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Adaptive feedback noise attenuation in the presence of plant
uncertainties - A Dual Youla-Kucera approach

Ioan Dore Landau1 and Bernard Vau2 and Gabriel Buche1

Abstract— This paper presents an adaptive algorithm for
attenuation of tonal and narrow band noise in the case of large
uncertainties of the compensatory path. This scheme imple-
ments the Internal Model Principle (IMP) for canceling distur-
bances, combined with the Youla Kucera (YK) parametrization
which allows to directly tune the disturbance compensation
filter. Plant uncertainties are represented by means of the Dual-
Youla-Kucera parameterization, and an overparametrization of
the adaptive disturbance compensation filter is proposed to cope
with the uncertain plant. In addition, a frequency condition has
to be satisfied by an appropriate design of the central controller.
The experimental validation of the design is done on a relevant
active noise control test bench.

I. INTRODUCTION

The issue of rejecting multiple narrow band disturbances
with unknown and time-varying characteristics can be ad-
dressed efficiently by an adaptive feedback control solution.
The principle of adaptive feedback is to use the Internal
Model Principle (IMP) of Wohnam [1], combined with a
Youla-Kucera parametrization of the controller, allowing to
adaptively tune its parameters. The use of this approach in
active noise attenuation is presented in [2], [3], [4] and this
method has been widely employed in active vibration control
[5], [6]. In these references, it is assumed that the plant model
is known and almost constant. However, in several situations,
large variations of the plant model can occur, leading po-
tentially to closed-loop instability. In order to represent the
plant uncertainties, a dual Youla-Kucera parameterization can
be used [7], [8]. In [9] it is argued that overparameterizing
the Youla-Kucera filter of the adaptive controller one can
enhance its robustness with respect to plant uncertainty,
and this idea has been exploited in [8], where it is shown
that the overparameterization should do simultaneously two
tasks: 1) verify the internal model principle 2) guaranteeing
closed-loop stability. Even assuming that one knows the
plant uncertainty, it results that two frequency conditions for
stability appear. The first condition depends upon the discrep-
ancies between the nominal and the real model and can be
influenced by the design of the central stabilizing controller.
The second condition requires a specific design of the central
controller. Furthermore, because of overparametrization, the
argument of richness excitation is not sufficient to ensure
the estimated parameters convergence. For this reason the
Parameter Adaptation Algorithm (PAA) introduced in [8]
is completed with a projection procedure to maintain the

1Gipsa-lab, 38000 Grenoble, France email: ioan-dore.landau@gipsa-
lab.grenoble-inp.fr

2Ixblue, 12 avenue des coquelicots, 94385 Bonneuil-Sur-Marne, France
email: bernard-vau@ixblue.com

parameters within a certain domain of variation.
Many of these aspects have been discussed in [10]. However
in [10] the design procedure has been illustrated for the
case of asymptotically stable plants and without using a
central stabilizing controller. While this choice simplifies the
design, the domain of operation is limited by the discrepancy
between the design model and the real model. In the present
paper one considers the use of a central stabilizing controller
and this allows to expand the region of operation up to the
region of operation covered in the absence of uncertainties
on the model of the secondary path. The paper is organized
as follows: In Section II the experimental setup will be
described. In Section III the basic equations of the algorithm
are presented, and the conditions for closed-loop stability are
given, which leads to propose a methodology for the design
of the central controller in Section IV. Experimental results
obtained on an active noise control test-bench are presented
in Section V.

II. EXPERIMENTAL SETUP

The test bench allows to test active noise control in pipes
for various physical configurations. The detailed scheme of
test bench with the control loop is shown in Fig. 1 and the
views of the two implementations which will be considered
subsequently are shown in Fig. 2.

Fig. 1: Duct active noise control test bench diagram.

In Fig. 1, the speaker used as the source of disturbances
is labelled as 1, while the control speaker is marked as
2. At pipe’s open end, the microphone that measures the
system’s output (residual noise ) is denoted as 3. The control
signal is denoted u(t), the residual noise is denoted y(t).
The transfer function between the disturbance’s speaker
and the microphone (1→3) is called Primary Path, while



Fig. 2: Duct active noise control test bench - Configuration
Go (top), configuration G (bottom)

the transfer function between the control speaker and the
microphone (2→3) is denoted Secondary Path. These marked
paths have a double differentiator behaviour, since as input
we have the voice coil displacement and as output the air
acoustic pressure. Both speakers are connected to a PC target
computer with Simulink Real-time R© environment through a
pair of high definition power amplifiers and a data acquisition
board. A second computer is used for development, design
and operation with Matlab R©. The sampling frequency is
fs = 2500 Hz.

III. SYSTEM STRUCTURE AND CONTROLLER
DESIGN

The nominal plant model used for controller design (de-
sign model)1 is denoted Go(q−1) and is described by:

Go(q−1) =
Bo(q−1)

Ao(q−1)
(1)

with:

Ao(q−1) = 1+a1q−1 + · · ·+anA q−nA ; (2a)

Bo(q−1) = b1q−1 + · · ·+bnBq−nB = q−1B∗o(q
−1) ; (2b)

B∗o(q
−1) = b1 + · · ·+bnBq−nB+1 ; (2c)

where A(q−1), B(q−1), B∗(q−1) are polynomials in the delay
operator q−1 and nAo , nBo and nB−1 represent their orders.
The real plant model denoted G(q−1) has the same structure
as Go(q−1),

G(q−1) =
B(q−1)

A(q−1)
(3)

but the order of the various polynomials (nA,nB), the delay
d and the parameters are unknown.
The control structure includes a central controller Co

Co(q−1) =
Ro(q−1)

So(q−1)
=

R
′
o(q
−1)HR(q−1)

S′o(q−1)HS(q−1)
(4)

and Hr(q−1) and Hs(q−1) are some fixed parts which may
be imposed during the controller synthesis (See [11]). This

1In active vibration and noise control the plant is called ”secondary path”
or ”compensation path”

controller stabilizes the nominal model, meaning that the
closed-loop polynomial

Po(q−1) = Ao(q−1)So(q−1)+Bo(q−1)Ro(q−1) (5)

has (by design) all its roots strictly inside the unit circle. The
following hypothesis is made throughout the paper:
H1- The real plant model G is also stabilized by the central
controller Co.
One assumes that the output disturbance d(t) results from
the filtering of a Dirac impulse δ (t)

d(t) =
Nd(q−1)

Dd(q−1)
δ (t) (6)

where Dd(q−1) has all its roots on the unit circle.
One considers a Youla-Kucera (YK) parametrization of the
controller [12]. For the purpose of this paper the Youla-
Kucera filter Q(q−1) is considered to be a polynomial of
the form:

Q(q−1) = qQ
o +qQ

1 q−1 + . . .+qQ
nQ

q−nQ . (7)

which is fed by the signal w(t)

w(t) =−Bo(q−1)u(t)+Ao(q−1)y(t) (8)

Note that for the nominal case

w(t) = Ao(q−1)d(t) (9)

which can be interpreted as a stable observation of the distur-
bance [12]. In the presence of the Youla-Kucera parametriza-
tion, the resulting controller becomes:

u(t) =−C(q−1)y(t) =−R(q−1)

S(q−1)
y(t) (10)

where

R(q−1) = Ro +AoHRHSQ (11a)

S(q−1) = So−BoHRHSQ (11b)

To compute Q(q−1) in order that the controller contains the
internal model of the disturbance (required by the Internal
Model Principle for asymptotic rejection of the disturbance),
one has to solve (S = S

′
Dd):

S
′
Dd +HRHSBoQ = So (12)

where So and Q are the unknown terms.
Fig. 3 gives the block diagram of the true control system

where in addition the uncertainty on the plant model is taken
into account using the dual Youla-Kucera parametrization of
the plant model. The dual Youla-Kucera filter is defined as

∆(q−1)

Γ(q−1)
(13)

The polynomial Γ(q−1) is monic with all its roots strictly
inside the unit circle, and the polynomial ∆(q−1) has no
direct transmission. Under these assumptions, the uncertain
plant G(q−1) can be written

G(q−1) =
Γ(q−1)Bo(q−1)+∆(q−1)So(q−1)

Γ(q−1)Ao(q−1)−∆(q−1)Ro(q−1)
(14)



Fig. 3: Global block diagram of the uncertain system and the
controller including the Q-filter

In the presence of uncertainties in the plant model, the
following relation holds (d(t) is the disturbance):

y(t) =
ΓAo−∆Ro

Po

So−QHRHSBo

Γ+QHRHS∆
d(t) (15)

One can notice that for G(q−1) 6= Go(q−1), a stability con-
dition appears :

Γ(q−1)+Q(q−1)HR(q−1)HS(q−1)∆(q−1) (16)

must have all its roots strictly inside the unit circle. In this
context, one has the following result for w(t):

Lemma 1: In case of model uncertainty expressed with
the Dual Youla-Kucera parameterization as in (14), one has

w(t) =
Γ(q−1)Ao(q−1)−∆(q−1)Ro(q−1)

Γ(q−1)+Q(q−1)HR(q−1HS(q−1)∆(q−1)
d(t) (17)

Proof: See [10] �
As a consequence, in order that w(t) be an observation of
d(t) (which is bounded), the polynomial (16) must have
all its roots strictly inside the unit circle. This can be
summarized as follows:

Lemma 2: For the case of plant uncertainty represented by
the dual Youla Kucera parametrization and in the presence
of a bounded disturbance d(t), the signals y(t), u(t) and w(t)
will be bounded provided that the polynomial (16) will have
all its roots strictly inside the unit circle.
Since G(q−1) differs from Go(q−1), the minimal order so-
lution for Q (defined in (7)) satisfying the internal model
principle, does not necessarily leads to the stability of
the closed-loop. In such a situation, one can augment the
order of Q(q−1). One has the following result about the
existence of a polynomial Q(q−1) with a degree nQ < ∞

guaranteeing closed-loop stability and satisfying the internal
model principle:

Lemma 3: The existence of a finite dimensional Q which
stabilizes the closed-loop and asymptotically rejects the
disturbance d(t) is assured (sufficient condition) if:
• For the frequencies ω j of the disturbance corresponding

to Dd(e−iω j) = 0, the following inequality is satisfied:∣∣∣∣ So(e−iω j )

Bo(e−iω j )

∣∣∣∣<∣∣∣∣ A(e−iω j )So(e−iω j )+B(e−iω j )Ro(e−iω j )

B(e−iω j )Ao(e−iω j )−A(e−iω j )Bo(e−iω j )

∣∣∣∣ (18)

• For all other frequencies, the following inequality is
satisfied:∣∣Q(e−iω)

∣∣<∣∣∣∣A(e−iω)So(e−iω)+B(e−iω)Ro(e−iω)

B(e−iω)Ao(e−iω)−A(e−iω)Bo(e−iω)

∣∣∣∣ · · ·
· · ·×

∣∣∣∣ 1
HR(e−iω)HS(e−iω)

∣∣∣∣ (19)

Proof: See [10]. �

Adaptive disturbance rejection

In the presence of unknown narrow band disturbances the
polynomial Dd(q−1) is unknown. In this situation one can
consider a Q-filter with adjustable parameters:

Q̂(q−1, t) = q̂Q
o (t)+ · · · q̂

Q
nQ(t)q

−nQ (20)

and the objective is to find a parameter adaptation algo-
rithm driving this parameters towards the values assuring
asymptotic rejection of the disturbance. We will follow up
to certain extent the development procedure described in
[12], however including from the beginning the presence
of model uncertainties described by the dual Youla Kucera
representation and the use of a Q filter of higher order that
the minimal one used for the nominal case (when G = Go).
When using a Q-filter with constant coefficients the output
of the system y(t) in the presence of a disturbance d(t) can
be expressed as:

y(t) =
ΓAo−∆Ro

Po

(So−BoQ̂HRHS)

Γ+ Q̂HRHS∆
d(t) (21)

By combining (21) and (17), one obtains

y(t) =
(

So

Po
− Q̂

HRHSBo

Po

)
w(t) (22)

Since the objective is to drive y(t) asymptotically to zero,
it is logical to consider this variable as an adaptation error
which will be denoted ε(t). Now replacing in (22) the fixed
value of Q by an estimation of Q̂ one gets an expression for
the a-priori adaptation error εo(t +1):

ε
o(t +1) =

(
So

Po
− Q̂(q−1, t)

HRHSBo

Po

)
w(t +1) (23)

One can define the a-posteriori adaptation as:

ε(t +1) =
(

So

Po
− Q̂(q−1, t +1)

HRHSBo

Po

)
w(t +1) (24)



Taking into account Eq.(12) (resulting from the application
of the IMP principle for the case of known disturbances)
Eq.(24) can rewritten as:

ε(t +1) =
(
Q(q−1)− Q̂(q−1, t +1)

) B∗oHRHS

Po
w(t)

+v(t +1) (25)

where v(t+1)= Dp(q−1)S
′
(q−1)

Po(q−1)
w(t+1) is a signal which tends

towards 0. Set
w2(t) =

B∗o
Po

w(t) (26)

The a-posteriori adaptation error can be expressed under the
form [13]:

ε(t +1) = H(q−1)
(
θ − θ̂(t +1)

)T
φ(t) (27)

where
φ

T (t) = [ w2(t) · · ·w2(t−nQ)]

θ
T = [qQ

o · · ·qQ
nQ
]

θ̂
T (t) = [q̂Q

o (t) · · · q̂Q
nQ
(t)]

and here, owing to (27)

H(q−1) = 1

Taking into account the fact that the order of polynomial Q̂
is higher than the minimal order required by the IMP, the
parameter adaptation algorithm proposed in [12] and [8] has
to be completed with a projection of the estimated parameter
vector on a bounded domain in order to prove the stability of
the adaptive control scheme (see [13] p.340). The adaptation
algorithm to be used is

θ̂(t +1) = θ̂p(t)+F(t)φ(t)ε(t +1) (28)

ε(t +1) =
εo(t +1)

1+φ T F(t)φ(t)
(29)

F(t +1)−1 = λ1F(t)−1 +λ2φ(t)φ T (t) (30)

0 < λ1 < 1 0≤ λ2 < 2,F0 > 0 (31)

where θ̂p(t) is the projection of θ̂(t) which is computed as
follows:

θ̂
′
(t) = F(t)−1/2

θ̂(t) (32a)

θ̂
′
p(t) = θ̂

′
(t) i f θ

′
(t +1) ∈D

′
(32b)

θ̂
′
p(t) =⊥ proj of θ

′
(t) on D

′
i f θ

′
(t) /∈D

′
(32c)

θ̂p(t) = F(t)1/2
θ̂
′
p(t) (32d)

The projection domain D
′

is defined as follows:

θ̂ ∈D , θ̂
′
(t) = F(t)−1/2

θ̂(t) ∈D
′

(33)

where the projection domain D is such that:

D : ||θ̂(t)||22 < R < ∞ (34)

Two particular choices for the adaptation gain are used
mainly in practice in order to assure the alertness of the

adaptation with respect to possible variations of the distur-
bance characteristics2:
• Constant trace- for a constant ratio λ1(t)/λ2(t), λ1(t) is

chosen such that the trace of the adaptation gain matrix
F(t) remain constant (traceF(t) = traceF0)

• Constant gain λ1(t) = 1,λ2(t) = 0 and therefore F(t) =
F0 (usually F0 = αI)

When using a constant adaptation gain, the change of co-
ordinates introduced in Eqs. (34) is no more necessary (see
[13], pp. 340-343).
The stability analysis of this adaptive control algorithm can
be found in[10] and is omitted.

IV. DESIGN OF THE CENTRAL CONTROLLER

The central controller design has several objectives: 1)
Stabilize the nominal model and the uncertain model. 2)
Try to maximize the frequency domain where condition (18)
is satisfied. 3) Avoid low values of the right hand side of
inequality (19). The central controller polynomials So and
Ro are determined by :
a) Selecting the fixed parts HS, HR, in order to satisfy
conditions (18) and (19). For this purpose, the zeros of HS
and HR are low damped complex ones and their frequencies
are spread over all spectrum. A pair of closed-loop poles
(for the nominal system) is assigned to each pair of complex
zeros of HS or HR such that the corresponding complex
poles have the same frequency but with a higher damping. In
order to achieve this objective, the transfer function operators
HS(q−1)
PS(q−1)

and HR(q−1)
PR(q−1)

are chosen as the discretization of series
of continuous resonating filters, each filter being such that

s2

ω2 +2 ζN s
ω

+1

s2
ω2 +2 ζDs

ω
+1

. Their damping factors are chosen as to satisfy

o≤ ζN < 1, o < ζD ≤ 1, and ζN < ζD.
b) Forcing some closed-loop poles to be the poles of the
nominal systems (the roots of Ao). This corresponds to an
internal model strategy, which is recognized to have a good
robustness with respect to uncertainties.
Finally So = S

′
HS and Ro = R

′
HR are computed by solving

the Bézout equation

AoHSS′+BoHRR′ = AoPRPS (35)

Figure 4 compares the modules of So
Bo

and ASo+BRo
BAo−ABo

, and
shows that condition (18) is satisfied up to 270 Hz, by using
the designed central controller. In [10] the central controller
has been suppressed and the highest frequency for which
condition (18) is satisfied, is around 230 Hz.

V. EXPERIMENTAL RESULTS

The objective of the experimental validation is to assess
the performance of the overparametrized YK adaptive feed-
back scheme on the configuration G using the model of
the configuration Go for implementing the YK observer and
using the central controller designed in Section IV. Several
type of disturbances will be considered.

2For other options see [12], [13]



Fig. 4: Comparison of | So
Bo
| and | ASo+BRo

BAo−ABo
|

A. System identification

The secondary path models of the two configurations have
been identified from experimental data using the method-
ology described in [14]. Fig. 5 shows the frequency char-
acteristics of the identified models. There are important
differences between the two models. These characteristics
present multiple resonances (low damped complex poles)3

and anti-resonances (low damped complex zeros). The orders
of the two models are summarized in Table I.

Fig. 5: Bode diagrams of the nominal and uncertain plants

Model nA nB d
Secondary path Go 38 32 8
Secondary path G 27 20 7

TABLE I: Orders of the identified models.

B. Single sinusoidal disturbance

Fig. 6 shows the response of the residual noise for a
sequence of step changes in the frequency of the disturbance
around 170 Hz. The system operates in open loop for 5 s
and then at t = 25 s a step of -10 Hz (160 Hz) is applied.
Then the system returns to the nominal frequency at t = 50
s and at t = 75 s a step of +10 Hz (180 Hz) is applied. The
corresponding evolution of the parameters is shown in Fig. 7.
The Q filter has in this case 50 parameters (nQ = 49)

3The lowest damping is around 0.01.

Fig. 6: Time response of the residual noise for step changes
in the frequency of the disturbance around 170 Hz (50 par.)

Fig. 7: Evolution of the parameters for step changes in the
frequency of the disturbance around 160 Hz (50 par.)

One observes an excellent attenuation of the distur-
bance and a very fast adaptation transient. The attenuation4

achieved are: 78.43 dB (5 to 25 s) and 77.51 dB (50 to 75
s) for 170 Hz, 72.82 dB for 160 Hz and 77.67 dB for 180
Hz.

C. Adaptive attenuation of interferences

Fig. 8 shows the capability of the control scheme to
strongly attenuate interference (interference occurs when
two sinusoidal disturbances have very close frequencies). A
couple of sinusoids at 150 Hz and 150.5 Hz is applied. Then
at t = 25 s one switches to 140 Hz and 140.3 Hz, at t = 50
s one returns to 150 Hz and 150.5 Hz and at t = 75 s one
switches to 160 Hz and 160.2 Hz. The system operates in
open loop for the first 5 s. The corresponding evolution of
the parameters (50 parameters) is shown in Fig. 9.

D. Two sinusoidal disturbances of distinct frequencies

To asymptotically reject the effect of two simultaneous
sinusoidal disturbances with distinct frequencies and to as-
sure simultaneously the system stability, the dimension of
the Q filter has been augmented to 60 parameters (nQ = 59).
Fig. 10 displays the time response of the residual error for
the rejection of two sinusoidal disturbances located at 80
Hz and 180 Hz (open loop operation for the first 5 s). An
attenuation of 86.23 dB is achieved. Fig. 11 shows the power
spectral density in open and in closed loop.

4Attenuation is defined as the ratio between the variance of the residual
noise in open loop and the variance of the residual noise in closed loop



Fig. 8: Time response of the residual noise for step changes
in the frequencies of an interference phenomenon (50 par.)

Fig. 9: Evolution of the parameters for step changes in the
frequencies of an interference phenomenon (50 par.)

Fig. 10: Evolution of the residual noise for two sinusoı̈dal
disturbances (80/180 Hz - 60 parameters).

Fig. 11: Power Spectral density of the residual noise in open
loop and in closed loop for three sinusoidal disturbances
(80/180 Hz - 60 parameters).

VI. CONCLUSION

The paper has shown that large model uncertainties in the
model of the compensatory path used in adaptive feedback
attenuation of noise can be handled by overparametrization
of the Youla Kucera Q filter. Further experimental results
will be provided for the final version of the paper.
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Benchmark on adaptive regulation - rejection of unknown/time-varying
multiple narrow band disturbances, European Journal of Control 19 (4)
(2013) 237 – 252.

[6] I. D. Landau, T.-B. Airimitoaie, A. Castellanos Silva, A. Constanti-
nescu, Adaptive and Robust Active Vibration Control—Methodology
and Tests, Advances in Industrial Control, Springer, London, 2017.

[7] C. Kinney, H. Fang, R. de Callafon, M. Alma, Robust estimation
and automatic controller tuning in vibration control of time varying
harmonic disturbances, in: Proceedings of the 18th IFAC World
Congress, Milano, Italy, 2011, pp. 5401–5406.

[8] B.Vau, I. Landau, Youla-kucera adaptive feedback disturbance rejec-
tion in the presence of plant uncertainties, in: Proceedings of the 58th
IEEE Conf. on Decision and Control, Nice, France, 2019, pp. 102–
107.

[9] S. Valentinotti, Adaptive rejection of unstable disturbances: Appli-
cation to a fed-batch fermentation, Phd thesis, École Polytechnique
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