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Abstract. Encrypted control enables confidential con-
troller evaluations in cloud-based or networked control sys-
tems. From a technical point of view, an encrypted con-
troller is a modified control algorithm that is capable of com-
puting encrypted control actions based on encrypted system
outputs. Unsurprisingly, encrypted implementations of con-
trollers using, e.g., homomorphic cryptosystems entail new
design challenges. For instance, in order to avoid overflow or
high computational loads, only a finite number of operations
should be carried out on encrypted data. Clearly, this guide-
line is hard to satisfy for dynamic controllers due to their
recursive nature. To enable an unlimited operating time, ex-
isting implementations thus rely on external “refreshments”
of the controller state, internal refreshments using bootstrap-
ping, or recurring controller resets.

We show in this paper that simple FIR filter-based con-
trollers allow to overcome many drawbacks of the existing
approaches. In fact, since FIR filters consider only a finite
amount of the most recent input data, the recursion issue
is immediately solved and controller refreshments or resets
are no longer required. Moreover, well-designed FIR filters
are often less complex than and equally effective as IIR con-
trollers.

I. INTRODUCTION

Modern control systems tend to be more networked and dis-
tributed. Prominent examples come along with industry 4.0,
smart grids, building automation, robot swarms, or intelligent
transportation systems. While these systems offer exciting fea-
tures, they also involve privacy and security concerns. A proper
controller design for a networked system should take these con-
cerns into account and guarantee confidentiality and integrity of
the involved process data.

One step in this direction are encrypted controllers that ensure
confidentiality of plant data, controller parameters, and control
actions throughout the control loop(s) (see [1] for an overview).
The defining feature of such controllers is their encrypted eval-
uation. A key technology for the realization of encrypted con-
trol is homomorphic encryption (HE) that allows computations
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on encrypted data (see, e.g., [2–5]). However, encrypting con-
trol algorithms with homomorphic cryptosystems is a non-trivial
task that requires tailored controller reformulations.

Such reformulations and subsequent encryptions have been
proposed for various control schemes. For instance, encrypted
realizations of static linear state and output feedback can be
found in [6,7]. More complex model predictive control schemes
were presented in [8, 9]. Recently, encrypted versions of linear
dynamic controllers of the form

x(k + 1) = Ax(k) + By(k), x(0) := x0 (1a)
u(k) = Cx(k) + Dy(k) (1b)

gained some interest in the literature [10–13]. Here, x(k) ∈ Rl

is the controller state at time step k ∈ N, y(k) ∈ Rl refers to
feedback from the plant (such as, e.g., the plant’s output), and
u(k) ∈ Rm denotes the resulting control action. Controllers of
type (1) are interesting since many popular control schemes,
such as linear-quadratic Gaussian (LQG) control, Luenberger
observers combined with linear state feedback, or PID control,
can be expressed in this form. Thus, a well-designed encrypted
implementation of (1) can have tremendous impact on the prac-
ticality of encrypted control. Unfortunately, despite the simple
controller structure, such an implementation is not straightfor-
ward. In this context, the main challenge is to cope with the
recursive nature of (1). In fact, the recursive evaluations of the
controller states might lead to (undetectable) overflows during
the encrypted computations and hence to false control actions.
Without additional means, this effect limits the operating time of
encrypted dynamic controllers.

Several approaches for solving this issue have been proposed
in the literature [10–13]. As detailed in Section III, these ap-
proaches either require recurring “refreshments” or resets of the
encrypted controller, which increases the evaluation effort or de-
creases the control performance. In this paper, we show that
simple FIR filter-based approximations of dynamic controllers
allow avoiding these drawbacks. In fact, FIR filters can be eas-
ily encrypted without relying on any refreshments or resets and,
if well-designed, they provide good control performance. We
address these advantages in more detail below and illustrate the
efficiency of our novel approach with a numerical benchmark.

The remainder of this paper is organized as follows. In Sec-
tion II, we provide basics on HE and explain why an unlimited
encrypted operation of (1) is difficult. Next, we briefly summa-
rize existing solutions to this problem Section III. Section IV is
dedicated to FIR approximations for dynamic controllers. After-
wards, benefits for FIR filter-based encrypted control are pointed
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out in Section V and illustrated with a numerical example in
Section VI. Finally, we state conclusions and an outlook in Sec-
tion VII.

Notation. We denote the sets of real, integer, and natural num-
bers by R, Z, and N, respectively. By b·c, d·e, and b·e, we denote
the floor function, the ceiling function, and rounding to the near-
est integer, respectively.

II. FUNDAMENTALS OF ENCRYPTED DYNAMIC CONTROL

Existing encrypted implementations of linear dynamic con-
trollers (as specified in Section III) all build on HE schemes.
Hence, we begin with a brief overview on HE. Applying these
cryptosystems (typically) requires an integer-based reformula-
tion of (1), which we address next. This reformulation will also
reveal why an unlimited operation time of an encrypted dynamic
controller is problematic.

A. Homomorphic encryption

HE schemes allow mathematical operations to be carried out on
encrypted data (see, e.g, [2–5,14]). More precisely, let z1 and z2

be two arbitrary numbers in the cryptosystem’s message space
and denote the encryption and decryption procedure by “Enc”
and “Dec”, respectively. Then, we call a cryptosystem multi-
plicatively homomorphic if there exists an operation “⊗” that
supports encrypted multiplications according to

z1 z2 = Dec (Enc(z1)⊗ Enc(z2)) . (2)

Analogously, cryptosystems are called additively homomorphic
if an operation “⊕” exists such that

z1 + z2 = Dec (Enc(z1)⊕ Enc(z2)) . (3)

Popular realizations of such partially HE schemes are due to El-
Gamal [14] and Paillier [2], respectively.

There also exist cryptosystems that support both homomor-
phisms (2) and (3). These cryptosystems are quite powerful
since encrypted multiplications and additions allow, in princi-
ple, the secure implementation of arbitrary functions (in terms of
boolean or arithmetic circuits). However, only computationally
expensive fully HE schemes (as, e.g., [3]) support an unlimited
number of homomorphic multiplications and additions. In con-
trast, in leveled HE schemes such as [4] or [5], the number of
operations is limited. The supported “level” refers to the maxi-
mally allowed multiplicative depth of the arithmetic (or boolean)
circuit to be encrypted. In this context, the multiplicative depth
refers to the maximum number of multiplications on any path
from an input node to an output node of the arithmetic circuit.
Figure 1 illustrates the notion based on three examples. In or-
der to provide a correct decryption, the number of levels should
be (at least) equal to the multiplicative depth of the circuit to be
encrypted.

Some leveled homomorphic cryptosystems can be trans-
formed into fully homomorphic ones by (recurrently) using
“bootstrapping”. In a nutshell, bootstrapping evaluates the de-
cryption algorithm homomorphically at high computational cost

Figure 1: Arithmetic circuits corresponding to (from left to
right) the three expressions (z1 + z2)(z3 + z4), (z1z2) + (z3z4),
and (z1z2)(z3 + z4). The multiplicative depth of the circuits are
1, 1, and 2, respectively.

with help of the encrypted secret key. The result is a ciphertext
on an improved level, which allows for further encrypted com-
putations.

To better understand the concept of levels, we briefly note
that most leveled HE schemes build on variants of the learning
with errors (LWE) problem introduced in [15]. In these schemes,
small errors are added during encryption in order to ensure secu-
rity. Unfortunately, these errors grow during homomorphic op-
erations (especially during multiplications) and, at some point,
would impair the decryption. Hence, the ciphertext is either de-
crypted before this happens or bootstrapping is needed.

B. Integer-based controller reformulation

The message space of most homomorphic cryptosystems is a fi-
nite set of integers, e.g.,

Zq :=
{
−
⌊q

2

⌋
, . . . ,

⌈q
2

⌉
− 1
}
,

where q ∈ N>1 refers to the number of elements. Hence, an en-
crypted implementation of (1) requires to map all involved quan-
tities to Zq . For a given number x ∈ R, this mapping can be
realized as follows. We pick a suitable scaling factor s ∈ R≥1,
multiply x with this factor, and round the result to the nearest
integer, i.e., z := bsxe. Three observations are important in this
context. First, we obtain z ∈ Zq for a sufficiently large choice
of q. Second, an approximation of x can be recovered from z
by evaluating z/s, where the (absolute) approximation error is
limited by 1/(2s). Third, an analog procedure can be applied to
matrices yielding bsAe ∈ Zn×n

q . Computations with the result-
ing integers are straightforward, presupposed that additions are
carried out based on identical scaling factors. In other words, the
relation

1

s1s3
(bs1x1e+ bs2x2e) bs3x3e ≈ (x1 + x2)x3

is meaningful if and only if s1 = s2. Following this simple rule,
it is easy to see that

z(k + 1) = bs1Aez(k) + bs2Bebsk+1
1 s5y(k)e (4a)

v(k) = bs3Cez(k) + bs4Debsk+1
1 s5y(k)e (4b)

with z(0) := bs0x0e is an integer-based reformulation of (1) if
s0 = s2s5 and s1s4 = s2s3 hold. This reformulation does, in



principle, support an encrypted implementation based on the ho-
momorphisms (2) and (3). In fact, approximations of the control
inputs and states could be recovered from

u(k) ≈ 1

sk+1
1 s4s5

v(k) and x(k) ≈ 1

s0sk1
z(k), (5)

respectively. Now, a simple choice that satisfies the two scaling
conditions is s0 = s1 = s2 = s3 = s4 = s and s5 = 1. At
this point, it is important to note that s1 plays a special role. In
fact, the integer variables z(k), bsk+1

1 s5y(k)e, and v(k) all ac-
cumulate this scaling factor over time. Hence, if s1 > 1 and q is
finite, these integers will (most likely) leave Zq for some k ∈ N.
An encrypted implementation of (4) would then result in an (un-
detected) overflow and false control actions. Since we typically
require s1 � 1 for small approximation errors, ensuring an un-
limited operation time of encrypted dynamic controllers is not
trivial.

III. SUMMARY OF EXISTING APPROACHES

Several approaches that deal with the problem of limited opera-
tion times have been proposed in the literature. We briefly sum-
marize these approaches in order to prepare and distinguish our
novel procedure.

A. External refresh of controller state

Although an unlimited encrypted execution of (4) is demanding,
it is usually straightforward to choose the cardinality q such that
an overflow can be excluded for T ∈ N≥1 time steps. A simple
approach to circumvent future overflows, which has, e.g., been
applied in [16], then is as follows. At time step k = T − 1,
the cloud not only returns Enc(v(T − 1)) to the plant but also
Enc(z(T )), i.e., the encrypted controller state for the next step.
Both quantities are decrypted at the actuator and approximations
for u(T − 1) and x(T ) are computed according to (5). While
u(T − 1) is applied to the system, x(T ) is forwarded to the sen-
sor. Now, at time step T , the sensor measures y(T ) and sends
Enc(s1s5y(T )) together with Enc(s0x(T )) to the cloud. There,
Enc(s0x(T )) is used to reinitialize the encrypted dynamic con-
troller. As a consequence, the accumulation of s1 is reset and the
controller can run for another T time steps before the procedure
is repeated. Clearly, a major drawback of this method is the com-
munication overhead. In fact, every T time steps, n additional
ciphertexts have to be transmitted from and to the cloud, which
is a significant increase. Furthermore, the external refresh is vul-
nerable to communication issues like latency or packet losses.

B. Internal refresh of controller state

The communication overhead can be avoided with fully HE. In
fact, with help of bootstrapping, it is also possible to “refresh”
the encrypted controller state within the cloud. However, as
pointed out in Section II.A, this is computationally expensive.
In [12], Kim et al. deal with this issue by orchestrating three
controllers to bridge the waiting time when one of them is boot-
strapped. Clearly, the parallel evaluation of multiple controllers
results in an additional overall computational load.

C. Periodic reset of controller state

The approaches above either result in additional communication
or computational load. A simple but effective modification al-
lows overcoming these drawbacks. In fact, as recently proposed
in [11], a periodic reset of the controller state removes the need
for refreshments. According to [11, Eq. (2)], the resulting con-
troller then has the form

xr(k + 1) =

{
x0 if k + 1 mod T = 0,
Axr(k) + By(k) otherwise

ur(k) = Cxr(k) + Dy(k). (6)

However, the abrupt resets of xr(k) directly affect the plant’s
inputs through ur(k), which might degrade the control perfor-
mance. Nevertheless, closed-loop stability can be ensured using
the tailored controller design in [11, Sect. III.A].

D. Integer controller state matrix

As shown in Section II.B, the (un)limited operation issue is cru-
cially linked to the scaling factor s1. As apparent from (4)
and (5), an unlimited operation time of the encrypted controller
can easily be guaranteed for the special case s1 = 1 since the
accumulation is affectless then1. Obviously, choosing s1 = 1 is
only reasonable if A is already integer (or close to being so). In
general, designing linear dynamic controllers with A ∈ Zn×n

is non-trivial. However, as pointed out in [10, Sect. IV], FIR
filters naturally lead to integer A and, for PID controllers, the
design problem is considerably simplified. Apart from the gen-
erally difficult design, we recently showed in [17] that integer
A also involve stability issues. In fact, an A ∈ Zn×n is Schur
stable if and only if all eigenvalues are 0 (which corresponds to
a FIR filter). Thinking (again) about the effects of packet losses
and latency, unstable controllers seem unsuitable for networked
systems. Hence, exploiting integer A has to be done with care
(not only) in encrypted control.

E. Integer matrix and external refresh of control action

A hybrid approach, that combines the techniques from Sec-
tions III.A and III.D, has recently been presented in the
preprint [13]. The authors propose to “extend” (1a) by Ru(k)−
Ru(k) = 0 and to substitute (1b) in the second term. As a result,
one obtains the modified controller

x(k + 1) = (A−RC)x(k) + (B −RD)y(k) + Ru(k)

u(k) = Cx(k) + Dy(k).

Now, R ∈ Rn×m and a transformation matrix T ∈ Rn×n can
be chosen such that T (A−RC)T−1 becomes integer (presup-
posed the pair (A,C) is observable) without suffering from the
restrictions mentioned in Section III.D. However, an encrypted
implementation of the modified controller requires an external
(or internal) refresh of the control action u(k) in every time step.
While this is a significant drawback, it might be advantageous
over the approach in Section III.A if m� n.

1For s1 = 1, the conditions on the remaining scaling factors are, e.g., satis-
fied for s2 = s3 = s5 = s and s0 = s4 = s2.



IV. CONTROLLER APPROXIMATIONS WITH FIR FILTERS

From the existing approaches, the ones in Sections III.A and
III.B are dominated by cryptographic tools. In fact, in these ap-
proaches, the controller is not alternated apart from quantizations
during the integer reformulation. In contrast, Sections III.C,
III.D and III.E, take a more control-oriented viewpoint and the
controllers are specifically designed to fit into the framework of
HE. In this paper, we follow the latter methodology and present
another control-related approach. More precisely, we show that
FIR filter-based controller approximations are well-suited for en-
crypted dynamic control. To this end, we combine the obser-
vation that FIR filters are beneficial for encrypted control (see
Sect. III.D) with methods for the approximation of infinite im-
pulse response (IIR) dynamical controllers.

In this paper, a FIR filter-based controller is specified as

uf (k) =

N∑
j=0

F jy(k − j), (7)

where N ∈ N denotes the filter order. Under the assumption
that a dynamic controller of the form (1) is given, the first step
towards an encrypted realization with a FIR filter is the identi-
fication of suitable filter matrices F 0, . . . ,FN ∈ Rm×l. There
exist numerous methods to solve this task in the literature (see,
e.g., [18]). Here, we consider two schemes that turn out to be
useful and illustrative for our approach.

A. Window-based

One of the most basic methods to design a FIR filter is based
on windowing. To apply this technique here, we first recall the
well-known explicit formula

u(k) = CAkx0 +

k−1∑
j=0

CAjBy(k − 1− j) + Dy(k) (8)

for the control actions resulting from (1). Obviously, for k ≥ N ,
(8) can be rewritten as

u(k) = CANx(k−N) +

N−1∑
j=0

CAjBy(k− 1− j) +Dy(k).

Under the assumption that A is Schur stable, CANx(k − N)
is small for sufficiently large N . Hence, by neglecting this term,
we find u(k) ≈ uf (k) for the choice

F 0 := D and F j := CAj−1B ∀ j ∈ {1, . . . , N}, (9)

which corresponds to a (rectangular) window of length N . As
illustrated with the numerical example in Section VI, this FIR
filter parametrization already yields reasonable approximation
quality for moderate N if A is Schur stable. More com-
plex variants (such as [19]) even allow accounting for the term
CANx(k−N) more precisely. These techniques are, however,
beyond the scope of this paper.

−

Figure 2: Error dynamics considered in [20] for an optimal FIR
filter-based approximation of IIR filters. A user-defined weight-
ing of the exogenous input w can be specified by the transfer
function Gw.

B. Optimization-based

Since we are looking for as accurate as possible controller ap-
proximations, it is natural to include optimization-based meth-
ods. One such method, that deals with H∞-optimal FIR filter-
based approximations, is presented in [20]. Applying the method
requires a state-space representation of the FIR filter such as,
e.g.,

Af :=


0 · · · 0 0
I l 0 0

. . .
...

0 I l 0

 Bf :=


I l

0
...
0


Cf :=

(
F 1 · · · FN−1 FN

)
Df := F 0.

Next, the error dynamics in Figure 2 are considered, where the
user-defined weighting Gw is expressed via its state-space ma-
trices Aw,Bw,Cw and Dw. Clearly, if (1) takes the role of the
IIR filter, the error dynamics are described by

Ae :=

 Aw 0 0
BCw A 0
BfCw 0 Af

 Be :=

 Bw

BDw

BfDw


Ce :=((Df−D)Cw −C Cf ) De :=

(
(D + Df )D

)
.

Here, the key observation is that the approximation error depends
affinely on the FIR parameters Cf and Df (that have to be spec-
ified). Now, due to the well-known bounded-real lemma, the er-
ror bound ||e||∞ < γ holds for some γ ∈ R>0 if and only if
there exists a symmetric matrix P � 0 of suitable dimension
such that the linear matrix inequality A>e PAe − P A>e PBe C>e

B>e PAe −γI + B>e PBe D>e
Ce De −γI

 ≺ 0 (10)

is feasible [20, Thm. 1]. We briefly note that the result of the
approximation crucially depends on Gw. A useful choice, which
is recommended in [20], is a causal inverse of the IIR filter to be
approximated. We further note that (10) involves the condition
A>e PAe−P ≺ 0, which restricts the procedure to Schur stable
Ae and, hence, to Schur stable A.



V. BENEFITS FOR ENCRYPTED CONTROL

It turns out that FIR filters have several advantages when it
comes to an encrypted implementation. These will be pointed
out in the following.

A. Simplicity and efficiency of encryption

First, we focus on an integer-based reformulation of (7). Analo-
gously to (4) and (5), we easily find

vf (k) =

N∑
j=0

bs6F jebs7y(k − j)e (11)

and the recovery uf (k) ≈ vf (k)/(s6s7). Obviously, (11) does
not involve any recursions. As a consequence, scaling factors
are not accumulated. Moreover, vf (k) can be computed with
an arithmetic circuit of multiplicative depth 1. These features
enable simple and efficient encrypted implementations, which
do not require any kind of refreshments.

Concretely, we first note that a partial encryption of (11) can
be realized analogously to [7] or [11] using, e.g., the Paillier
cryptosystem. More interestingly, (11) supports an efficient full
encryption (i.e., of the control actions, controller parameters, and
plant outputs) using leveled HE. In particular, the constant (non-
accumulating) scaling factors allow choosing relatively small q
without suffering from overflows (of Zq). In combination with
the small multiplicative depth, this allows for efficient parameter
choices of the underlying LWE problem while maintaining se-
curity. We refer to [21] and the corresponding online tool2 for
details on the parameter-depending security of LWE-based lev-
eled HE.

B. Number of operations

We next compare the number of operations per time step that are
required to evaluate the dynamic controller (4) and the FIR Fil-
ter (11), respectively. One can easily deduce that evaluating (11)
requires lm(N+1) multiplications andm(N + l − 1) additions,
where we note that some operations can be saved for k < N if

y(j) = 0 for every j < 0 (12)

is assumed. A similar analysis for (4) is a bit more tedious, but
eventually yields (l+n)(m+n) multiplications and (l+n)(m+
n− 1) additions. With these relations at hand, it can be verified
that (11) requires fewer multiplications and additions than (4) if
the inequality

N < min

{
ln+mn+ n2

lm
,
ln+ n2− l − n

m
+ n+ 1

}
(13)

holds. This inequality often leaves a lot of freedom for design-
ing efficient FIR filters. For instance, we obtain N < 14 for
the dimensions of the example in Section VI. Now, one could
argue that the comparison is incomplete since only (4b) has to
be evaluated to obtain the current control action v(k) while (4a)

2https://bitbucket.org/malb/lwe-estimator

(and bs3Cez(k + 1)) could be computed in between the sam-
pling instances. However, a similar observation applies to the
FIR filter (11). In fact, the right-hand side in (11) can obviously
be written as

bs6F 0ebs7y(k)e+

N∑
j=1

bs6F jebs7y(k − j)e

and all but the first term can be computed before time step k.
Using these precomputations, both controllers require lm multi-
plications and lm additions at time step k.

C. Used information

The proposed FIR filter-based controller offers some similari-
ties to the approach summarized in Section III.C. In fact, among
all existing encrypted dynamic controllers, only these two re-
alizations do not require any internal or external refreshments.
Furthermore, both controllers only use a finite number of past
plant outputs y(j) with j < k. For the FIR filter, this number is
fixed to N by construction. For the reset controller, the number
is ∆k := kmodT , and it obviously reflects the periodic resets.
Using ∆k, the control actions resulting from (6) can be explicitly
stated as

ur(k) = CA∆kx0 +

∆k−1∑
j=0

CAjBy(k − 1− j) + Dy(k)

analogously to (8). Now, further similarities between the reset
controller (6) and the FIR filter (7) are revealed for the initializa-
tion x0 := 0, the parameterization (9), the assumption (12), and
the special choice N = T − 1. In fact, we then have ur(k) =
uf (k) for the first T steps, i.e., for every k ∈ {0, . . . , N}. More-
over, the control law is identical right before every reset, i.e., for
every k yielding ∆k = N . In all other time steps, the convo-
lution sum associated with ur(k) is truncated in comparison to
uf (k). In other words, in these time steps, the FIR filter-based
controller uses more information about the plant than the reset
controller. This should result in better control performance, as
confirmed by the following numerical example.

VI. NUMERICAL BENCHMARK

In order to illustrate the aforementioned benefits, we consider
the same example as in [11]. The example encompasses the con-
trol of a chemical batch reactor. The system dynamics can be
approximated based on a linear discrete-time state-space model
with the matrices

As =


+1.18 0.00 +0.51 −0.40
−0.05 0.66 −0.01 +0.06
+0.08 0.34 +0.56 +0.38
+0.00 0.34 +0.09 +0.85

 Bs =


0.00
0.47
0.21
0.21


Cs =

(
0 1 0 +0
1 0 1 −1

)
Ds = 0.

and a sampling period of ∆t = 0.1 [11, Eq. (33)]. We briefly
note that these dynamics are not trivial. In fact, the system is

https://bitbucket.org/malb/lwe-estimator


unstable and non-minimum phase in both outputs. Furthermore,
one can show that the system cannot be stabilized based on static
linear output feedback (see [11, Sect. IV] for details). A stabi-
lization can, however, be achieved with a dynamic controller as
in (1).

In [11], two reset controllers of the form (6) have been de-
signed to enable encrypted dynamic control. The first controller,
which we will denote by C1, is reset after T = 25 steps, whereas
the second controller C2 considers T = 8. The two controllers
(that are specified in [11, Eqs. (34)–(35)]) not only differ sig-
nificantly in terms of T . In fact, the controller state matrix A
is Schur stable for C2, while it is unstable for C1. As a conse-
quence, the two methods for the FIR filter-based controller ap-
proximation in Section IV can only be applied to C2. However,
we show that FIR filters exist that are able to compete with the
(better) performance of C1.

Before we design our FIR filter-based encrypted controllers,
we note that the dimensions of both C1 and C2 are l = 2, m = 1,
and n = 4. Hence, according to (13), a FIR filter requires fewer
operations than the original IIR controllers if the filter order N
is chosen smaller than min{14, 23} = 14. Now, inspired by the
observations in Section V.C, we first design a window-based FIR
filter that approximates C2 for the choice N = T − 1 = 7 and
obtain the filter matrices

F 0

F 1

F 2

F 3

=


−49.00 −2.33
+50.99 +0.17
−7.31 +0.04
−2.42 −0.02

,

F 4

F 5

F 6

F 7

=


+0.88 0.00
+0.03 0.00
−0.07 0.00
+0.01 0.00

.
Interestingly, (almost) the same matrices result for the
optimization-based approach using γ = 0.1 and a causal inverse
of C2 for Gw. This observation can be easily explained. In fact,
we find here CA7 ≈ 0, which implies that the window-based
method is nearly optimal for N = 7 (cf. Sect. IV.A). However,
using the optimization-based approach, we can construct a sat-
isfactory approximation of C2 with a significantly smaller order.
Indeed, by using γ = 0.06 and the same Gw as above butN = 2,
we find F 0

F 1

F 2

 =

−48.93 −2.33
+50.93 +0.17
−8.81 +0.04

 .

Finally, we note that the unstable controller C1 can likewise be
replaced with a low-order FIR filter of similar performance. A
suitable choice is, e.g.,F 0

F 1

F 2

 =

−17.54 −3.04
−4.44 −0.96

+17.60 −0.23

 .

Before addressing the encryption of the designed FIR filters, we
briefly investigate their control performance. As apparent from
Figure 3, all controllers stabilize the closed-loop system. More-
over, C2 and its window-based FIR approximation are indeed
identical for the first T = 8 steps. Finally, we observe the unfa-
vorable effects of the resets, which are not required for the FIR
filters.

Figure 3: 2-Norm of the system’s state controlled by re-
set controllers and FIR filters for the initial state xs(0) =

− (6.83, 5.18, 4.05, 3.12)
>. Dashed and dash-dotted lines mark

the resets for T = 8 and T = 25, respectively.

Now, as pointed out in Section V.A, one advantage of FIR fil-
ters is that they can be fully encrypted in an efficient fashion.
To confirm this feature, we implemented the window-based FIR
filter with N = 7 (i.e., the most complex one of our bench-
mark) using the leveled homomorphic BFV scheme introduced
in [4] from the PALISADE library [22]. We considered a ring
dimension of 256, one level, and q = 220. With these parame-
ters, we achieved real-time capability, i.e., computation times per
time step below the sampling period of 100 ms (on an Intel Xeon
E5-2620). Furthermore, we obtain a sufficient security level (of
approximately 80 bits) according to the estimator from [21].

VII. CONCLUSION AND OUTLOOK

In this paper, we showed that FIR filter-based approximations of
dynamic controllers are well-suited for an encrypted implemen-
tation. First, they do not suffer from limited operation times as
direct realizations of dynamic controllers do. Second, they come
with several additional benefits, such as a small multiplicative
depth. We illustrated their advantages with a numerical exam-
ple. Here, the simplicity of the FIR filter even allowed for a real-
time capable fully homomorphic implementation. Taking into
account that we only considered two simple FIR approximations
in this paper, future research has to address more complex FIR
filter-based controller designs and approximations.
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