystem

Σ1 in (7) has redundant inputs2. If the procedure succeeds,

it necessarily terminates with case 2 or 3 since case 1

2If Σ1 has redundant inputs, i. e. if Σ1 effectively reduces to a single
input system, it can either be static feedback linearizable or not flat at all.
However, if Σ1 is static feedback linearizable, then also the complete system
is static feedback linearizable and the procedure already succeeded before
this decomposition. On the other hand, if Σ1 is not flat then due to Lemma
3, also (7) is not flat. The system (7) need not be the original system, it
may be the outcome of previously applied decompositions or prolongations
according to the cases 1 to 3. Nevertheless, due to the Lemmas 3 to 5, if
Σ1 is not flat, also the original system cannot be flat with a difference of
d ≤ 2. In fact, it even follows that the original system cannot be flat at all.



always yields a subsystem Σ1 with the same difference as

the complete system (7).

If the system allows an AI representation with a non-

involutive input distribution D1, case 2 applies and due to

Lemma 4, the prolonged system (8) has a difference of d ≤ 1.

If the system does not allow an AI representation, accord-

ing to Lemma 5 it necessarily allows a PAI representation

and thus, case 3 applies. Since there exist at most two non-

equivalent PAI representations and in case 3 we require to

consider both of them, one of the possibly two prolonged

systems (9) has a difference of d ≤ 1.

Each step therefore either yields a system with a lower

state dimension or a lower difference (for at least one of the

possibly two branches if case 3 applies). Since by assumption

the original system has a difference of d ≤ 2, after at

most two steps which actually yield a system with a lower

difference (cases 2 and 3) we necessarily have a static

feedback linearizable system.

On the other hand, due to Lemma 3 to 5 it follows that

if the procedure succeeds, i. e. if after at most two steps

which actually yield a system with a lower difference (cases

2 and 3) we obtain a static feedback linearizable system, the

linearizing outputs of this static feedback linearizable system

are flat outputs with d = 1 or d = 2 of the original system.

V. EXAMPLES

As already mentioned in the introduction, our first two

examples can also be handled with the structurally flat

triangular form which we proposed in [14]. However, neither

[14] nor [13], nor both of them together completely cover

the class of systems addressed in this paper. The results in

[14] and [13] do not apply to our third example.

A. Planar VTOL aircraft

Consider the planar VTOL aircraft, also treated in e. g. [8],

[18], [19] or [14] and given by

ẋ = vx v̇x = ǫ cos(θ)u2 − sin(θ)u1

ż = vz v̇z = cos(θ)u1 + ǫ sin(θ)u2 − 1

θ̇ = ω ω̇ = u2 .

(10)

The input vector fields of this system are given by b1 =
− sin(θ)∂vx+cos(θ)∂vz and b2 = ǫ cos(θ)∂vx+ǫ sin(θ)∂vz+
∂ω, which span the involutive input distribution D1 =
span{b1, b2}. Therefore, case 1 of the procedure applies. In

order to decompose the system as described in case 1, we

straighten out D1 by applying the state transformation v̄x =
cos(θ)vx + sin(θ)vz − ǫω, with the rest of the coordinates

left unchanged. This results in the decomposition

Σ1 :

ẋ = 1
cos(θ)(v̄x − sin(θ)vz + ǫω)

ż = vz

θ̇ = ω

˙̄vx = ω
cos(θ)(vz − sin(θ)(v̄x + ǫω))− sin(θ)

Σ2 :
v̇z = cos(θ)u1 + ǫ sin(θ)u2 − 1

ω̇ = u2 .

(11)

We proceed with the subsystem Σ1, for which vz and ω act

as inputs. This system does not allow an AI representation,

so we are in case 3 of the procedure. In order to derive a

PAI representation for Σ1, we first solve (5), which yields

α2(α1 − α2ǫ sin(θ))
!
= 0, and has the two independent

solutions α1 = λ, α2 = 0 and α1 = λǫ sin(θ), α2 = λ, with

an arbitrary function λ 6= 0 (we can choose e. g. λ = 1). Both

vector fields vc,1 = ∂vz and vc,2 = ǫ sin(θ)∂vz +∂ω obtained

from these solutions fulfill vc,i ∈ C(span{∂vz , ∂ω, [vc,i, f ]}),
i. e. Σ1 allows two non-equivalent PAI representations. The

vector field vc,1 = ∂vz is already straightened out and Σ1 in

(11) is actually already in PAI form with the input vz oc-

curring affine. However, the AI-system obtained by one-fold

prolonging the non-affine input ω cannot have a difference

of d = 1, since none of the cases of the procedure applies

to this AI-system. Straightening out vc,2 = ǫ sin(θ)∂vz +∂ω,

by the input transformation v̄z = vz − ǫ sin(θ)ω, results in

vc,2 = ∂ω and the PAI representation3

ẋ = 1
cos(θ)(v̄x − sin(θ)v̄z) + ǫ cos(θ)ω

ż = v̄z + ǫ sin(θ)ω

θ̇ = ω

˙̄vx = ω
cos(θ)(v̄z − sin(θ)v̄x)− sin(θ) .

(12)

For the AI-system obtained by one-fold prolonging v̄z ,

i. e. adding the equation ˙̄vz = v̄z,1, we have dim(D) = 3,

where D1 = span{b1, b2} is the input distribution spanned

by its input vector fields b1 = ∂v̄z and b2 = ǫ cos(θ)∂x +

ǫ sin(θ)∂z +∂θ+
v̄z−sin(θ)v̄x

cos(θ) ∂v̄x . The drift of this AI-system

is given by a = 1
cos(θ)(v̄x − sin(θ)v̄z)∂x + v̄z∂z − sin(θ)∂v̄x

and there indeed exists a linear combination bc = α1b1 +
α2b2 of the input vector fields which satisfies [a, bc] ∈ D1,

namely bc = λb2 with an arbitrary function λ 6= 0 (e. g. λ =
1 and thus α1 = 0 and α2 = 1). So the conditions for case 2

are met and we prolong the input ũ1 = α2v̄z,1−α1ω = v̄z,1,

i. e. we simply have to prolong the input v̄z,1, no actual input

transformation is required in this case, and we obtain the

static feedback linearizable system

ẋ = 1
cos(θ)(v̄x − sin(θ)v̄z) + ǫ cos(θ)ω

ż = v̄z + ǫ sin(θ)ω

θ̇ = ω

˙̄vx = ω
cos(θ)(v̄z − sin(θ)v̄x)− sin(θ)

˙̄vz = v̄z,1
˙̄vz,1 = v̄z,2 ,

with the input (ω, v̄z,2). We have y = (x − ǫ sin(θ), z +
ǫ cos(θ)) as a possible linearizing output of this system,

which in turn is a flat output with a difference of d = 2
of the original system (10).

B. Academic example I

Consider the system

ẋ1 = u1 , ẋ2 = u2 , ẋ3 = sin(u
1

u2 ) , (13)

also considered in [20], [21] and [14]. This system does not

allow an AI representation, so we are in case 3. In order

3Note that in these coordinates in fact both vector fields vc,1 and vc,2

are straightened out simultaneously and that in (12) actually either input
could be interpreted as the affine entering input.



to derive a PAI representation, we solve (5), which for this

system yields

(α1)2 sin(u
1

u2 )(u
2)2 + 2α1α2(cos(u

1

u2 )u
2 − sin(u

1

u2 )u
1)u2+

(α2)2(sin(u
1

u2 )u
1 − 2 cos(u

1

u2 )u
2)u1 !

= 0

and has the two independent non-trivial solutions α1 = λu1,

α2 = λu2 and α1 = λ(u1 tan(u
1

u2 )−2u2), α2 = λu2 tan(u
1

u2 )
with an arbitrary function λ 6= 0 (e. g. λ = 1). Only the

vector field vc = u1∂u1 + u2∂u2 , which is obtained from

the first solution, meets vc ∈ C(span{∂u1 , ∂u2 , [vc, f ]}). To

derive the corresponding PAI representation, we straighten

out span{vc} by the input transformation ū1 = u1

u2 , ū2 = u2,

resulting in

ẋ1 = ū1ū2 , ẋ2 = ū2 , ẋ3 = sin(ū1)

and proceed with the AI-system obtained by one-fold pro-

longing ū1, i. e. adding the equation ˙̄u1 = ū1
1. Its input vector

fields are given by b1 = ∂ū1 , b2 = ū1∂x1 + ∂x2 and its drift

reads a = sin(ū1)∂x3 . We have dim(D1) = 3 and there

exists a linear combination bc = α1b1 + α2b2 which meets

[a, bc] ∈ D1, namely bc = λb2, with an arbitrary function

λ 6= 0 (e. g. λ = 1 and thus α1 = 0 and α2 = 1). So

the conditions for case 2 are met and we prolong the input

ũ1 = α2ū1
1−α1ū2 = ū1

1, i. e. we simply have to prolong the

input ū1
1, no actual input transformation is required, and we

obtain the static feedback linearizable system

ẋ1 = ū1ū2

ẋ2 = ū2

ẋ3 = sin(ū1)

˙̄u1 = ū1
1

˙̄u1
1 = ū1

2

(14)

with the input (ū1
2, ū

2). We have y = (x3, x1 − x2ū1) =

(x3, x1 − x2 u1

u2 ) as a possible linearizing output of (14),

which in turn is a flat output with a difference of d = 2
of the original system (13).

C. Academic example II

As a final example, consider the system

ẋ1 = arcsin(u
1+u2

x2 )− x4

ẋ2 = x4

ẋ3 = u1

ẋ4 = u2 .

With the algorithmic test proposed in this paper, it can be

shown that this system has a difference of d = 2 and y =
(x1 + x2, x3 + x4) follows as a corresponding flat output

with d = 2. In the first step case 3 applies, in the second

step case 1 applies, and then case 3 applies again.

VI. CONCLUSIONS

We have proposed a finite algorithmic test for linearizability

by an endogenous dynamic feedback with a dimension of

at most two, together with a procedure for systematically

deriving flat outputs for such systems. The conditions are

in principle verifiable, however, applying the test requires

straightening out involutive distributions, which from a com-

putational point of view is unfavorable. Further research will

be devoted to deriving necessary and sufficient conditions

based on the proposed test which overcome this drawback.

VII. PROOFS
Proof of Lemma 1

Necessity. For an AI-system (3), we have D1 =
span{∂u1 , ∂u2 , b1, b2} and since the vector fields bj do

not depend on u1 and u2, we obviously have D0 =
span{∂u1 , ∂u2} ⊂ C(D1).
Sufficiency. Given a system ẋ = f(x, u) with rank(∂uf) =
2, we can always apply an input transformation ūj =
f j(x, u), j = 1, 2 (this transformation may require a renum-

bering of the sate variables) in order to obtain

ẋj = ūj , j = 1, 2

ẋi = f̄ i(x, ū) , i = 3, . . . , n .
(15)

Calculating D1 in these coordinates yields D1 =
span{∂ū1 , ∂ū2 , v1, v2} with v1 = ∂x1 + ∂ū1 f̄ i∂xi , i =
3, . . . , n and v2 = ∂x2 + ∂ū2 f̄ i∂xi , i = 3, . . . , n. The

condition D0 ⊂ C(D1) implies [∂ūj , vk] ∈ D1, j, k ∈ {1, 2},

which can only hold if [∂ūj , vk] = 0, implying that (15) is

actually in AI form.

Proof of Lemma 2

For a system in PAI form (4), we have D1 =
span{∂u1 , ∂u2 , (∂u1ai + u2∂u1bi)∂xi , bi∂xi}. Consider the

subdistribution ∆1 = span{∂u1 , ∂u2 , bi∂xi} of D1. We have

∂u2 ∈ C(∆1) and ∆1 = D0 + span{[∂u2 , f ]}. Therefore, if

a two input system (1) allows a PAI representation, then

there also must exist a vector field vc ∈ D0, i. e. vc =
α1∂u1 + α2∂u2 with functions αj = αj(x, u), such that

with ∆1 = D0 + span{[vc, f ]}, we have vc ∈ C(∆1).
Since vc ∈ D0 and D0 is involutive, this is equivalent to

[vc, [vc, f ]] ∈ ∆1. Since we have ∆1 ⊂ D1, this also implies

[vc, [vc, f ]] ∈ D1. Inserting vc = α1∂u1 + α2∂u2 into the

latter relation yields (5). On the other hand, given a vector

field vc = α1∂u1 + α2∂u2 which meets [vc, [vc, f ]] ∈ ∆1,

a PAI representation can be derived following the two steps

in Section III. To show that this procedure indeed leads to a

PAI representation, evaluate the condition [vc, [vc, f ]] ∈ ∆1

after applying the two steps of the procedure in Section III.

We do not show in detail here why the condition (5) admits

at most two independent nontrivial solutions for systems

which do not allow an AI representation, i. e. D0 6⊂ C(D1).
The proof is based on the fact that D0 6⊂ C(D1) implies that

at least one of the vector fields ∂2
u1f , ∂u1∂u2f or ∂2

u2f in

(5) is not contained in D1. If non of them is contained in

D1, it follows that (5) admits no non-trivial solution. If one

of them is mod D1 linearly dependent of the other two, (5)

admits at most one independent non-trivial solution. If two

of them are mod D1 linearly dependent of one of them, (5)

admits at most two independent non-trivial solutions.

Proof of Lemma 3

Given a flat output y of the complete system (7), we have a

certain difference d = #R − n (which by assumption is at

most two) of the dimensions of the domain and the codomain

of the corresponding parameterizing map

(x1, x2) = Fx(y[R−1]) (16a)

u = Fu(y[R]) . (16b)



The parameterizing map of the subsystem Σ1 in (7) only

consists of (16a), i. e. y is also a flat output of the subsystem

Σ1. For the parameterizing map (16a) of Σ1 we have the

same difference of the dimensions of the domain and the

codomain, i. e. the same value for d. Indeed, in (16a), we

have a domain of dimension #(R − 1) + 2 = #R and a

codomain of dimension n and thus again a difference of

d = #R − n. Similarly, it can be shown that every flat

output of Σ1 with a certain difference d is also a flat output

for the complete system with the same difference d.

The proofs of Lemma 4 and 5 are based on the following

Theorem, which is proven at the end of this section.

Theorem 2: A system (1) with d ≤ 2 can be rendered

static feedback linearizable by d-fold prolonging a suitably

chosen (new) input after a suitable input transformation has

been applied. If the system under consideration is an AI-

system, there always exists an affine input transformation

which generates the required (new) input.

Proof of Lemma 4

We prove the cases d = 1 and d = 2 separately. Let us

first assume that the AI-system has a difference of d = 1.

According to Theorem 2, it becomes static feedback lin-

earizable after applying a suitable affine input transformation

ūj = g(x)j+mj
k(x)u

k and subsequently one-fold prolonging

the new input ū1, i. e. the prolonged system

ẋ = ā(x) + b̄1(x)ū
1 + b̄2(x)ū

2 , ˙̄u1 = ū1
1

with the state (x, ū1) and the input (ū1
1, ū

2) is static feedback

linearizable. Thus, the distributions ∆1 = span{∂ū1 , b̄2},

∆2 = span{∂ū1 , b̄1, b̄2, [ā, b̄2] + ū1[b̄1, b̄2]}, ∆3, . . . are all

involutive. The involutivity of ∆2 implies that [ā, b̄2] ∈
span{b̄1, b̄2, [b̄1, b̄2]} and thus, we actually have ∆2 =

span{∂ū1 , b̄1, b̄2, [b̄1, b̄2]} = span{∂ū1}+D
(1)
1 , which in turn

implies that D
(1)
1 is involutive, i. e. D1 = D

(1)
1 . Based on

these considerations, in the following we explain how to find

an input transformation required to generate an input which

needs to be prolonged in order to render the system static

feedback linearizable. If n = 3, it can be shown that we

can prolong any input ũ1 = g(x)1 +m1
k(x)u

k of the system

and obtain a static feedback linearizable prolonged system.

For n ≥ 4, the direction of the vector field b̄2 is uniquely

determined by the condition [a, b̄2] ∈ D
(1)
1 (i. e. it can be

shown that [a, b̄1] 6∈ D
(1)
1 ). The construction is as follows.

Calculate D
(1)
1 = span{b1, b2, [b1, b2]} and find functions α1

and α2 such that α1[a, b1] +α2[a, b2] ∈ D
(1)
1 . The functions

α1 and α2 are of course only unique up to a multiplicative

factor. The vector field bc = α1b1 + α2b2 is then collinear

with the vector field b̄2 from above. By applying the input

transformation ũ1 = α2u1 −α1u2, ũ2 = β1u1 + β2u2, with

β1 and β2 chosen such that the transformation is invertible,

i. e. det = α1β1 + α2β2 6= 0, to the original system, we

obtain

ẋ = a(x) + 1
det

((β2b1 − β1b2)ũ
1 +

bc
︷ ︸︸ ︷

(α1b1 + α2b2) ũ
2) .

By prolonging the input ũ1, i. e. adding the equation ˙̃u1 =
ũ1
1, we obtain

Σ1 : ẋ = a(x) + 1
det

((β2b1 − β1b2)ũ
1 + bcũ

2)

Σ2 : ˙̃u1 = ũ1
1 ,

(17)

with the state xp = (x, ũ1) and the input up = (ũ1
1, ũ

2).
Calculating the distributions involved in the test for static

feedback linearizability of (17), we obtain the distributions

span{∂ũ1 , bc}, span{∂ũ1 , b1, b2, [b1, b2]} , . . . which all can

be shown to be involutive based on the involutivity of the

distributions ∆i from above, and thus, (17) is static feedback

linearizable. The linearizing outputs of (17) are flat outputs

with a difference of d = 1 of the original system Σ1. Indeed,

let y be a linearizing output of (17). For the parameterization

of the states and inputs of (17) with respect to y, we have

the diffeomorphism

(x, ũ1) = Fxp
(y[R−1])

(ũ1
1, ũ

2) = Fup
(y[R])

with #R = n+1. It contains the map (x, ũ1) = Fxp
(y[R−1]),

ũ2 = F 1
up
(y[R]), which is the parameterization of the state

and the input ũ of the original system with respect to the

flat output y. It is a submersion with a domain of dimension

#R + 2 = n + 3 and a codomain of dimension n + 2,

i. e. d = n + 3 − (n + 2) = 1. (It is immediate that

the parameterization of ũ2 involves the highest derivatives

yR = (y1r1 , y
2
r2
), otherwise, the original system would be

static feedback linearizable, i. e. it would have a difference

of d = 0, which contradicts with our assumption d = 1.)

For d = 2, it follows from Theorem 2 that there exists an

affine input transformation ūj = g(x)j +mj
k(x)u

k such that

the prolonged system

ẋ = ā(x) + b̄1(x)ū
1 + b̄2(x)ū

2

˙̄u1 = ū1
1

˙̄u1
1 = ū1

2

(18)

withe the state (x, ū1, ū1
1) and the input (ū1

2, ū
2) is

static feedback linearizable. Thus, the distributions

∆1 = span{∂ū1

1

, b̄2}, ∆2 = span{∂ū1

1

, ∂ū1 , b̄2, [ā, b̄2] +

ū1[b̄1, b̄2]}, ∆3 = span{∂ū1

1

, ∂ū1 , b̄1, b̄2, [ā, b̄2] +

ū1[b̄1, b̄2], [ā, [ā, b̄2]] + ū1[ā, [b̄1, b̄2]] + ū1[b̄1, [ā, b̄2]] +
(ū1)2[b̄1, [b̄1, b̄2]] + ū2[b̄2, [ā, b̄2]] + ū1ū2[b̄2, [b̄1, b̄2]]},

∆4, . . . are all involutive. The involutivity of ∆2

implies that [ā, b̄2] ∈ span{b̄2, [b̄1, b̄2]}, i. e. we

actually have ∆2 = span{∂ū1

1

, ∂ū1 , b̄2, [b̄1, b̄2]},

which in turn implies that b̄2 ∈ C(D
(1)
1 ) (we have

D1 = span{b̄1, b̄2} and D
(1)
1 = span{b̄1, b̄2, [b̄1, b̄2]}).

The distribution ∆3 simplifies to ∆3 =
span{∂ū1

1

, ∂ū1 , b̄1, b̄2, [b̄1, b̄2], [ā, [b̄1, b̄2]], [b̄1, [b̄1, b̄2]]},

where the vector fields [ā, [b̄1, b̄2]], [b̄1, [b̄1, b̄2]] are

linearly dependent mod D
(1)
1 = span{b̄1, b̄2, [b̄1, b̄2]}.

We have to distinguish between two subcases, namely

between D
(1)
1 being involutive or not. If D

(1)
1 is non-

involutive, we necessarily have [b̄1, [b̄1, b̄2]] /∈ D
(1)
1 and

thus dim(D
(2)
1 ) = 4 and dim(C(D

(1)
1 )) = 1. Furthermore,

we then have ∆3 = span{∂ū1

1

, ∂ū1} + D
(2)
1 , implying

that D1 = D
(2)
1 . So in this case, the direction of b̄2

is uniquely determined by the condition b̄2 ∈ C(D
(1)
1 ).

The construction is as follows. Calculate the Cauchy



characteristic distribution C(D
(1)
1 ) and find functions α1

and α2 such that bc = α1b1 + α2b2 ∈ C(D
(1)
1 ). The

functions α1 and α2 are again only unique up to a

multiplicative factor. The vector field bc = α1b1 + α2b2
is then collinear with the vector field b̄2 from above. If

D
(1)
1 is involutive, i. e. D1 = D

(1)
1 , we obviously have

[b̄1, [b̄1, b̄2]] ∈ D
(1)
1 = span{b̄1, b̄2, [b̄1, b̄2]} and thus

∆3 = span{∂ū1

1

, ∂ū1 , b̄1, b̄2, [b̄1, b̄2], [ā, [b̄1, b̄2]]}. In this

case, the condition b̄2 ∈ C(D
(1)
1 ) is not useful since

C(D
(1)
1 ) = D

(1)
1 , but then, analogous to the previously

considered case d = 1, the condition [ā, b̄2] ∈ D
(1)
1 (which

follows from [ā, b̄2] ∈ span{b̄2, [b̄1, b̄2]} ⊂ D
(1)
1 ) uniquely

determines the direction of b̄2. The construction of the

vector field bc = α1b1 + α2b2 which is collinear with b̄2 is

then analogous to the previously considered case d = 1.

Remark 1: In the following, we explain how to derive the

input transformation required to generate the input which

needs to be prolonged twice in order to render the system

static feedback linearizable. In contrast to the previously

considered case d = 1, in the case d = 2, additional functions

γ1, γ2 and δ of the state x of the system are involved in the

input transformation. We do not discuss their construction.

For the proof, only the existence of these functions is of

importance and for applying the procedure, we do not have

to construct these functions either.

In any of the two subcases, i. e. independently of D
(1)
1

being involutive or not, by applying the input transformation

ũ1 = (α2u1 − α1u2)δ + γ1, ũ2 = β1u1 + β2u2 + γ2, with

β1 and β2 chosen such that the transformation is invertible,

i. e. det = α1β1 + α2β2 6= 0, and functions γ1, γ2 and δ of

the state x of the system, to the original system, we obtain

ẋ = a(x) + γ1

δdet
(β2b1 − β1b2)−

γ2

det

bc
︷ ︸︸ ︷

(α1b1 + α2b2)
︸ ︷︷ ︸

ã

+

1
δdet

(β2b1 − β1b2)
︸ ︷︷ ︸

b̃1

ũ1 + 1
det

(α1b1 + α2b2)
︸ ︷︷ ︸

bc

ũ2 .

Assume that the functions γ1, γ2 and δ are chosen such

that ã coincides mod span{bc} with ā from above and

b̃1 coincides mod span{bc} with b̄1 from above, which is

indeed always possible (in fact, we can always choose

γ2 = 0). Then, based on the properties of the vector

fields ā, b̄1, b̄2 and the distributions ∆i form above, it can

be shown that we have [ã, bc] ∈ span{bc, [b̃1, bc]} with

span{bc, [b̃1, bc]} being involutive and that [ã, [b̃1, bc]] and

[b̃1, [b̃1, bc]] are collinear mod D
(1)
1 . Prolonging the input ũ1

two-fold, i. e. adding the equations ˙̃u1 = ū1
1 and ˙̃u1

1 = ũ1
2 we

obtain
Σ1 : ẋ = ã+ b̃1ũ

1 + 1
det

bcũ
2

Σ2 :
˙̃u1 = ũ1

1

˙̃u1
1 = ũ1

2 ,

(19)

with the state xp = (x, ũ1, ũ1
1) and the input

up = (ũ1
2, ũ

2). Calculating the distributions involved

in the test for static feedback linearizability of (19), we

then obtain span{∂ũ1

1

, bc}, span{∂ũ1

1

, ∂ũ1 , bc, [b̃1, bc]},

span{∂ũ1

1

, ∂ũ1 , b̃1, bc, [b̃1, bc], [ã, [b̃1, bc]], [b̃1, [b̃1, bc]]} , . . .
which all can be shown to be involutive based on the

involutivity of the distributions ∆i from above. The

linearizing outputs of (19) are flat outputs with a difference

of d = 2 of the original system Σ1. Indeed, let y be a

linearizing output of (19). For the parameterization of the

states and inputs of (19) with respect to y, we have the

diffeomorphism

(x, ũ1, ũ1
1) = Fxp

(y[R−1])

(ũ1
2, ũ

2) = Fup
(y[R])

with #R = n + 2 (in fact the parameterization of ũ1 can

only involve derivatives of y up to the order R − 2 due to

the structure of (19)). It contains the map

(x, ũ1) = F 1,...,n+1
xp

(y[R−1])

ũ2 = F 1
up
(y[R]) ,

which is the parameterization of the state and the input ũ of

the original system with respect to the flat output y. It is a

submersion with a domain of dimension #R+2 = n+4 and

a codomain of dimension n+2, i. e. d = n+4− (n+2) =
2. (It is immediate that parameterization of ũ2 involves the

highest derivatives yR = (y1r1 , y
2
r2
), otherwise, the system

would have a difference of d ≤ 1, which contradicts with

our assumption d = 2.) As already mentioned in Remark 1,

we do not need to find the appropriate functions γ1 and δ.

Since ũ1 with the correctly chosen functions γ1 and δ only

depends on y[R−1] (actually y[R−2] due to the structure of

(19)) and the functions γ1 and δ only depend on the state

x of the original system, which on its own only depends on

y[R−1], an arbitrary choice for these functions, e. g. γ1 = 0
and δ = 1 which would yield the input transformation û1 =
α2u1 − α1u2, û2 = β1u1 + β2u2, still yields an input û1

which only depends on y[R−1]. The flat output y with d = 2
of the original system is thus a flat output with d = 1 for

the prolonged system

ẋ = a(x) + b̂1(x)û
1 + b̂2(x)û

2 , ˙̂u1 = û1
1 , (20)

i. e. (20) has a difference of d = 1. Conversely, by an

analogues reasoning as before based on the parameterizing

map of (20) with respect to any flat output with d = 1 of

(20), it can be shown that any flat output with d = 1 of (20)

is a flat output with d = 2 of the original system.

Proof of Lemma 5

According to Theorem 2, the system becomes static feedback

linearizable after applying a suitable input transformation

ū = Φu(x, u) and subsequently d-fold prolonging the new

input ū1, i. e. the prolonged system

ẋ = f̄(x, ū1, ū2)

˙̄u1 = ū1
1

or

ẋ = f̄(x, ū1, ū2)

˙̄u1 = ū1
1

˙̄u1
1 = ū1

2 ,

(21)

depending on the actual value of d, is static feedback lineariz-

able. Analogous to the proof of Lemma 4, it can be shown

that the linearizing outputs y of (21) are flat outputs with a

difference of d = 1 or d = 2 of the original system and that

the parameterization of the input ū1 by y involves derivatives



up to order R−d only. Independent of the actual value of d,

the involutivity of span{∂ū1

d
, ∂ū2 , ∂ū1

d−1

, ∂ū2 f̄ i∂xi} implies

that ẋ = f̄(x, ū1, ū2) is actually of the form ẋ = ā(x, ū1)+
b(x, ū1)h(x, ū1, ū2) and introducing ũ2 = h(x, ū1, ū2) thus

results in the PAI representation

ẋ = a(x, ū1) + b(x, ū1)ũ2 . (22)

This PAI representation is special, since the parameterization

of the non-affine occurring input ū1 involves derivatives of y
up to order R−d only. For every PAI representation which is

equivalent to (22) via a PAI form preserving transformation

(6), we still have that the non-affine input only depends on

y[R−1], since in such transformations the non-affine input

is only combined with the state x of the system and we

have x = Fx(y[R−1]). Recall that there exist at most two

fundamentally different PAI representations of a system,

all others are equivalent to one of those two by such a

PAI form preserving transformation (6). Therefore, given

any two non-equivalent PAI representations of the system

(which can be derived systematically, provided they exist),

one of them is equivalent to the special PAI representation

(22) via a transformation of the form (6). The non-affine

inputs of any two non-equivalent PAI representations are thus

the candidates for an input whose parameterization involves

derivatives of y up to order R − 1 only. Similar as in the

proof of Lemma 4, it can then be shown that at least one

of the possibly two AI-systems obtained by prolonging the

corresponding non-affine inputs has a difference of d ≤ 1
and that furthermore the linearizing outputs or flat outputs

with d = 1 of the AI-systems are flat outputs with d = 1 or

d = 2 of the original system.

Proof of Theorem 2

The proof of Theorem 2 is based on the following results.

Lemma 6: A system (1) with d ≤ 2 is (x, u)-flat, an AI-

system (3) with d ≤ 2 is x-flat.

Due to space limitations, we do not provide a proof of

this lemma here. The second part of the lemma, i. e. that

AI-systems with d ≤ 2 are x-flat, can also be found in [13],

Proposition 1.

Theorem 3: Every (x, u)-flat system with two inputs can

be rendered static feedback linearizable by d = #R−n fold

prolonging a suitably chosen (new) input.

A proof of this theorem can be found in [22]. Since

according to Lemma 6, systems with d ≤ 2 are (x, u)-flat,

Theorem 3 always applies to these systems and in turn, such

systems can always be rendered static feedback linearizable

by prolongations of a suitably chosen (new) input, which

shows the first part of Theorem 2. From the proof of Theorem

3 in [22], it follows that the input transformation which has to

be applied in order to generate the required input which needs

to be prolonged, is given by ū1 = L
kj

f ϕj(x, u), j = 1 or j =
2 where kj ≥ 0 denotes the relative degree of the component

yj = ϕj(x, u) of the flat output, i. e. L
kj−1
f ϕj = L

kj−1
f ϕj(x)

and L
kj

f ϕj = L
kj

f ϕj(x, u). Since according to Lemma 6

an AI-system with d ≤ 2 is x-flat, i. e. yj = ϕj(x), there

always exists an affine input transformation which generates

the required input since ū1 = L
kj

(ai+u1bi
1
+u2bi

2
)∂

xi
ϕj(x) is an

affine input transformation.
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