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Abstract— Stability enforcement remains a challenge in data-
driven control paradigms, where no parametrised model of the
system is available. In [1] for instance, the system’s instabil-
ities are estimated in order to enforce a closed-loop stability
constraint on the controller reduction step. In order to avoid
this preliminary estimation of instabilities, this paper proposes
to embed a closed-loop stability constraint in the design. To
that extent, an optimization problem is formulated in order to
improve matching between the reference model and the closed-
loop while maintaining internal stability. The proposed iterative
procedure to solve this problem is illustrated on two numerical
examples.

I. INTRODUCTION

For many practical applications, a model cannot be derived
from physical laws and input/output data may be the only
accessible information concerning the system. In these cases,
for control purposes, system data can be used to identify a
model of the system. Then, based on closed-loop specifica-
tions, a controller can be designed applying some model-
based techniques. However, in some context, the model of
the system can be too complex or too costly to obtain. It
may then be easier and faster to try to derive a controller by
combining directly the system data and the specifications, as
highlighted in [2]. These methods are known as Data Driven
Control (DDC), see [3] for an overview. Even if the traces
of these methods go back to the 40s with the PID-tuning-
method of [4], DDC methods have regained interest in the
control community in the past 25 years due to the profusion
of data that is now available.

Among DDC techniques, an appealing approach is the
model reference framework. The objective is to design a
controller such that the closed-loop is as close as possible
to a reference model specified by the user. For instance, the
Iterative Feedback Tuning (IFT, [5]) is an online method
where an optimal structured controller is obtained through
an iterative process consisting in minimizing the error be-
tween the output and the desired one. The Correlation-
based Tuning (CbT, [6]), is a time-domain method which
consists in minimizing the correlation between the reference
signal and the error between the closed-loop output and the
desired output, over some class of controller. The Virtual
Reference Feedback Tuning (VRFT, [7]) is a one-shot off-
line method. From one set of input/output time-domain
data, the parameters of the controller are obtained through
convex optimisation to match the “ideal” controller, defined
according to the available data and the reference model.
The ideal controller is the one that would give exactly the
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reference model and is a central concept in the reference
model strategy: in the end, the resulting controller should
approach the ideal controller as much as possible.

While these approaches sound very appealing to a user
since they only require data and a reference model, they rely
on the assumption that the ideal controller can be reached
by the chosen controller structure. Therefore the choice of
the controller parametrization becomes a critical choice that
can be hard to make without a plant’s model. To that extent,
the Loewner Data-Driven Control (L-DDC, [8]) proposes to
identify a reduced-order controller from the ideal controller’s
frequency response samples that are computed from the
reference model and frequency-domain data from the plant.

Another drawback of the reference model strategy, com-
mon to all the mentioned techniques, is that the reference
model should be carefully chosen to be achievable by the
system. Indeed, a reference model that does not respect the
fundamental performances limitations of the system leads to
an ideal controller that compensate the plant’s instabilities
[9]. The ideal case is therefore internally unstable and such
behaviour should not be pursued as an objective. Closed-loop
stability and the choice of the reference model therefore ap-
pear to be strongly linked. To tackle these issues, additional
conditions on the controller have been taken into account for
IFT in [10] and CbT in [11]. For the VRFT, [9] and [12]
have proposed to parametrize the reference model function
and to find a good one along with the design of the controller.
In [13], it is proposed to define the reference model according
to the nature of the system and through a stable filter that
will determine the performances. The filter is applied to
functions that are already known to be achievable, thanks
to an initial stabilizing controller for unstable plants for
instance. Concerning the L-DDC, the available data are first
analyzed to detect and estimate instabilities before building
an achievable reference model [1]. A stability constraint
based on the small gain is then applied to ensure closed-loop
stability during the controller reduction, similarly to [13].

However, regarding the L-DDC, the detection and esti-
mation of instabilities require some expertise, mainly in the
multivariable case. The main contributions of this paper con-
sist in proposing a structured controller synthesis counterpart
of the L-DDC, leading both to internal stability and closed-
loop performances similar to a reference model, without any
need of previous unstable poles/ zeros identification. This
synthesis is formulated as an iterative procedure, solving op-
timization sub-problems where the internal stability criterion
is based on the application of the small-gain theorem. To
solve these sub-problems, a one-shot data-based estimation
of the ∞-norm is suggested through the use of Loewner
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Resulting closed-loop M(K)

Fig. 1. Considered control interconnection.

Framework. Compared to the traditional L-DDC framework,
controller structuring allows to avoid unquantified loss of
performances during controller reduction but also prevents
from compensating resonant modes of the system, which is
known to be non robust.

This paper is organized as follows: in Section II, the
data-driven structured controller design is formulated as
an optimization problem and the key tools involved in its
resolution are presented. The iterative procedure proposed in
this paper is then introduced in Section III. In Section IV, the
proposed algorithm is applied on two numerical examples.
The first one is a DC motor, for which the ideal controller is
reachable, and serves as a proof of concept. Then, the algo-
rithm is applied to a multivariable and non-minimum phase
aeronautic example to check the performances reached in
the mismatch case, when the reference model is unreachable
while ensuring internal stability and/or the chosen controller
structure). Finally, conclusions and outlooks are given in
Section V.

II. PROBLEM FORMULATION AND KEY ELEMENTS

A classic feedback interconnection is considered in this
paper, as visible on Figure 1. Well known performance limi-
tations are imposed by the unstable poles and NMP zeros of
the plant [14] thus making some reference models unachiev-
able in terms of internal stability. Therefore, a challenge is
to find a controller that leads both to internal stability and to
closed-loop performances close to the reference model. As
in L-DDC, the proposed technique is based on one set of
frequency-domain data (jωk,Φk)k=1...N .

The controller design is formulated here as the following
optimization problem

P :


min
K∈K

‖Md −M(K)‖
s.t. Closed-loop system internally stable

K Stable
,

(1)
where Md is the reference model specified by the user
representing the desired closed-loop behaviour and M(K)
is the closed-loop transfer obtained with the controller K,
‖.‖ is some norm to be specified and K is a subspace of
the controller space which only considers controllers with
a chosen structure. In many applications, it is preferred not
to introduce any instabilities in the open-loop, therefore the
stability of the designed controller is enforced.

The objective function of problem P (1), the internal
stability constraint and the controller parametrization are

Controller update

Fig. 2. Equivalent interconnection to the resulting closed-loop visible on
Figure 1 based on a stabilizing controller Ks, allowing to use the small-gain
theorem.

detailed hereafter before presenting the proposed algorithm
in Section III.

A. Objective function: matching the reference model

In order to obtain the desired closed-loop performances,
it is proposed in (1) to minimize the distance between the
reference model Md and the closed-loop transfer with a
controller K. This is done as follows:

‖Md−M(K)‖ =
1

N

N∑
k=1

‖Md(ıωk)−M(K, jωk)‖2F , (2)

where ‖.‖F is the Frobenius norm. The closed-loop transfer
M(K) can be computed at each sample point as follows:

M(K, ıωk) = (I + ΦkK(ıωk))
−1

ΦkK(ıωk). (3)

This norm quantifies the quadratic error between the
reference model and the closed-loop at the frequency sample
where plant’s data is available. Should the points be uni-
formly distributed and their amount tending to ∞, equation
(2) would tend to ‖Md −M(K)‖22.

B. Internal stability constraint

Enforcing closed-loop internal stability is an important
feature in the proposed approach. As the plant is known only
through some input/output data, closed-loop internal stability
must be assessed in a data-driven way. To that extent, we
assume that a stabilizing controller Ks ∈ RH∞ is available.
This assumption will be discussed in Section III and will be
valid along the iterative procedure that is proposed in this
paper. As in [13] and [1], a sufficient stability condition is
derived from the small-gain theorem. It relies on rewritting
the closed-loop visible on Figure 1 as the one visible on
Figure 2. The internal stability constraint is given in Theorem
1.

Theorem 1: Let G = P(1 −M(Ks)) and γ > 0. Then
the interconnected system shown on Figure 2 is well-posed
and internally stable for all stable ∆ = K−Ks with:
(a) ‖∆‖∞ ≤

1
γ if and only if ‖G‖∞ < γ

(b) ‖∆‖∞ < 1
γ if and only if ‖G‖∞ ≤ γ

As the model of the plant P is unknown, the determination
of the ∞-norm of G cannot be performed in a classic way.



Data-based estimation of the ∞-norm are available in [15]
or via expert advice in [16]. Another approach based on
Loewner interpolation is proposed hereafter.

C. Loewner-based H∞-norm estimation

The Loewner framework [17] is traditionnaly known for
model order reduction. While the L-DDC algorithm uses
it for controller reduction, the proposed approach uses its
ability to identify quickly a minimal realization of a transfer
function G in order to estimate ‖G‖∞. This will be of
importance to ensure closed-loop internal stability in a data-
driven way, as highlighted in the previous paragraph.

In the present case, the frequency response of G is
available at frequencies where the plant response is known.
Therefore, one wants to obtain a rational model Ĝ that
satisfies the following interpolatory conditions:

∀k = 1 . . . N, Ĝ(jωk) = G(jωk). (4)

In order to construct such a representation, let us divide
the sample points into two sets of interpolation points:

{jωk}Nk=1 = {µi}mi=1

⋃
{λj}pj=1

From these, Loewner and shifted-Loewner matrices can be
built as

[L]i,j =
G(µi)−G(λj)

µi−λj
[Lσ]i,j =

µiG(µi)−λjG(λj)
µi−λj

. (5)

Then, a Singular Value Decomposition (SVD) is performed
on the Loewner pencil (L,Lσ) such that,

[L,Lσ] = Y1Σ1X
H
1 ,

[
L
Lσ

]
= Y2Σ2X

H
2 , (6)

where H represents the conjugate transpose. During this
process, the McMillan order r of the interpolation model
is computed such that Σ1 ∈ Rr×r and Σ2 ∈ Rr×r, more
details are available in [17].

Finally, a realization of the interpolation model is given
in a descriptor form by:

Ĝ :

{
Eẋ=Ax+Bu
y=Cx

(7)

where the matrices are defined as follows:

E = −Y H1 LX2, A = −Y H1 LσX2, B = Y H1 V, C =WX2,
(8)

where V Ti = G(µi) and Wj = G(λj).
Remark 1: As proven in Chapter 4 of [18], if N noise-

free samples are extracted from a rational model G of order
n ≤ N , then Ĝ is a realization of the entire system.

The obtained realization Ĝ is used in the proposed ap-
proach to get an estimation of the H∞-norm of the original
system G:

‖Ĝ‖∞ ≈ ‖G‖∞. (9)

As highlighted by Remark 1, in the noise-free case, a suffi-
cient number of samples makes (9) a perfect approximation.
Otherwise, if the data set is noisy or does not contain enough
samples, ‖Ĝ‖∞ might underestimate ‖G‖∞.

D. Controller parametrization

The missing part in order to fully describe the problem
given in (1) is to describe the proposed controller structure.
The objective is to have a parametrization as general as
possible but also to enforce the stability of the controller
easily.

To that extent, a ZPK-inspired structure allows to monitor
easily the poles and, in the SISO case, the zeros of the
controller. In addition, this choice of parametrization allows
to fix the controller order. The structure is

K(s) =
1

d(s)
N(s), (10)

where d(s) ∈ C is a polynomial in s and N(s) ∈ Cni×no is
a matrix of polynomials in s (ni is the number of controller
inputs while no is the number of controller outputs, i.e.
the number of command signals). The polynomial d is
parameterized by the real vector β ∈ Rnp such that

d(β, s) =

bnp2 c∏
l=1

(
s2 + β2l−1s+ β2l

) f(s+ βnp), (11)

where,

f(s+ βnp) =

{
s+ βnp if np is odd

1 if np is even , (12)

not to lose any generality. In a similar way, each coefficient
of the polynomial matrix Ni,j(s) is structured with a vector
αi,j and the scalar ki,j such that, for all 1 ≤ i ≤ ni and
1 ≤ j ≤ no

Ni,j(α
i,j , s) = ki,j

b
n
i,j
z
2
c∏

l=1

(
s2 + αi,j2l−1s+ αi,j2l

) f(s+αi,j
n
i,j
z

),

(13)
where f is defined as in (12). The controller denoted K(θ)

in the sequence is thus parameterized by

θ =
[
β, α1,1...αni,no , k1,1, k1,2...kni,no

]
. (14)

One may notice that such a structure is general since all real
controller can be reached with it. To ensure K(θ) ∈ RH∞
the following constraint must be satisfied,

βl > 0 1 ≤ l ≤ np
np > ni,jz 1 ≤ i ≤ ni, 1 ≤ j ≤ no

. (15)

This can be expressed in a compact form:

Aθ < 0 (16)

where the matrix A translating the constraints of (15) is

A =
[
−Inp 0np×(m−np)

]
. (17)

III. CONTRIBUTION:

Now that the key elements in the proposed problem P have
been detailed, the proposed technique to solve it is introduced
in this section. It relies on solving sub problems P〉 in an
iterative way. While the sub-problems Pi are built in the next
paragraph III-A, the overall algorithm is presented in III-B.



A. Reformulation of the problem

Considering a stabilizing controller Ki, the transfer Gi

defined in Theorem 1 is known at the frequencies {ωk}Nk=1

where plant’s data {Φk}Nk=1 are available:

∀k = 1 . . . N,Gi(jωk) = Φk(1−M(Ki, jωk)), (18)

where the samples M(Ki, jωk) can computed as in (3).
As explained in II-C, interpolating this data set using the
Loewner framework gives a minimal realisation Ĝi. An
estimation of the H∞ of Gi is then obtained:

γi = ‖Ĝi‖∞ ≈ ‖Gi‖∞. (19)

Following Theorem 1, a controller Ki+1 such that

Ki+1 ∈ RH∞
‖Ki+1 −Ki‖∞ < εγ−1i

, (20)

where ε ≤ 1, would also lead to internal stability.
Remark 2: The parameter ε can be used as a safety for

the user in case the data is noisy or may not be rich
enough, meaning that there is a chance that γi underestimates
‖Gi‖∞. However, decreasing ε reduces the region around
Ki to look for other stabilizing controllers, which may be
problematic considering the conservatism of the small-gain
theorem and of the subsequent sufficient internal stability
condition.

The controller structure, as defined in paragraph II-D, can
then be used to define a proper optimization problem Pi as
defined in (21), according to a given stabilizing controller
Ki. The parameters θi+1 solving Pi allows to find a stable
controller Ki+1 = K(θi+1) that minimizes the objective
function in a region centered on Ki. Compared to Ki,
Ki+1 results in a closed-loop M(Ki+1) closer to the desired
reference model Md given by the user, or at least at the same
distance in the sense of the norm defined in paragraph II-A.

Pi :


min

θi+1∈Rnθ
1
N

∑N
k=1 ‖Md(ıωk)−M(K(θi+1), ıωk)‖2F

s.t. ‖K(θi+1)−Ki‖∞ < εγ−1i
Aθi+1 < 0

(21)

B. Loewner-based Data-driven Iterative Structured Control:
the L-DISC algorithm

The reformulation of the problem as Pi, defined for a
stabilizing controller Ki, only allows to explore a given
region around Ki to improve the closed-loop performances.
The process is therefore repeated in order to explore a larger
part of the chosen controller set. This is done by using Ki+1,
obtained when solving Pi, as a new stabilizing controller to
define the next problem Pi+1.

This procedure is called Loewner-based Data-driven
Iterative Structured Control (L-DISC) and is summed up
in Algorithm 1.

Regarding the convergence of the L-DISC algorithm, one
may notice that θ?i is feasible for the problem Pi since Aθ?i <
0 and ‖K(θ?i ) − Ki‖∞ = 0 < 1

γi
. Consequently di+1 ≤

Algorithm 1: L-DISC algorithm
Data:
• Samples of the frequency response of the system
{ωk,Φk}, i = k . . . N .

• Stable reference model Md.
• Initial stabilizing controller K0

• Controller structure K = {K(θ), θ ∈ Rnθ}, see II-D
• Stop criteria η

Solution:
1) Initialization:

• i = 0
• d0 = ‖Md −M(K0)‖
• ∆0 > η

2) While ∆i > η

a) Evaluate {ıωk,Gi(ıωk)}, see (18)
b) Use the Loewner framework to identify Ĝi

c) γi = ‖Ĝi‖∞
d) Solve Pi, see (21), get the minimizer θ?i+1

e) Ki+1 = K(θ?i+1)
f) di+1 = ‖Md −M(Ki+1)‖
g) ∆i+1 = di − di+1

h) i← i+ 1

di. As a consequence, the sequence (di)i≥0 is decreasing.
Moreover, by definition, di ≥ 0,∀i. Therefore the sequence
(di)i≥0 is converging and one can show that

∀η > 0 ∃i0 ≥ 0 di0 − di0+1 ≤ η. , (22)

therefore ensuring that the L-DISC procedure terminates in
a finite number of iterations.

Remark 3: An initial stabilizing controller K(θinit) can
be obtained by solving the following problem initialized
randomly:

Pinit :

{
min

θinit∈Rnθ
α(M̂(K(θinit)))

s.t. Aθinit < 0
(23)

where α(·) denotes the spectral abscissa (maximum real part
of the poles) of a transfer function and M̂(K(θinit)) is a
minimal realization of M(K(θinit)) obtained through the
Loewner framework, similarly to what has been done in II-
C. This approach will be used in the examples in the next
section.

IV. NUMERICAL EXAMPLES

This Section illustrates the L-DISC procedure on two
examples. The first one, a DC motor, should be viewed
as a proof of concept: the model is given so that the true
ideal controller can be compared with the obtained one.
This example represents an ideal case since the controller
structure allows to reach exactly the desired performances
while preserving internal stability. On the other side, the
second example illustrates the mismatch case: it consists in
controlling the yaw and roll angle of a F16 air fighter, where
the considered system is multivariable.



A. An ideal case: the DC motor

The considered system, a DC motor, is described by:

Ω(s)

U(s)
= P(s) =

K
fR+K2

JL
fR+K2 s2 + fL+JR

fR+K2 s+ 1
(24)

where Ω is the angular velocity, U is the input voltage,
K = 0.021Nm.s/rad the electromagnetic coefficient,
f = 0.0182Nm.s/rad the fluid friction coefficient, R =
0.56Ohms the electrical resistance, L = 5.63mH the
inductance and 5 · 10−4 kg2.m2 the moment of inertia.

The model is stable and minimum phase. Therefore,
any stable reference model respect the plant’s fundamental
limitations, see [1]. The reference model is taken as:

Md(s) =
1

(s/ω0)
2

+ 2ξs/ω0 + 1
, (25)

where ω0 = 10 rad/s and ξ = 1. Thus, considering (24) and
(25), the controller leading exactly to the reference model is

K?(s) = 12.618
s2 + 36.51s+ 4.011

s(s+ 20)
. (26)

In order to be in an ideal case, the chosen controller structure
is

K(θ, s) = θ5
s2 + θ3s+ θ4
s2 + θ1s+ θ2

, (27)

and it should be noted that K? = K(θ?) with

θ? = [20 0 36.51 4.011 12.618].

In order to apply the proposed approach, 50 samples
logspaced between 10−2 rad/s and 102 rad/s are extracted
from the plant’s model in (24). The initial stabilizing con-
troller K(θinit) is obtained as explained in Remark 3 and is
defined by:

θinit = [0.2145 0.1657 0.5237 0.2580 0.8859].

The L-DISC procedure results in a controller K(θf ) where:

θf = [15.7511 0.1370 25.5729 2.9401 0.14.3566],

resulting in the value ‖Md −M(Kf )‖ = 8.5317 · 10−6 for
the objective function.

The results are visible on Figure 3. In this ideal case,
the frequency-response of the obtained closed-loop M(Kf )
matches exactly the one of the reference model Md, showing
the ability of the L-DISC procedure to match a desired
closed-loop behaviour.

B. A mismatch case: roll and Yaw angle control on a F16
air-fighter

The yaw and roll angle of a F16 air-fighter is described
in [19] for an air speed of 62.5 m/s and an angle of attack
of 18.8 deg by a NMP linearized model.

In order to apply the proposed approach, 200 samples
logspaced between 10−2 rad/s and 102 rad/s are considered,
see Figure 4. The reference model is chosen such that the
system is decoupled and such that the peaks on the diagonal
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Fig. 3. Closed-loop transfers in the DC motor case.
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Fig. 4. Closed-loop transfers for the angle control f16 air fighter

transfers are limited without proceeding to high change of
bandwidth (see Figure 4):

Md(s) =
1

(s+ 5)(s+ 0.8)

[
5(s+ 0.8) 0

0 0.8(s+ 5)

]
.

(28)
Note that Md is minimum-phase while the plant’s model
is not, meaning that Md cannot be reached under internal
stability constraints: this is referred to as a mismatch case.

A MIMO controller structure of order 2 where all transfer
are bi-proper is considered. Considering the parametrization
from II-D, the denominator d(s) and each coefficient of the
matrix N(s) are of the form

d(s) = s2 +β1s+β2, Ni,j(s) = ki,j

(
s2 + αi,j1 s+ αi,j2

)
,

(29)
thus leading to 14 optimisation variables for θ.

The initial stabilizing controller K(θinit) is obtained as ex-
plained in Remark 3, see Figure 4 for the frequency response
of the associated closed-loop M(K(θinit)). Algorithm III-B
is then applied and results in a controller K(θf ) resulting in
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Fig. 5. Evolution of the value of the objective functions according to the
number of iterations.

the value ‖Md −M(Kf )‖ = for the objective function.
The evolution of the objective function according to num-

ber of iterations is visible on Figure 5: the objective function
is only decreasing, as expected, and most significantly during
the first iterations. However, after approximately 100 itera-
tions, the decrease is slower. A huge amount of iterations is
needed to obtain a noticeable improvement of the objective
function. This can be explained by the method used to solve
the problem Pi (21). Effectively, one may highlight that
the optimization problem to solve is non-smooth, due to the
∞-norm constraint. Nevertheless, methods used for smooth
optimization problem can still be used to reduce the objective
function. It is actually not necessary to find a local/global
optimum of the problem Pi to move to step i+1. But, when
the frontier of the non-smooth feasible space are reached, it
leads to a slow convergence.

Finally, the closed-loop results are visible on Figure 4.
In the considered frequency range, the closed-loop system
has a similar behaviour than the reference model and the
anti-diagonal transfer are maximized by −20 dBs which
correspond to an attenuation of at least 90%. In the present
case, the L-DISC algorithm allows to find a stabilizing con-
troller of order 2 giving satisfying closed-loop performances
compared to the desired reference model. It does not require
to obtain a data-driven estimation the NMP zero of the model
derived in [19] while it would have been necessary through
the L-DDC framework as detailed in [1].

V. CONCLUSION

In this paper, a data-driven technique based on frequency-
domain data ensuring internal stability has been proposed.
The specifications are given as a reference model. The
proposed approach, denoted L-DISC, consists in optimizing
the matching between the closed-loop and the reference
model under a small-gain based constraint to ensure internal
stability.

Compared to other approaches such as [1], the reference
model only needs to represent the desired performances and

does not need to be made achievable as in [1]. This advantage
is considerable since the modification of the reference model
requires a deeper analysis of the plant’s data to estimate its
instabilities. Furthermore, the structured controller approach
is a key advantage for practical applications where the con-
troller form is not a tunable parameter. While, the iterative
aspect of the procedure leads to higher computation time, it
also makes the final closed-loop system less dependant on the
initial stabilizing controller. A more efficient resolution of the
sub-problems, based for instance, on convex relaxation and a
possible weighting of the objective function with respect to
the considered frequencies, is currently under investigation.
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