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Power Injection Attacks in Smart Distribution Grids with Photovoltaics
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Abstract—In order to protect smart distribution grids from
intrusions, it is important to understand possible risks and
impacts of attacks. We study the worst-case attack strategy
of a power injection attack against the physical layer of a
smart distribution grid with a high penetration of photovoltaic
resources. We derive both the worst attack signal and worst
attack location: The worst attack signal is a step function which
switches its sign at the final stage, and the worst attack location
is the node with the largest impedance to the grid substation.
Numerical examples on a European benchmark model verify
the developed results. Finally, both theoretical and numerical
results are used to discuss feasible defense strategies against
power injection attacks.

I. INTRODUCTION

The integration of communication and computational ca-
pabilities of a cyber system, with a physical or engineered
system, results in a cyber-physical system (CPS). A typical
CPS would use the cyber layer and feedback loops to control
the physical layer [1]. CPS security has been a natural
and crucial consideration in recent years [2], [3], [4], [5].
The smart grid (SG), a traditional 20-th century power grid
augmented with sensors, actuators and cyber components, is
a typical class of CPS.

SG security is considered to be one of the most important
topics of CPS security research [2], [3], and has been
considered in e.g. [6], [7], [8], [9], [10]. The introduction
of a cyber layer into the power grid aids the grid operator in
regulating the power grid. However, cyber components also
create vulnerabilities for an attacker to exploit. One well-
known power grid security breach is the cyber attack on the
Ukranian power grid in 2015 that resulted in approximately
225 000 consumers losing power [11]. Though the attack
caused no operational impact on critical infrastructure, the
attack highlighted the importance of power grid security.

Power grids generally, and SGs specifically, have two
different functions: transmission and distribution. Due to the
need for clean energy resources, a common topic in SG
research is smart distribution grids with a high penetration of
photovoltaic (PV) resources. PV resources are often equipped
with direct current/alternating current (DC/AC) inverters with
variable reactive power generation, through which, the grid
operator can realize a control law. Voltage control in a smart
distribution grid with inverter-equipped PV resources has
been considered in [12], [13], [14]. One could realize many
different control laws through the inverters, and it is worth
noting that [12], [13], [14] use different control laws.
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In this paper, we study a power injection attack into a
branch of a smart distribution grid with a high penetration
of PV resources, which can be regarded as a deception
attack [5], targeted against the physical layer of the smart
distribution grid. In this scenario, the attacker has the capa-
bility to inject active and/or reactive power into the grid, but
the attack is constrained by a maximum attack magnitude
and a maximum attack length. The attacker’s objective is
to achieve maximal voltage deviation by injecting power
into the grid in order to force the grid operator to shut
down some part of the grid. On the other hand, the grid
operator can use the inverters of the PV resources to regulate
the produced reactive power, which in turn can be used to
regulate voltage levels in the grid in order to counteract the
attack. Our objective is to investigate the impact caused by
the worst attack scenario, and from that, draw conclusions
about viable defense strategies. Characterizing the worst
case attack scenario is an important step of risk analysis
and mitigation. Due to the importance of security in smart
distribution grids, problems such as attack detection, secure
grid design, and grid reconfiguration need to be considered.
A foundation for such considerations is an understanding of
the worst case attack scenario of a deception attack against
the physical layer of a smart distribution grid.

Our main contributions in this paper are twofold: First, we
derive an explicit expression of the worst case attack, and
we specify the most vulnerable point of an arbitrary smart
distribution grid with radial (i.e. tree-structured) topology.
The worst case attack signal for a finite-time attack is on the
form of a step function whose sign switches at the final attack
stage. The most vulnerable node in a radial grid is the node
with the largest impedance to the substation. Second, the
obtained results help motivate effective defense strategies.
For a given voltage deviation, it is difficult in general to
determine if the deviation is caused by the worst case attack
scenario, or by normal grid operation. Hence, we focus our
discussion on defense strategies on grid design and grid
reconfiguration algorithms.

There are a number of works studying attacks against the
cyber layer in the context of SGs. Recent papers have pro-
posed many analysis approaches, for example deep learning
[15], model-based diagnosis [16], [17], and reinforcement
learning [18]. We provide an analysis of attacks from a
physical layer perspective, which coupled with existing ap-
proaches yields additional insights into attack detection, grid
design, and grid reconfiguration.

The paper is organized as follows. In Section II, a model
of the grid is derived and a formal problem statement is
presented. In Section III, the grid model is used to analyze



the worst-case attack strategy. In Section IV, our results are
verified with numerical examples, and the defender’s per-
spective is briefly considered. We conclude with Section V.

Notation. The N-dimensional identity matrix is denoted
by Iy, and define the ¢-th basis vector e; as the i-th
column of Iy. A diagonal matrix with diagonal elements
{dy,...,dy} is denoted by diag(dy, . . ., d). The superscript
“T” denotes the transpose of a vector or a matrix. [M]; ;
denotes the element on row ¢ and column j of the matrix
M. Denote M > 0 (M < 0) if M is a symmetric positive
definite (negative definite) matrix. The function sign(-) de-
notes the sign function. The imaginary unit is denoted by
7. The real and imaginary parts of a complex number z are
denoted by Re(z) and Im(z), respectively.

II. MODEL DESCRIPTION AND PROBLEM FORMULATION

In this section, we present a model of the grid, present the
considered attack scenario, and finally present a mathemati-
cal problem formulation.

A. Model Description

Consider the smart distribution grid illustrated in Fig. 1; a
substation feeds consumers ¢ € {1,2,..., N} who all have
PV resources. This grid topology is a special case of a radial
grid: a tree-structured grid without branching points. The grid
in Fig. 1 is referred to as a line grid. Consumer ¢ is connected
to the main feeder through a line with impedance Z;_;, and
the main feeder has impedance Z; between each consumer
i — 1 and consumer ¢’s connection points. It is assumed
that R; := Re(Z;), R, := Re(Z]), X; := Im(Z;), and
X! := Im(Z]) are positive for all impedances. Active and
reactive powers flowing in the main feeder are represented
by P; and @;, respectively. All consumers consume constant
reactive power ¢, ; and use a PV resource with an associated
inverter. It is assumed that the inverter generates constant
active power p; and variable reactive power g, ;. Define p;
and g4; to have positive sign when flowing out from the
consumer, and define ¢, ; to have positive sign when flowing
towards the consumer. The attacker could inject active power
ap; and reactive power ag; at any of the N consumer
connection points. The attack scenario considered in this
paper is described in detail in Section II-C.

The linearized DistFlow model in [19] is used for describ-
ing power flow and voltage drop. The model is based on two
fundamental concepts: one for nodes, and one for edges in
the grid. For nodes, the net apparent power in each node must
be 0, and for edges, the voltage drop across an impedance is
proportional to the power that flows through it. This yields
the equations

Py =P+ piy1 + apita,
Qiv1 = Qi +qg,it1 — Geyit1 + Agiv1,
U/?H = v’? —26,(P;, Qi),

v =0 + 281 (pis1, Qg1 — deisr),

where B;(r,s) := R;r + X;s for i € {0,1,...,N — 1} and
Bi(r,s) == Rir + X|s for i € {1,2,..., N}. Furthermore,
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Fig. 1. A line grid with N consumers where each consumer has a

PV resource. The grid could be attacked at the connection point of any
consumer.

it is assumed that the reference voltage v is known by all
inverters, and that v}, = .

Now consider the inverter dynamics. A quadratic droop
controller can be used as a control law for a PV resource
in a smart distribution grid. The quadratic droop controller
was first proposed by [20], and later modified and used in
a smart distribution grid by [14]. However, while a slope-
restriced droop controller was considered in [14], we assume
a simplified quadratic droop controller with pure integral
control dynamics

Gg.i = —FK;(v? — 5%, )

where K; > 0 denotes the inverter gain. Normally, the term

proportional to the generated reactive power ——gqq ;, Where
7 is the time-constants of the inverters, is also included in (2).
However, this term has been neglected here for simplicity; in
other words, it is assumed that the inverters have large time
constants.

Next, combine the equations in (1) and (2) into a state
space model. By introducing the output variable y; := v —
v%,i € {1,2,..., N}, and y as the column vector of y;, the
system can be rewritten as

q'g = Ky, 3)
y=Rp—X'q.+ X'qy + Ra, + Xay,
where  p,qc,q4,a,,a4 denote the column vectors

that collect all their respective scalar quantities and



K := diag(—Ki,...,—Kx). Define X, X', R and R’ as

2X0 2X0 2*XvO
2Xo 2(X0+X1) 2(X0+X1)
Xi=| L @
N—-1
2Xo 2(Xo+ Xy) 23 X;
=0

with X’ := X + 2 diag(Xy,..., Xy_;), and R and R’ are
defined in a similar manner. Let the attack vectors a, and
aq be the inputs and g4 be the state vector.

B. Assumptions on the Model

We now introduce some assumptions.
Assumption 1: i)

&Y

1) All impedances in the grid satisfy % = & =m,

where m is a constant. '

2) X]= R}, =0, which implies X’ = X, R’ = R.

A few remarks on Assumption 1 are in order. In a real-
world setting, i) states that the same type of cable is assumed
to be used in the entire system. In a practical scenario, one
would indeed expect that all consumers in a neighborhood
are connected at the same time, and it would be practical
to use a single type of cable for the entire construction
project; hence the assumption would likely hold. Moreover,
the assumption approximately holds in the benchmark Euro-
pean low voltage distribution grid in [21]. Additionally, the
assumption implies R = m.X. Regarding ii), the impedance
Z! would often represent the impedance of the cable from
the edge of the property to the building. In that case, it
is reasonable to assume that this cable would be short in
comparison to the cables in the rest of the grid, and hence
that the impedance from that cable is negligible.

By only considering deviations from the system’s equi-
librium, the terms involving p and ¢. can be disregarded
because they are constant. Moreover, applying Assumption 1
to (3) yields the simplified state space model

g = KXqy+ KXa,
y=Xqg+ Xa,

(&)

where a = ma, + aq.
C. Attack Scenario

The attack scenario considered is a power injection attack,
where an attacker could target any of the N consumer
connection points and inject active power a,, ;(t) and reactive
power ag;(t). It is assumed that the magnitude of the attack
is bounded for all ¢ by |a,,i(t) + jag.:(t)| < C, where C'is
a constant. Moreover, it is assumed that the attack can only
be non-zero for ¢t € [0,7] for some time 7, and that it is 0
for all other times.

There are many ways to implement this attack scenario.
All power generation units have a rating which can serve as
a maximum bound C. Moreover, both PV electronics and
electric generators, such as synchronous motors, can control
the ratio of generated active and reactive power. Hence, all
that is needed to implement a power injection attack is to
connect a PV resource or a motor to a power grid.

D. Problem Formulation

In order to analyze the worst-case attack scenario, we
consider the following formal problem formulation. The
worst attack against a line grid under the attack scenario
characterized in Section II-C is given by the optimization
problem

argmax  [|yilloc
’ N
subject to > |a,i(t) + jag.(t)| < C, (6)
i=1
a;j(t) =0,j #1i,
tel0,T]

where ||y;||co denotes the L..-norm of y; on the interval ¢ €
[0, T]. The optimization problem describes a situation where
the attacker wants to cause maximal voltage deviation with
an attack at one node in the finite time interval ¢ € [0, 7],
while constrained by a maximum attack magnitude C.

By solving the optimization problem (6), the following
questions can be considered. 1)

1) What is the worst-case attack profile a(t),t € [0,77]?

2) What is the most vulnerable point in a line grid?

3) What is the most vulnerable point in a radial grid?
Question i) is answered in Section III-B, question ii) is
addressed in Section III-C, and finally, question iii) is an-
swered in Section III-D. Numerical examples are presented
in Section IV-A. Together, the attack analysis and numerical
examples inform a discussion on defense strategies for the
grid operator, which is addressed in Section I'V-B.

IIT. ATTACK ANALYSIS

This section deals with the three main points of this paper:
the worst attack signal, the worst attack location in a line
grid, and the worst attack location in a radial grid.

A. Definiteness of Matrices

We represent y(t) in convolution form as y(t) = (g*a)(t),
where g(t) := XeXX! K X + §(t)X is the system’s impulse
response, a(t) is the attack signal, and 6(¢) denotes Dirac’s
delta function. We are primarily interested in |y;(T)|, for
some final attack time 7", which is given by

lyi(T)| = le] y(T)|
T
/ eZ-TXeKX(T*T)KXa(T) + eiTé(T —7)Xa(r)dr|,

0
)

where the second term only depends on time 7 = 7, and
not previous times 7 € [0, 7). Recall that a;(7) = 0 for all
times if j # 4; in other words that a(7) = e;a;(7).

To draw conclusions about |y;(T)|, we note some proper-
ties of the constituent matrices. Since K is a diagonal matrix
with negative elements, it is negative definite. We can note
similar properties in the matrices X and R.

Proposition 2: X and R are positive definite.

Proof: The proposition follows as a special case of
Lemma 1 in [22], since a line grid is a special case of a
radial grid. [ ]




Using Proposition 2, we can draw some conclusions about
g(1).
Proposition 3: The function ¢(t) is negative definite for
any t > 0.
Proof: Begin by introducing a change of basis into
(5 with z = L7'q, <= ¢, = Lz, where
L™1:= diag(Kl_l/Q, e ,K;,l/z). Now, g(t) can be rewrit-
ten as g(t) = —XLe FXLX. We want to show that
vig(tw = —wTe EXIty < 0, with w := LXv. Hence
we only need to show that e"LXZt ~ (. By definition,
L is symmetric and positive definite, hence LXL > 0.
Moreover, it is possible to diagonalize the exponential factor
as UTe MU, where U is an orthogonal matrix and A is a
diagonal matrix. We now see that e~** = 0, which since
t > 0 implies e~ XLt » (. [

B. Worst Attack Signal

In this subsection, we investigate the worst-case attack
signal by considering |y;(T")| in convolution form, as given
in (7).

The attacker is interested in finding: i) the worst-case
attack profile a(t), and ii) the ¢ that gives the maximum
voltage deviation. We begin by considering how to choose
a,(t) and a4(t) such that a(t) is maximized.

Lemma 4: Given Assumption 1 and the assumption that
the attackers resources are bounded by |a,(t) + a4(t)] < C,
the maximum attack signal a(t) = ma,(t) + aq(t) for any
t € [0,T] is time-independent and given by

a,(t) = C cos (arctan ;) ,
)

1
aq(t) = C'sin <arctan —

Proof: Consider the solution to the optimization prob-

lem
arg max  ma,(t) + aq(t),
0 (0)s2q (1) )
subject to a,(t)? +aq(t)?< C,

for a given t. It is clear that (9) is maximized when
Va,(t)? 4+ a4(t)?= C. Hence, (9) can be reduced to a
single variable optimization problem by introducing polar
coordinates with a,(t) = Ccosy and a4(t) = Csing,
where equality in the constraint holds for all real ¢. The
solution to this single variable optimization problem is given
by ¢ = arctan %, which yields the desired expression. MW
With the knowledge of which a,(t) and aq(t) that max-
imize a(t) for any t € [0,T], we are now ready to answer
the first question on the worst-case attack profile a(t).
Theorem 5: Assume that |a(t)] < Cp. Then, one worst-
case finite-time attack signal during ¢ € [0, 7] is given by

Co,f, S [O,T),
alt) = {—CO t="T

Proof: We begin by noticing that |a(¢)| is indeed
bounded for some Cj; this follows by substituting a,,(t) and
aq(t) from Lemma 4 into a(t) = ma,(t) + aq(t).

Now, consider (7). Notice that its maximum is found if
both right hand side terms have the same sign. Since X
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Fig. 2. A worst-case attack signal for a finite-time attack during t €

[0,T]. The figure shows one of two worst-case attack profiles a(t), the
other possibility is the negated —a(t).

only has positive elements, the second term has the sign
of a(T). From Proposition 3, it follows the first term has
the sign of —a(t). Hence, in order to maximize their sum,
sign(a(t)) = —sign(a(T)) for any ¢ € [0,7T). This implies
an attack that switches its sign at the final attack stage.

Finally, note that in order to maximize |y;(¢)|, we require
la(t)] = Cp at all times ¢ € [0,7]. Since the sign of a(t)
does not impact the magnitude of the voltage deviation, we
can assume a(t) > 0, and remember that —a(t) gives a
voltage deviation with identical magnitude. These arguments
combined imply the desired attack signal. [ ]

The intuition behind this result is that the system is
monotonically driven away from the original equilibrium by
a constant maximum amplitude attack at times ¢ € [0,7") due
to Proposition 3. Due to this monotonicity, flipping the attack
sign at t = T" becomes the worst-case attack. The worst-case
attack a(t) from (10) is visualized in Fig. 2. Because —a(t)
gives a voltage deviation of identical magnitude, the negation
of (10) is an equally severe attack.

Now, we have reached our first main conclusion: The
worst-case attack signal is given by Theorem 5.

C. Worst Attack Location in a Line Grid

We are now ready to answer the second question regarding
the worst attack location in a line grid.

Theorem 6: The worst attack location in a line grid at the
first and final attack stages t € {0,7} as T — oo is at
node V.

Proof: Consider the voltage deviation at times ¢t =
{0,T} as T — oo and assume the attack is the worst
case attack signal from (10) in Theorem 5. Evaluate the
convolution integral in (7) at time ¢

lyi(t)] = Coe] X(—KX) ™' (In — e"¥") KXe;+Coe Xe;,
1D

where the subscript ¢ that maximizes y; is sought. By
definition, the largest element of the matrix X is [X]|n,n,
which implies that the second term is maximized by i = N.
For the first term, consider both ¢ = 0 and ¢t = T as
T — oo. If t = 0, then Iy — 5%t = 0, which implies
i = N maximizes |y;|. In the case of t = T as T — oo,
then Iy — XXt — I, which yields |y;| = 2Ce] Xe;, and
i = N maximizes |y;| again. Thus, it has been shown that
i = N produces the largest voltage deviation for the first and
last attack stages. [ ]



This result is intuitively reasonable. If the attack is targeted
against the first node, then the injected power flows through
Zy, which causes the voltage to deviate from the previous
equilibrium. The further away from the substation, the more
severe the attack will be, since each additional impedance
further increases the deviation from the equilibrium.

Remark 7: 1t is difficult to say anything in general about
the worst attack location for times ¢ € (0,7") because this
depends on impedances in the grid, as well as the inverter
dynamics given by ;. This will be illustrated later in Fig. 3,
where an attack at node N produces the largest deviation at
times ¢t € {0, T}, but not at all times in between.

Remark 8: For a line grid, the voltage deviation of the
worst case attack from Theorem 5 is proportional to the

N-1
electrical distance to that node; |yn(t)] < > X; for

t € {0,T}. The constants of proportionality are SC when
t=0,and 4C whent =T as T — oc.

Now, we have reached our second main conclusion: The
node furthest from the substation in a line grid, node N, is
the most vulnerable node.

D. Worst Attack Location in a General Radial Grid

In this section, we extend the result of Theorem 6 to a
radial grid. We will prove the intuitively reasonable result
that the most vulnerable node in a radial grid is the node
with the largest electrical distance to the substation. While
the extension might seem trivial, recall that the grid model
in (1), and hence all theorems thus far, only apply to line
grids, and not to radial grids. However, note that the grid
between two branching points in a radial grid can be seen as
a line grid. This insight, coupled with the conclusion from
Remark 8, enables us to extend the result of Theorem 6 to
a general radial grid topology.

Now, we are ready to answer the third question on the
most vulnerable node in a radial grid.

Theorem 9: Consider a radial grid topology and assume
that the attacker uses the worst-case attack signal in (10).
Then the most vulnerable node is the node with the largest
impedance to the substation.

Proof: Recall that a radial grid can be seen as a
collection of line grids and branching points. Here, we use
the term “node” to denote a line grid within the radial grid.
Begin by numbering all nodes in the tree, starting with
the root node (which includes the radial grid substation)
as node ¢ = 0. Then, for all nodes, introduce the triple
T, = (Tiq,Ti2,Ti3) = (4,3, imax), Where imx denotes
the most vulnerable node in the sub-tree to which node 4
is the root node, and ¥; denotes the vulnerability of the
node, which is specified below. Notice that at the leaf nodes,
the triple is Ty = (N, Xy, N), with Xy as the maximum
electrical distance within the node due to Remark 8. We will
prove this theorem using a recursive approach starting from
the leaf nodes, since Ty is known for all leaf nodes.

Now let node ¢ be any node in the tree except for the
root node, and let node j be its parent. Moreover, assume
that T; is known. Notice that node j can have & number of

TABLE I
BENCHMARK MODEL PARAMETERS FOR A LINE GRID WITH N = 5.

i 1 2 3 4 5
R;_1 [©2] 0.00343 0.00172 0.00343  0.00515 0.00172
X;—1 (€] 0.04711 0.02356  0.04711  0.07067  0.02356
R;_, [Q] 000147 0.00662 0.00147 0.00147  0.00147
X/_,[€Q] 002157 0.09707 0.02157 0.02157  0.02157

K; [s] 1 1 1 1 1
pi [W] 1205 -60 1440 2205 280
Ge,i [VAr] 300 960 480 600 400

children, one of which is node 7. If k¥ = 1 for all nodes in
the grid, all nodes can be combined into a single line grid,
which results in a trivial extension of Theorem 9. On the
other hand, consider the case that k& = 1 for some nodes.

If & # 1, then first consider how to choose the most
vulnerable of the k branches. Let the set of child nodes
to node j be given by S;. := {Tk}. Then, the triple
associated to the most vulnerable node in Sji is given by

Thax := T}y, where m is given by m = arg max T, o. Due
Tm€Sjk
to Remark 8, the maximum voltage deviation of the most

vulnerable branch is proportional to T}, ». Hence, the triple
for node j is given by T; = (J, £ + Tmax,2, Tmax,3)-

By applying this argument recursively starting with the
leaf nodes, the triple at the substation will be Ty =
(0,30, “max,grid)> and the most vulnerable node in the grid is
then known through 4 grig. Moreover, it will be the node
with the largest electrical distance to the substation due to
the back propagation of X. [ ]

Now, we have reached the final main conclusion: In a
grid with radial topology, the node with the largest electrical
distance to the substation is the most vulnerable.

IV. SIMULATIONS AND DISCUSSION

In this section, we provide numerical examples and discuss
defense strategies for the grid operator; in Section IV-A
we verify our theoretical results, and defense strategies are
discussed in Section IV-B.

A. Verification of Theoretical Results

In this subsection, we provide numerical verification of
our results on a benchmark residential European low voltage
distribution network from [21], which was also used in
[14]. The grid is a line grid with N = 5, where grid
parameters from [14] have been used, and the simplified
droop controller is assumed to have K; = 1 for all i, see
Tab. L. Since R;/X; = R,/X! =~ m for all i, the system (5)
is considered, and it is assumed that a, and a, are given
by Lemma 4. Additionally, C' = 1000 is assumed to be
the attacker’s maximum attack strength. With these model
parameters, two comparisons have been made: a comparison
between different attack signals, and between different attack
locations, see Fig. 3.

The impact of different attack signals have been compared
in Fig. 3a: the worst case attack signal from (10), a sinusoid
signal, a ramp signal, and a step function have been com-
pared. The maximum quadratic voltage deviation y(¢) for
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Fig. 3. Comparison of different attack scenarios. Top compares different

attack signals, and bottom compares different attack locations.

node N = 5 has been considered, and all compared signals
have the same maximum amplitude C' = 1000. The derived
worst case attack signal from (10) is clearly the worst of
the considered attack signals; at 7' = 4 s, switching occurs
and the voltage deviation increases. On the other hand, if
the switching occurs quickly, for small 7', then the system
will still be close to its original equilibrium. Therefore, a
fast switching will result in a voltage deviation of a similar
magnitude as that of the initial attack at ¢ = 0.

The impact of attacks at different nodes has been com-
pared in Fig. 3b. As expected, the worst case attack location
is the N-th node. Notice that between times 0 and T, it
is difficult to say anything about the node with the largest
voltage deviation; right before ¢ = 4, node ¢ = 3 gives
the largest voltage deviation. This is the reason why only
times t = {0,7'} are considered in Theorem 6; depending
on impedances in the grid, and time parameters K, differ-
ent nodes will have different voltage deviations for times
te (0,7).

B. Defense Strategies

In this subsection we provide a brief discussion on possible
defense strategies for the grid operator.

Firstly, consider the impact of p and ¢. on voltage de-
viation, see Fig. 4. The line grid considered is the simple
scenario where N = 1. All other parameters are chosen
to illustrate a fundamental problem for the grid opera-
tor: in general, without additional assumptions on available
measurement data or PV specifications, it is difficult to
distinguish the worst case attack from normal grid operation.
This problem would be common in a real-world setting, since
many household items draw near-constant power once turned
on (e.g. microwaves, stoves or electric vehicles), and hence
their power consumptions are on the form of step functions.
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Fig. 4. Shows that it is difficult to distinguish normal behavior from an
attack; normal behavior result in changes in p and g, whose impact on the
voltage deviation is equivalent to an attack.

While assuming an upper bound on p and ¢, might be useful
to design a detector, such assumptions might yield additional
issues in practice: electric vehicles require large amounts of
power when charging; therefore, an upper bound on power
consumption might be too large to be practically useful in a
detection algorithm.

Due to the difficulty of attack detection, a detector will
not be derived in this paper. Instead, we focus on grid
reconfiguration algorithms and grid design.

We begin by considering grid design. Based on the anal-
ysis in Theorem 9, power injection attack resilient radial
distribution grids should minimize the electrical distance
between the substation and consumers. In addition, in order
to cope with attacks, the grid should be designed with
flexibility so that grid reconfiguration algorithms are possible
and effective.

Grid reconfiguration is a difficult problem which has been
studied in e.g. [23], [24], [25]. A common approach is to
consider an objective function that minimize resistive losses
in the grid. In order to minimize power injection attack
vulnerability in a radial grid, the maximum electrical distance
needs to be minimized according to Theorem 9. Two intuitive
approaches to incorporate the conclusion from Theorem 9
into existing research are: either adding a second objective
function that minimizes electrical distance, or to minimize
the maximum electrical distance in the grid instead of
minimizing resistive losses. At a glance, the latter approach
could be approximately equivalent to the existing objective
function, since reducing the electrical distance likely reduces
resistive losses in the grid as well.

V. CONCLUSION

In this paper, we have considered the problem of an attack
against the physical layer of a smart distribution grid. We
reached three main conclusions: the worst-case finite-time
attack signal is given by a step function that switches its
sign at the final time of the attack, and the worst attack
location in both a radial grid and a line grid is at the
node with the largest electrical distance to the substation.



Moreover, we have argued that detection of the worst case
attack is very difficult with access only to voltage levels
in the grid. Hence, we conclude that grid design and grid
reconfiguration algorithms need to be considered in order
to mitigate the severity of power injection attacks. Further
research is needed to incorporate attack resilience against
power injection attacks into grid reconfiguration algorithms.
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