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Robust Learning Model Predictive Control for Periodically Correlated

Building Control

Jicheng Shi†, Yingzhao Lian†, and Colin N. Jones

Abstract— Accounting for more than 40% of global energy
consumption, residential and commercial buildings will be key
players in any future green energy systems. To fully exploit their
potential while ensuring occupant comfort, a robust control
scheme is required to handle various uncertainties, such as
external weather and occupant behaviour. However, prominent
patterns, especially periodicity, are widely seen in most sources
of uncertainty. This paper incorporates this correlated structure
into the learning model predictive control framework, in order
to learn a global optimal robust control scheme for building
operations.

I. INTRODUCTION

Around 40% of global energy use comes from residential

and commercial buildings [1], which drives research interest

in building control. Maximizing operational efficiency while

maintaining occupant comfort is the key objective therein.

However, various sources of uncertainty, such as internal heat

gain and outdoor temperature, pose significant challenges

to building operation. Even though uncertain, most of them

reveal prominent patterns, especially periodicity. For exam-

ple, the campus load is shown to evolve within a periodic

envelope in [2]. Moreover, the alternation between days and

nights endows internal heat gain and external temperature

periodic pattern on a daily basis [3].

Besides uncertainty, most buildings are also operated un-

der a periodic scheme. Such periodicity has been widely

adopted in building control applications [4], [5], where

iterative learning control (ILC) is the key tool enabling

efficient performance refinement [6]. On the other hand,

model predictive control (MPC) is a receding horizon con-

trol scheme that optimally computes its control inputs by

recurrent forecast into the future. Its natural integration of

optimization objective and constraints populates its appli-

cations in building control [2], [3], [7]. Taking advantages

of both ILC and MPC [8], both control schemes deal with

optimality and robustness separately. Instead of splitting the

control task, learning model predictive control (LMPC) is

an optimization-based control scheme that unifies monotonic

performance improvement and safety/robustness [9]–[11].

In this work, we incorporate the periodically correlated

uncertainty into the LMPC framework, which enables LMPC

to handle time-varying dynamics. Moreover, owing to a priori
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knowledge of periodic correlation, the proposed scheme

shows higher data efficiency and lower conservativeness. The

detailed contribution of this paper is concluded as follows:

• Explore a parametric decomposition scheme to handle

correlated noise.

• Propose a novel less conservative robust LMPC scheme

for periodically correlated process noise, which is de-

signed for periodic tasks.

• Demonstrate the convergence and optimality of the

proposed LMPC scheme.

In the following, we will first introduce the building

control problem and the classic LMPC control law in Section

II. In Section III, we introduce a decomposition approach of

the periodically correlated disturbance and the novel LMPC

is illustrated. The recursive feasibility and performance guar-

antee of the proposed LMPC is discussed in IV. In Section V

and VI, we describe how to adapt different initial states and

model uncertainty in the proposed framework and validate

the proposed scheme with a spring-mass system and a single

zone building system.

Notation

Set of consecutive integers {a, a + 1, . . . , b} is denoted by

Nb
a. A⊖ B denotes Pontryagin set difference. Let ηj denote

the value of η at jth iteration. Given value of η at time t as

ηt, its prediction at k is denoted by ηk|t, similarly, we have

ηt|t := ηt. {ai}
N
i=1 is a countable set of cardinality N , whose

elements ai are indexed by i. ∨ denotes the logic “or”.

II. SET UP THE STAGE

A. Problem setting

In this work, we consider a building operation on a daily

basis, where a discrete-time periodic time-varying linear

building model [12] with period T ,

xt+1 = Atxt +Btut + Ctwt, ∀t ∈ N
T
0 , (1)

where states, control inputs and the bounded process noise

are denoted by x ∈ Rn, u ∈ Rm and w ∈ Rd separately.

This system is manipulated to execute an iterative task,

which means at the jth iteration, it starts from xj
0 = xs.

The states and inputs are required to satisfy the following

periodic, convex polytopic constraints:

Ftxt +Gtut ≤ ft, ∀ t ∈ N
T
0 . (2)

The optimal building operation problem of the jth day is
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as follows:

Jj,∗ = min
{uj

t}
T
t=0

T
∑

t=0

lt(x
j
t , u

j
t )

s.t. ∀t ∈ N
T
0 , x

j
0 = xs

xj
t+1 = Atx

j
t +Btu

j
t + Ctw

j
t , (3a)

Ftx
j
t +Gtu

j
t ≤ ft, (3b)

where lt denotes the stage cost at time t and wj
t represents

the unknown disturbance / uncertainty within the jth day.

The horizon T in Problem (3) is in general large in building

control. For example, if the control law changes every 10

minutes, then T reaches 144.

B. Learning Model Predictive Control

Learning model predictive control (LMPC) is an iterative

control scheme proposed to learn infinite/long horizon op-

timal control trajectories, where a relatively short horizon

problem is solved in a moving horizon scheme [9]. For the

sake of clarity, we elaborate LMPC with a deterministic

system (i.e. w = 0 in (3a)). At time t ∈ NT
0 , the following

problem is solved:

min
{uj

k|t
}t+N−1

k=t

t+N−1
∑

k=t

lk(x
j

k|t, u
j

k|t) +Qj(xj

t+N |t) (4a)

s.t. ∀k ∈ N
t+N−1
t , xj

t|t = xj
t

xj

k+1|t = Axj

k|t +Bku
j

k|t

Fxj

k|t +Guj

k|t ≤ f,

xj

t+N |t ∈ SS
j . (4b)

Qj(·) in (4a) and set SSj in (4b) are two main components

which ensure the safety and monotonic improvement of

LMPC. In particular, SSj denotes the safe set within which

there is at least one control law ensuring system safety.

This set is constructed as the convex hull of all observed

trajectories before the current iteration j. Meanwhile, Qj(·)
is an overestimate of the optimal cost-to-go, which ensures

the cost calculated in (4a) overestimates the optimal cost in

Problem (3). In particular, Qj(·) is modelled by parametric

quadratic programming in standard LMPC [13].

The LMPC control scheme guarantees convergence to the

infinite/long horizon solution [14] and has been extended to

robust control with additive noise [10], [11] and deterministic

periodic control [15].

III. MAIN RESULTS

In this section, the incorporation of correlation information

is first introduced by finite order approximation in Sec-

tion III-A. The adapted LMPC algorithm for the resulting

problem is then introduced in Section III-B.

A. Process Noise Decomposition

Most sources of uncertainty in building control reveal

significant periodic patterns, such as external temperature and

internal heat gain. The main idea behind our approach is to

decompose the uncertainty information into periodically cor-

related and uncorrelated parts (i.e. white noise). To proceed,

we first make the following assumption.

Assumption 1: wt, t ∈ N
T
0 is a bounded stochastic

process and E(wt) = a0, ∀ t ∈ NT
0 .

wt is a stochastic process with finite end time T , and

wj
t is a realization of this process. More specifically, if

wt is the process of external temperature, then wj
t is the

temperature trajectory on the jth day. Assumption 1 ensures

that the process noise on the jth day is square integrable with

respect to its probability space [16]. By the Karhunen–Loève

theorem [17], wj
t is decomposed based on Fourier series as

wj
t = aj0 +

∞
∑

q=1

ajq sin

(

2πqt

T

)

+ bjq cos

(

2πqt

T

)

, (5)

where aq = 2
T

∫ T

0 w(t) sin(2πqt
T

)dt and bq is defined ac-

cordingly. To only preserve the low frequency information,

Equation (5) is further approximated by

wj
t = aj0 +

M
∑

k=1

[

ajq sin

(

2πqt

T

)

+ bjq cos

(

2πqt

T

)]

+ wj
r,t

(6)

= aj0 + wj

θj ,t
+ wj

r,t ,

where wj
r,t models the truncation error caused by the finite

order approximation wj

θj ,t
. In particular, the collection of pa-

rameters θj := {ajq, b
j
q}

M
q=1 captures the periodic correlation

within the jth day, which is bounded as θj ∈ Wθ, ∀ j.

The residue wr,t is a zero-mean bounded white noise whose

variance is var(wr,t) = E(
∑∞

q=M+1(||a
j
q||

2
2+||bjq||

2
2)), which

is well defined by Assumption 1 and that preserves the

energy of the process noise(i.e. Parseval theorem [18]). To

explain (6) more specifically, one can consider wt as the

external temperature. In the jth day, aj0 is the averaged

temperature, {ajq, bjq}
M
q=1 models the daily evolution of

the temperature, while wj
r,t models highly stochastic fast

fluctuations. Regarding this interpretation, aj0 and θj vary

among days. Similar to (5), other orthogonal basis functions

can be used to approximate specific noise patterns, such as

Haar Wavelet basis [19] for internal heating gains. For the

sake of simplicity, we elaborate our method with a simpler

model as

wj
t = aj0 + aj1 sin(2πt/T ) + wj

r,t

= wj

θj ,t
+ wj

r,t, θ
j = {aj0, a

j
1} . (7)

Remark 1: Notice that {ajq, b
j
q}

∞
q=1 are realizations of

random variables according to the Karhunen–Loève theo-

rem [17], which means that they are fixed in wj
t . In practice,

within each iteration, these parameters can be effectively es-

timated by different methods, such as Bayesian learning [20].

B. LMPC for correlated noise

As noise are decomposed into a correlated part and an

uncorrelated part in (6), they can be handled separately in

the robust control problem. In particular, the white noise



wj
r,t are handled by standard robust model predictive control

methods [21] (details in Appendix VIII-A). The resulting

robust form of the long horizon Problem (3) is

Jj,∗ = min
{vj

t}
T
t=0

T
∑

t=0

lt(z
j
t , v

j
t )

s.t. ∀t ∈ N
T
0 , z

j
0 = xs

zjt+1 = Atz
j
t +Btv

j
t + Ctw

j

θj ,t
, (8a)

F̄tzt + Ḡtvt ≤ f̄t, (8b)

where zjt , v
j
t denotes the state and input of a nominal system,

and (8b) is the tightened constraint (Appendix VIII-A).

Correspondingly, the robust form of the LMPC prob-

lem (4) is:

Jj,∗
LMPC = min

{vj

k|t
}t+N−1

k=t

t+N−1
∑

k=t

lk(z
j

k|t, v
j

k|t) +Qj
t+N (zj

t+N |t)

s.t. ∀k ∈ N
t+N−1
t , zj

t|t = zjt

zj
k+1|t = Akz

j

k|t +Bkv
j

k|t + Ckw
j

θj ,k

F̄kz
j

k|t + Ḡkv
j

k|t ≤ f̄k,

zj
t+N |t ∈ SS

j
t+N . (9)

The daily changing disturbances included in the dynamics

and periodic tasks make classic LMPC not applicable, which

requires new adaptive algorithms to calculate SS
j
t and Qj

t (·).
In the following, we show the strategy of constructing these

two main components accordingly. To proceed, we first

define the following notation for a more compact layout.

At time t of the jth iteration, denote by the vectors

v
j,∗
t = [vj,∗

t|t , v
j,∗
t+1|t, ..., v

j,∗
t+N−1|t], (10)

z
j,∗
t = [zj,∗

t|t , z
j,∗
t+1|t, ..., z

j,∗
t+N |t]. (11)

the optimal input sequence and the resulting state sequence.

Then at time t, the input applied to the closed-loop system

is

vjt =

{

vj,∗
t|t , t+N ≤ T,

vj,∗
t|T−N

, t+N > T.
(12)

In the following, the idea of historical trajectory shifting

will enable us to define the adapted safe sets SS
j
t and Q

function Qj
t (·). Consider at a historical ith iteration, the

vectors

z
i = [zi0, z

i
1, ..., z

i
T ] (13)

v
i = [vi0, v

i
1, ..., v

i
T ]

record the historical states and inputs in the closed-loop

trajectories. When building a safe set for the jth iteration, a

shifting method is applied on the historical data, zi and v
i.

For a shifting starting from time step t of the ith historical

trajectory, denote by vi,j
k|t the shifted input, by zi,j

k|t the shifted

state, by ei,j
k|t = zi,j

k|t − zik the error state, the shifting follows

a procedure:

ei,j
k+1|t = Φke

i,j

k|t + Ck(w
j

θj ,k
− wi

θi,k)

vi,j
k|t = vik +Kke

i,j

k|t

zi,j
k|t = zik + ei,j

k|t, ∀k ∈ N
T
t

(14)

and ei,j
t|t = 0, where Kk is chosen to stabilize Φk = Ak +

BkKk. As a result, zi,j
k|t and vi,j

k|t satisfy the jth dynamics:

zi,j
k+1|t = Akz

i,j

k|t +Bkv
i,j

k|t + Ckw
i
θi,k + Ck(w

j

θj ,k
− wi

θi,k)

= Akz
i,j

k|t +Bkv
i,j

k|t + Ckw
j

θj ,k

Note that the shifted states and inputs may result in infeasi-

ble shifted data due to constraint violations. The elimination

of these infeasible shifted data leads us to the concept of

Feasible Disturbance Set.

Definition 1 (Feasible Disturbance Set): At time t in an

historical iteration, the Feasible Disturbance Set Wi
t is de-

fined as:

W
i
t = {θ|F̄k(z

i
k + ei,.

k|t) + Ḡk(v
i
k +Kke

i,.

k|t) ≤ f̄k, e
i,.

t|t = 0

ei,.
k+1|t = Φke

i,.

k|t + Ck(wθ,k − wi
θi,k), ∀k ∈ N

T
t }

After finishing the jth iteration and recording the closed-loop

states z
j and inputs v

j , the feasible disturbance set at each

time is computed and recorded.

Algorithm 1 Safe set

Given historical closed loop states z
i, inputs v

i,

feasible disturbance set Wi
t, ∀t ∈ N

T
0 , i ∈ N

j−1
0

1) For i ∈ N
j−1
0 , t ∈ N

T
0

a) If θj ∈ Wi
t

i) Compute the shifting from time t
[zi,j

t|t , ..., z
i,j

T |t], [v
i,j

t|t , ..., v
i,j

T |t]

ii) Add state zi,j
k|t to SS

j
k, ∀k ∈ NT

t

iii) Compute and record shifted cumulative cost

J i,j

k|t(z
i,j

k|t) =
∑T

r=k l(z
i,j

r|t, v
i,j

r|t) ∀k ∈ NT
t

Now we build the safe set SS
j
t for the jth iteration by

Algorithm 1. Note in the shifting starting from time t, it

computes the shifted states from t to T and each shifted

state zi,j
k|t is added to SS

j
k correspondingly. Meanwhile, the

estimated cost-to-go (i.e. Qj
k(·) in (9)) are updated by shifted

cumulative costs J i,j

k|t as

Qj
k(z) =







min
(i,t)∈F

j

k
(z)

J i,j

k|t(z), if z ∈ SS
j
k

+∞, if z /∈ SS
j
k

(15)

where F j
k (z) = {(i, t) : i ∈ [0, j−1], t ∈ [0, k] with zi,j

k|t = z,

for zi,j
k|t ∈ SS

j
k}. Note different from [9], at the jth iteration,

SS
j
t and Qj

t (z) are built for each time step t.



Remark 2: At each time step t and each shifted state z in

SSt, Q
j
t (z) is assigned a value, J i∗,j

k|t∗ , which is the minimal

shifted cumulative cost starting from zi
∗,j

k|t∗ = z. (i∗, t∗) is

chosen by the minimizer in (15):

(i∗, t∗) = argmin
(i,t)∈F

j

k
(z)

J i,j

k|t(z), ∀z ∈ SS
j
k

Assumption 2: Assume a feasible trajectory at the 0th

iteration, {z0,v0}, is given and all the disturbance feasible

sets are subject to, W0
t ⊇ Wθ.

Assumption 2 is standard under the LMPC control scheme.

It results in a non-empty safe set SS
j
t , ∀ t ∈ NT

0 , j ∈ N+.

In practice, Assumption 2 is not restrictive as it essentially

requires a default feasible control law. It is also noteworthy

to point out that neither an historical nor a shifted trajectory

are required to achieve a steady state, while this convergence

requirement is necessary for classic LMPC.

Remark 3: The online computation increase of the pro-

posed scheme is fair, as feasible disturbance sets Wi
t, safe

set SS
j
t and Q function Qj

t (·) only update at the beginning

of each iteration.

Remark 4: Even though this work has a special focus on

building control, the proposed scheme can be adopted to

most time-varying periodic tasks.

IV. PROPERTIES

In this section, the properties of the proposed LMPC

method are presented, including feasibility and performance.

A. Recursive Feasibility

Theorem 1 (Recursive Feasibility): Suppose Assumption

2 is satisfied, then the problem (9) is feasible for any time

step t at any jth iteration.

Proof: By Assumption 2, 0th iteration offers a shifted

trajectory starting from time 0. Thus, at the jth iteration, the

shifted state z0,j
N |0 ∈ SS

j
N . At the time step 0 of jth iteration,

the following shifted state and input vectors is feasible for

the problem (9):

[v0,j0|0, v
0,j
1|0, ..., v

0,j
N−1|0],

[z0,j0|0, z
0,j
1|0, ..., z

0,j
N |0].

Assume at time step t of jth iteration, the problem (9) is

feasible, with the optimal solution v
j,∗
t and the corresponding

state sequence z
j,∗
t . Note that zj,∗

t+N |t ∈ SS
j
t+N . By the

definition of Q function, zj,∗
t+N |t = zi

∗,j

t+N |t∗ , which is a

shifted state at time t + N starting from some time t∗ ≤
t+N at i∗th iteration. Then with the corresponding shifted

input vi
∗,j

t+N |t∗ we have the next shifted state zi
∗,j

t+N+1|t∗ =

At+Nzi
∗,j

t+N |t∗ + Bt+Nvi
∗,j

t+N |t∗ + Ct+Nwj

θj ,t+N
. From the

Algorithm 1, zi
∗,j

t+N+1|t∗ ∈ SS
j
t+N+1. Thus, time step t + 1,

the input sequence and corresponding state sequence

[vj,∗
t+1|t, v

j,∗
t+2|t, ..., v

j,∗
t+N−1|t, v

i∗,j

t+N |t∗ ],

[zj,∗
t+1|t, z

j,∗
t+2|t, ..., z

j,∗
t+N |t, z

i∗,j

t+N+1|t∗ ]

is feasible. Finally, by induction, the theorem is proved.

B. Performance

In this section, we present two results regarding controller

performance. At the jth iteration, denote the optimal value

of the objective function of the problem (9) at time step t
by Jj,∗

LMPC(z
j
t ) =

∑N

k=t lk(z
j,∗
k|t , v

j,∗
k|t) + Qj

t+N (zj,∗
t+N |t), the

closed-loop cumulative cost starting from time t by Jj(zjt ) =
∑T

k=t lk(z
j
k, v

j
k).

Assumption 3: Consider a continuous, semi-positive and

convex stage cost function lt(z, v) ≥ 0

Different from [9], the stage cost is not limited to a tracking

error. An economic cost can be used, like the electricity cost

in building control, for example.

Theorem 2: Under Assumption 3, for each t ∈ N
T−N
0

of the jth iteration, the cumulative trajectory cost Jj(zjt )
is upper bounded by the shifted trajectory cost J i,j

t|t′(z
i,j

t|t′),

starting from any zi,j
t|t′ = zjt ∈ SS

j
t . Specially, if θj ∈ Wi

0,

Jj(zj0) ≤ J i,j

0|0(z
j
0).

Proof: At time step t(∈ N
T−N
0 ) of the jth iteration,

the optimal cost of LMPC is:

Jj,∗
LMPC(z

j
t )

= min
{vj

k|t
}t+N−1

k=t

N−1
∑

k=t

lk(z
j

k|t, v
j

k|t) +Qj
t+N (zj

t+N |t)

= lt(z
j,∗
t|t , v

j,∗
t|t ) +

N−1
∑

k=t+1

lk(z
j,∗
k|t , v

j,∗
k|t) +Qj

t+N (zj,∗
t+N |t)

≥ lt(z
j,∗
t|t , v

j,∗
t|t ) +

N−1
∑

k=t+1

lk(z
j,∗
k|t , v

j,∗
k|t)+

lt+N (zi
∗,j

t+N |t∗ , v
i∗,j

t+N |t∗) +Qj
t+N+1(z

i∗,j

t+N+1|t∗)

≥ lt(z
j,∗
t|t , v

j,∗
t|t ) + Jj,∗

LMPC(z
j,∗
t+1|t) (16)

In the first inequity, zj,∗
t+N |t = zi

∗,j

t+N |t∗ , which is a shifted

state at time t+N starting from some time t∗ ≤ t+N and

the inequity comes from the definition of Q function.

Then under Assumption 3, from (12) and (16), Jj,∗
LMPC is

non-increasing along the closed loop trajectory,

Jj,∗
LMPC(z

j
t+1)− Jj,∗

LMPC(z
j
t ) ≤ −lt(z

j

t|t, v
j

t|t) ≤ 0 (17)

By (12) and (17), the cumulative trajectory cost Jj(zjt ) is

upper bounded by Jj,∗
LMPC(z

j
t ):

Jj,∗
LMPC(z

j
t ) ≥ lt(z

j
t , v

j
t ) + Jj,∗

LMPC(z
j
t+1)

≥ lt(z
j
t , v

j
t ) + lt+1(z

j
t+1, v

j
t+1) + Jj

LMPC(z
j
t+2)

≥
T
∑

k=t

lk(z
j
k, v

j
k) = Jj(zjt ) (18)

Then we show the shifted trajectory cost J i,j

t|t′(z
i,j

t|t′), start-

ing from any shifted state zi,j
t|t′ = zjt ∈ SS

j
t , is lower bounded

by Jj,∗
LMPC(z

j
t ):



J i,j

t|t′(z
i,j

t|t′) =

T
∑

k=t

lk(z
i,j

k|t′ , v
i,j

k|t′)

=

t+N−1
∑

k=t

lk(z
i,j

k|t′ , v
i,j

k|t′ ) +

T
∑

k=t+N

lk(z
i,j

k|t′ , v
i,j

k|t′ )

≥

t+N−1
∑

k=t

lk(z
i,j

k|t′ , v
i,j

k|t′ ) +Qj
t+N (zi,j

t+N |t′)

≥ min
{vj

k|t
}t+N−1

k=t

t+N−1
∑

k=t

lk(z
j

k|t, v
j

k|t) +Qj
t+N (zi,j

t+N |t)

= Jj,∗
LMPC(z

j
t ) (19)

After execution of the jth iteration, if in a new iteration j′,
the same disturbance parameters occur θj

′

= θj , zjt can be

added in S
j
t without shifting. Then by Theorem 2, Jj′ (xs) ≤

Jj,j′

0|0 (xs) = Jj(xs), which means the closed-loop iteration

cost does not increase.

Corollary 1: Under Assumption 3, considering that the

system 1 is controlled by the proposed periodic LMPC (9)

and (12), if at the jth iteration, it achieves a steady-state

solution {zj,ss, vj,ss} with respect to θj , then {zj,ss, vj,ss}
is the optimal solution of (8).

Proof: The proof follows a similar procedure to that

in [14, Theorem 1] as (8) is strictly convex.

V. PRACTICAL ISSUES

In practice, the initial state of each iteration is not neces-

sarily the same, i.e. ∃ i < j, zi0 6= zj0. For example, even if

the building controller is idle in the evening and the system

state converges to a steady state due to the dissipative nature

of a building, the resulting steady state also varies due to

external temperature.

One solution is to involve the initial state deviation as part

of the disturbance function wt. By defining a nominal initial

state xs,n and the deviation between it and initial state at

jth iteration wj
s = zj0−xs,n, an extension of the disturbance

function is

wj

θj ,t
(wj

s) =

{

wj
s, t = −1

wj

θj ,t
, o.w.

(20)

This has an influence on the shifting procedure (14)

starting from time 0,

ei,j
k+1|0 = (Ak +BkKk)e

j

k|0 + Ck(w
j

θj ,k
(wj

s)− wi
θi,k(w

i
s))

vi,j
k|0 = vik +Kke

i,j

k|0

zi,j
k|0 = zik + ei,j

k|0, ∀k ∈ N
T
0

(21)

and ei,j0|0 = wj
s −wi

s, and the feasible disturbance set Wi
0 for

{z0, θ} at time 0 is recomputed by the above error dynamics.

Similarly, if the dynamics of system (1) vary from iteration

to iteration. Define the nominal dynamics matrices as At, Bt,

and the dynamics deviation dAj
t = Aj

t − At, and further

assume that Kt stabilizes all possible Aj
t+Bj

t . A new shifting

procedure starting from time t is,

ei,j
k+1|t =(Aj

k +Bj
kKk)e

j

k|t + Ck(w
j

θj ,k
− wi

θi,k)

+ (dAj
k − dAi

k) ∗ z
i
k + (dBj

k − dBi
k) ∗ v

i
k

vi,j
k|t =vik +Kke

i,j

k|t

zi,j
k|t =zik + ei,j

k|t, ∀k ∈ N
T
t

(22)

and ei,j
t|t = 0, and the new feasible disturbance set Wi

t for

{At, Bt, θ} is computed based on that.

VI. SIMULATION AND RESULTS

In this section, the proposed LMPC is tested on a spring-

mass system and a single zone building model. The first case

involves periodic dynamics, periodic constraints, periodic

stage costs and a sinusoidal disturbance. The latter case

considers a periodic tracking task, where scheduled comfort

conditions on temperatures and three different correlated

real-world disturbances decomposition are considered.

A. Spring-mass system

We test the proposed robust LMPC on a spring-mass

system xt+1 = Atxt+Btut+wt, which executes a periodic

task of length T = 50 and the corresponding time-varying

dynamics is captured by:

At =

[

1 0.1
0.1(1− sin(2πt/T )) 1

]

, Bt =

[

0
0.1

]

The disturbance is governed by a biased sinusoidal behavior:

wt = a0 + a1sin(2πt/T ) ,

where the parameters a0 and a1 are bounded with a0 ∈
[

−0.1, 0.1
−0.1, 0.1

]

, a1 ∈

[

−0.1, 0.1
−0.1, 0.1

]

. The system is subject

to a fixed input constraints, periodic state constraints and

optimized over periodic stage cost:

u ∈ [−10, 10],

{

[−1,−3]T ≤ x ≤ [4, 3]T , t < T/2
[−4,−3]T ≤ x ≤ [1, 3]T , t ≥ T/2

,

lt(xt, ut) =

{

||x1,t − x1,ref ||
2
2 + ||ut||

2
2, t < T/2

||x1,t + x1,ref ||
2
2 + ||ut||

2
2, t ≥ T/2

,

where xt = [x1,t, x2,t]
T and x1,ref = 2 so that the periodic

stage cost is induced by a switching set-point.

The experiment is carried out with xs = [3; 0]T and a

prediction horizon N = 4. At each iteration, a1 and a2 are

uniformly sampled from its domain. The feedback gain Kt

in (14) is chosen as the LQR gain computed with Q = I
and R = 1.

In Figure 1, the optimal cost, which corresponds to the

solution of the problem (8), is time varying because {a0, a1}
change values among iterations. We notice that the cost

difference between JLMPC and J∗ tends to diminish and the

LMPC solution converges to the optimal solution. Figure 2

shows that the closed-loop cumulative cost is upper bounded

by any shifted cumulative cost of historical iterations, as

promised by Theorem 2.
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Fig. 1. Cumulative cost of each iteration
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Fig. 2. Comparison of shifted and closed-loop cumulative cost starting
from time 0

B. A single zone building system

A small scale linear time invariant building model [22]

with xt+1 = Axt +But + Cwt is considered, where

A =





0.8511 0.0541 0.0707
0.1293 0.8635 0.0055
0.0989 0.0032 0.7541



 , B =





0.0035
0.0003
0.0002





C = 10−3 ∗





22.2170 1.7912 42.2123
1.5376 0.6944 2.9214
103.1813 0.1032 196.0444



 .

The states x = [x1, x2, x3]
T represent the temperatures of

the room, the wall connected with another room, and the

wall connected to the outside respectively. The single input

is heating and cooling. Suppose the sampling rate of the

system is 10 minutes; a one-day iteration consists of 144
time steps.

In this test, the disturbances of internal heat-gains, solar-

radiation and external temperature are considered, which are

denoted by w = [w1, w2, w3]
T accordingly. These distur-

bances all reveal daily repetitive patterns and can be pre-

dicted [7]. For the sake of simplicity, We use the combination

of sinusoidal, triangular and square wave functions and white

noise to approximate the decomposition of disturbances

in (6):

w1,t = a1 + a2sin(2πt/T ) + wr,1,t

w2,t =







a3(4t− T )/T + wr,2,t, T/4 ≤ t < T/2
a3(3T − 4t)/T + wr,2,t, T/2 ≤ t < 3T/4
wr,2,t, t < T/4 ∨ t ≥ 3T/4

w3,t =

{

a4 + a5 + wr,3,t, T/3 ≤ t < 3T/4
a4 + wr,3,t, t < T/3 ∨ t ≥ 3T/4

, where the parameters and white noise are bounded by:

a1 ∈ [10, 14], a2 ∈ [−6,−2]

a3 ∈ [0, 16], a4 ∈ [0, 2], a5 ∈ [6, 7]

wr,1 ∈ [−3, 3], wr,2 ∈ [−5, 5], wr,3 ∈ [−2, 2]

The room temperature is required to satisfy a comfort

constraint during work time and the constraint is relaxed at

night. The constraints are modeled as:

u ∈ [−30, 30],

{

18 ≤ x1 ≤ 30, t < T/3 ∨ t ≥ 3T/4
22 ≤ x1 ≤ 26, T/3 ≤ t ≤ 3T/4

The control objective is to regulate the room temperature

to a time-varying reference

x1,ref,t =

{

20, t < T/3 ∨ t ≥ 3T/4
24, T/3 ≤ t < 3T/4

while minimizing the energy cost. The stage cost is

lt(xt, ut) = ||x1,t − x1,ref,t||
2
2 + ||cptut||1, in which cpt

denotes the electricity price and there are periodic high price

and low price periods:

cpt =

{

1, t < 5T/12∨ t ≥ 2T/3
2, 5T/12 ≤ T < 2T/3

The experiment is carried out with an initial state xs =
[19; 19; 15]T and prediction horizon N = 16. The feedback

gain K in (14) and (23) is computed by the optimal LQR gain

choosing parameters Q = 10I and R = 1. The constraints

are tightened by robust positive invariant ε in (24), which

is computed by an approximation method in [23]. The

noise parameters {a1, a2, a3, a4, a5} and the white noise

wr,1, wr,2, wr,3 are uniformly sampled from their domain.

In Figure 3, the cumulative cost of LMPC converges to

the optimal cumulative cost. In particular, the optimal cost

refers to the optimal solution of problem (8). Note the cost

difference between JLMPC and J∗ does not decrease mono-

tonically due to the shifted trajectories. However, Figure 4

shows that the closed-loop cumulative cost from t = 0 is

upper bounded by any shifted cumulative cost from t = 0 ,

guaranteed by Theorem 2. In Figure 5, 6, 7, we compare the

first state x1 among the 0th shifted trajectory, trajectory by

LMPC and the optimal trajectory at iteration 1, 3, 20, which

shows the convergence toward the optimal solution J∗. And

the final convergent state trajectory is shown in Figure. 7.
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Fig. 3. Cumulative cost of each iteration
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Fig. 5. Building system:x1 at iteration 1
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Fig. 6. Building system:x1 at iteration 3
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VII. CONCLUSION

We presented a novel, less conservative, robust LMPC

scheme for periodically correlated process noise in building

control. The framework is specified for time-varying iterative

tasks with periodicity in the system dynamics, stage cost

and constraints. Feasibility and performance convergence are

verified by a single zone building system.
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VIII. APPENDIX

A. Robust and stochastic LMPC

The long-horizon optimal problem (3) is difficult to solve

because the stochastic wj
r,t leads to a stochastic optimization

objective and it optimizes over all possible control policy.

A possible approach to deal with the problem is the tube

method with a nominal optimization objective [21]. Denote

by zjt the nominal state, by ejt = xj
t−zjt the error state, by vjt

the nominal input, and by Ke(k) the tube controller, where

K stabilize all different At +BtK . Then the tube controller

is defined as

zjt+1 = Atz
j
t +Btv

j
t + Ctw

j

θj ,t
,

ejt+1 = (At +BtK)ejt + Ctw
j
r,t

uj
t = Kejt + vjt (23)

and zj0 = xs. Compute the Robust Positive Invariant set ε
of et with dynamics (23). Then a constraint tightening is

applied on the nominal system:

Ftzt +Gtvt ≤ ft − (Ft +GtK)et, ∀et ∈ ε. (24)

Thus, optimize the problem over the nominal stage cost

lt(zt, vt) with the constraints (24), a robust problem in (8)

is derived.
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