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Abstract— The design of provably correct controllers for
continuous-state stochastic systems crucially depends on ap-
proximate finite-state abstractions and their accuracy quantifi-
cation. For this quantification, one generally uses approximate
stochastic simulation relations, whose constant precision limits
the achievable guarantees on the control design. This limitation
especially affects higher dimensional stochastic systems and
complex formal specifications. This work allows for variable
precision by defining a simulation relation that contains mul-
tiple precision layers. For bi-layered simulation relations, we
develop a robust dynamic programming approach yielding a
lower bound on the satisfaction probability of temporal logic
specifications. We illustrate the benefit of bi-layered simulation
relations for linear stochastic systems in an example.

I. INTRODUCTION

Stochastic difference equations are often used to model the
behavior of complex systems whose uncertainty is relevant,
such as autonomous vehicles, airplanes, and drones. In this
work, we are interested in automatically designing controllers
for which we can give guarantees on the functionality of
stochastic systems with respect to temporal logic specifica-
tions such as (sequential) reach-avoid specifications. Such
automatic control synthesis is often referred to as correct-
by-design control synthesis. To apply these formal synthesis
methods on continuous state systems, a finite-state abstrac-
tion of the original continuous-state model is commonly used
[1].

Abstraction-based control synthesis methods work well for
most stochastic systems [11], [13], [14], [22], [23]. However,
for higher dimensional systems and more complex specifi-
cations, such as specifications with a tight labeling and a
long time horizon, we cannot synthesize controllers that yield
a high satisfaction probability. Approaches that can handle
these more complex specifications such as [4], [5] impose
restrictions on the used model classes and are subject to the
curse of dimensionality. On the other hand, approaches that
can handle more general model classes and allow for model
order reduction to mitigate the dimensionality curse yield
conservative lower bounds on the satisfaction probability for
this type of complex specifications. For more general model
classes, one can use approximate simulation relations [8] that
quantify the abstractions via both probabilistic deviations
and output precision. Using these simulation relations, the
abstraction accuracy can be quantified with high output preci-
sion and large probabilistic deviations for tight specifications
over a short horizon and with low probabilistic deviations
and low output precision for long-horizon specifications.
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However, as long as these methods are considering a con-
stant simulation relation and hence a constant abstraction
accuracy, they will yield conservative results for complex
specifications. Instead, in this paper, we investigate varying
abstraction accuracy by layering simulation relations for tight
specifications with large time horizons.

For deterministic systems there exist methods that con-
struct a non-uniform abstraction grid [15], [18]. More specif-
ically, they give an approximate bisimulation relation for
variable precision (or dynamic) quantization and develop
a method to locally refine a coarse abstraction based on
the system dynamics. Furthermore, for deterministic systems
there also exist methods known as multi-layered abstraction-
based control synthesis. They focus on maintaining multiple
abstraction layers with different precision, where they use
the coarsest abstraction when possible [2], [3], [7], [10].
For stochastic models, non-uniform partitioning of the state
space has been introduced for the purpose of verification
[16] and for verification and control synthesis in the software
tools FAUST2 [17] and StocHy [4], [5]. The latter builds on
interval Markov decision processes.

In this paper, a first step is made towards allowing variable
precision by presenting a simulation relation that contains
multiple precision layers. For simulation relations with two
layers, we develop a robust dynamic programming approach
such that we can compute a lower bound on the satisfaction
probability of complex specifications.

In the next section, we discuss preliminaries and formulate
the problem statement for a general class of nonlinear
stochastic difference equations. Section III, details the cur-
rent constant precision method and defines the multi-layered
simulation relation for variable precision. The following
section discusses dynamic programming to compute the
corresponding satisfaction probability. The implementation
of the multi-layered method for linear time-invariant systems
and an illustrative example are given in Section V.

II. PROBLEM FORMULATION

In this work, the Borel measurable space of a set X ⊂
Rn is denoted by (X,B(X)), with B(X) the Borel sets. A
probability measure P over this space has realization x ∼ P,
with x ∈ X. Furthermore, a time update of a variable x is
interchangeably denoted by x(t+ 1), xt+1 or x+.

A. Preliminaries
Model. In this work, we consider discrete-time systems

described by a stochastic difference equation

M :

{
x(t+ 1) = f(x(t), u(t), w(t))

y(t) = h(x(t)), ∀t ∈ {0, 1, 2, . . . } , (1)
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with state x(t) ∈ X, input u(t) ∈ U, disturbance w(t) ∈W,
output y(t) ∈ Y and with measurable functions f : X ×
U ×W → X and h : X → Y. The class of all stochastic
difference equations (1) with the same metric output space
(Y,dY) is denoted as MY. The system is initialized with
x(0) = x0 ∈ X and w(t) is an independently and identically
distributed signal with realizations w ∼ Pw.

A finite path of the model is a sequence ωt :=
x0, u0, x1, u1, . . . , xt. An infinite path is a sequence ω :=
x0, u0, . . .. The paths start at x0 = x(0) and are build up
from realizations xi+1 = x(i+ 1) based on (1) given a state
x(i) = xi, input u(i) and disturbance w(i) for each time step
i. We denote the state trajectories as x = x0, x1, . . . , with
associated suffix xt = xt, xt+1, . . . . The output yt contains
the variables of interest for the performance of the system
and for each state trajectory there exists a corresponding
output trajectory y = y0, y1, . . . .

A control strategy is a sequence µ = (µ0, µ1, µ2, . . . ) of
maps µi(ωt) ∈ U that assigns for each finite path ωt an
input ut. The control strategy is a Markov policy if µt only
depends on xt, and it is stationary if the policies µt do not
depend on the time index t. In this work, we are interested in
control strategies denoted as C that can be represented with
finite memory, that is, policies that are either time stationary
Markov policies or have a finite internal memory.

Specifications. To express reach-avoid specifications, we
use the syntactically co-safe linear temporal logic language
(scLTL) [1], [12]. This language consists of atomic proposi-
tions p1, p2, . . . pN that are true or false. The set of atomic
propositions and the corresponding alphabet are denoted by
AP = {p1, . . . , pN} and Σ = 2AP , respectively. Each
letter π ∈ Σ contains the set of atomic propositions that
are true. A (possibly infinite) string of letters forms a word
π = π0, π1, . . . . The output trajectory y = y0, y1, . . . of a
system (1) is translated to the word π = L(y0), L(y1), . . .
using labeling function L : Y → 2AP that translates each
output to a specific letter πt = L(yt). Similarly, suffices
yt are translated to suffix words πt. By combining atomic
propositions with logical operators, the language of scLTL
can be defined as follows.

Definition 1 (scLTL syntax): An scLTL formula φ is de-
fined over a set of atomic propositions as

φ ::= p | ¬p |φ1 ∧ φ2 |φ1 ∨ φ2 | © φ |φ1 ∪ φ2, (2)

with atomic proposition p ∈ AP . �
The semantics of this syntax can be given for the suffices
πt. An atomic proposition πππt |= p holds if p ∈ πt, while
a negation πππt |= ¬φ holds if πππt 6|= φ. Furthermore, a
conjunction πππt |= φ1∧φ2 holds if both πππt |= φ1 and πππt |= φ2

are true, while a disjunction πππt |= φ1 ∨ φ2 holds if either
πππt |= φ1 or πππt |= φ2 is true. Also, a next statement πππt |=©φ
holds if πππt+1 |= φ. Finally, an until statement πππt |= φ1 U φ2

holds if there exists an i ∈ N such that πππt+i |= φ2 and for all
j ∈ N, 0 ≤ j < i we have πππt+j |= φ1. A system satisfies a
specification if the generated word π0 = π = L(y) satisfies
the specification, i.e., π0 |= φ.

B. Problem statement

Correct-by-design control synthesis focuses on designing
controller C, for model M and specification φ, such that the
controlled system M ×C satisfies the specification, denoted
as M ×C |= φ. For stochastic systems, we are interested in
the satisfaction probability, denoted as P(M × C |= φ).

Problem. Given model M as in (1), an scLTL specification
φ and a probability p ∈ [0, 1], find a controller C, such that

P(M × C |= φ) ≥ p. (3)

III. MULTI-LAYERED SIMULATION RELATIONS

Consider a continuous-state model as given in (1), approx-
imated with the following discrete-state abstract model

M̂ :

{
x̂(t+ 1) = f̂(x̂(t), û(t), ŵ(t))

ŷ(t) = ĥ(x̂(t)),
(4)

with state x̂ ∈ X̂, initialized by x̂(0) = x̂0 and with input
û ∈ Û, output ŷ ∈ Y and disturbance ŵ ∈W. The functions
f̂ : X̂ × Û × W → X̂ and ĥ : X̂ → Y are assumed to
be measurable. Furthermore, ŵ(t) is an independently and
identically distributed signal with realizations ŵ ∼ Pŵ.

A. Stochastic simulation relations

To give guarantees on the satisfaction probability we need
to quantify the similarity between the two models. This
quantification is performed by coupling the transitions of the
models. First, the control inputs u and û are coupled through
an interface function denoted as

Uv : Û× X̂× X→ U. (5)

Next, the probability measures Pw and Pŵ of their distur-
bances w and ŵ are coupled.

Definition 2 (Coupling probability measures): A
coupling [6] of probability measures Pw and Pŵ on the same
measurable space (W,B(W)) is any probability measure
W on the product measurable space (W ×W,B(W ×W))
whose marginals are Pw and Pŵ, that is,

W(Â×W) = Pŵ(Â) for all Â ∈ B(W)

W(W×A) = Pw(A) for all A ∈ B(W). �
More information about this state-dependent coupling and
its influence on the simulation relation can be found in [8],
[20]. Consider now the resulting coupled transitions x(t+1)
and x̂(t+ 1) based on respectively (1) and (4), a measurable
interface function Uv (5), and a measurable stochastic kernel
W(·|x̂, x, û). The combined stochastic difference equation
can then be defined as

M̂‖M :


(
x̂t+1

xt+1

)
=

(
f̂(x̂t, ût, ŵt)

f(x(t),Uv(ût, x̂t, xt), wt)

)
yt = h(xt)

(6)

with states (x̂, x) ∈ X̂×X, input û ∈ Û, coupled disturbance
(ŵ, w) ∼ W(·|x̂, x, û) and output y ∈ Y. Furthermore, in [9]
it is shown that for any controller for this system there exists
an equivalent controller for the original system (1). Given
this coupled stochastic difference equation, we can analyze



how close the transitions are. Suppose that you are given a
simulation relation R ⊂ X̂×X, then for all states inside this
relation, (x̂, x) ∈ R and for all inputs û ∈ Û we can quantify
a lower-bound on the probability that the next state (x̂+, x+)
is also inside this simulation relation, i.e. (x̂+, x+) ∈ R.
Hence, for all states (x̂, x) ∈ R we require that

∀û ∈ Û : (x̂+, x+) ∈ R (7)

has a lower-bound on its probability denoted by 1− δ given
the transitions in (6). To quantify the similarity between the
stochastic models M (1) and M̂ (4), we follow [8], [20] and
consider an approximate simulation relation.

Definition 3 ((ε, δ)-stochastic simulation relation): Let
the models M and M̂ in MY with metric output space
(Y,dY), and the interface function Uv (5) be given. Suppose
that there exists a Borel measurable stochastic kernel W
that couples Pw and Pŵ and there exists a measurable
relation R ⊆ X̂ × X such that (x̂0, x0) ∈ R and such that
for all (x̂, x) ∈ R, we have that

1) dY(ŷ, y) ≤ ε with ŷ = ĥ(x̂) and y = h(x); and
2) with probability at least 1− δ the invariance (7) holds.

Then M̂ is (ε, δ)-stochastically simulated by M , and this is
denoted as M̂ �δε M . �
In [20], it has been shown that ε and δ have a trade-off.
Increasing ε decreases the achievable δ and vice versa.

B. Variable precision

Current methods define one simulation relation for the
whole state space, while we desire a multi-layered simu-
lation relation R that switches between multiple simulation
relations to allow variable precision. Denote the number of
simulation relations by NR and denote each simulation rela-
tion as Ri with precision εi. A representation of such a multi-
layered simulation relation with two simulation relations is
given in Fig. 1. Here, the self loops represent remaining in the

R1 R21− δ11 1− δ221− δ12

1− δ21

Fig. 1: Multi-layered simulation relation R consisting of two
simulation relations R1 and R2. The edges are labelled with
a lower-bound on the probability that the transition occurs.

same simulation relation, while a switch is indicated by the
dashed arrows. Similarly to the invariance requirement in (7),
we now associate a lower bound on the probability of each
transition from Ri to Rj as 1− δij . Furthermore, we define

ε, δ with ε = (ε1, ε2, . . . , εNR) and δ =

(
δ11 δ12 ...
δ21 δ22
...

. . .

)
.

In the remainder of this paper, a switch from simulation
relation Ri to Rj is denoted by action sij . This assigned
action determines the stochastic kernel Wij . Since the dis-
turbances of the combined transitions (6) are generated from
this stochastic kernel, (6) holds, with (ŵ, w) ∼ Wij if
st = sij . The input space of this combined system has
been extended; that is, next to the input ut we also have

a switching input st. Remark that for any control strategy µ
for M̂‖M there still trivially exists also a control strategy
µ′ for M that preserves the satisfaction probability. A multi-
layered simulation relation is defined as follows.

Definition 4 (Multi-layered simulation relation): Let the
models M and M̂ in MY with metric output space (Y,dY),
and the interface function Uv (5) be given. If there exists
measurable relations Ri ⊆ X̂ × X and Borel measurable
stochastic kernels Wij that couple Pw and Pŵ for i, j ∈
[1, . . . , NR]

2 such that for all i ∈ [1, . . . , NR]:
1) ∀(x̂, x) ∈ Ri : dY(ŷ, y) ≤ εi,
2) ∀(x̂, x) ∈ Ri,∀û ∈ Û : (x̂+, x+) ∈ Rj holds with

probability at least 1− δij with respect to Wij ;
and for which there exists i ∈ [1, . . . , NR] with (x̂0, x0) ∈
Ri. Then M̂ is stochastically simulated by M in a multi-
layered fashion, denoted as M̂ �δ

ε M . �
This simulation relation differs from the original one in Def.
3, since it contains multiple simulation relations with differ-
ent precision and therefore, allows for variable precision.

IV. MULTI-LAYERED DYNAMIC PROGRAMMING

A. scLTL satisfaction as a reachability problem

For control synthesis purposes an scLTL specification
(2) can be written as a deterministic finite-state automaton
(DFA), defined by the tuple A = {Q, q0,Σ, τA, Qf}. Here,
Q, q0 and Qf denote the set of states, initial state, and set
of accepting states, respectively. Furthermore, Σ = 2AP

denotes the input alphabet and τA : Q × Σ → Q is a
transition function. For any scLTL specification φ there exists
a corresponding DFA Aφ such that the word π satisfies this
specification π |= φ, when π is accepted by Aφ [1]. Here,
acceptance by a DFA means that there exists a trajectory
q0q1q2 . . . qF with qF ∈ Qf that starts with q0 and evolves
according to qt+1 = τA(qt, πt). We can therefore reason
about the satisfaction of probabilistic properties over M by
analyzing its product composition with Aφ [19] denoted as
M ⊗ Aφ. This composition yields a stochastic system with
states (xt, qt) ∈ X × Q and input ut. Given input ut the
stochastic transition from xt to xt+1 of M is represented
by the transition from (xt, qt) to (xt+1, qt+1) with qt+1 =
τAφ(qt, L(h(xt))). Hence solving the probabilistic satisfac-
tion specification φ is equivalent to solving a reachability
problem over M ⊗Aφ [1]. This reachability problem can be
rewritten as a dynamic programming (DP) problem.

B. Dynamic programming with constant precision

Given Markov policy µ for M ⊗ Aφ, define the time-
dependent value function V µ

N as

V µ
N (x, q) = Eµ

[
N∑
k=1

1Qf (qk)
k−1∏
j=1

1Q\Qf (qj)

∣∣∣∣(x0, q0)=(x, q)

]
with indicator function 1F (q) equal to 1 if q ∈ F and 0
otherwise. Since V µ

N (x, q) expresses the probability that a
trajectory generated by µ starting from (x, q) will reach
the target set Qf within the time horizon [1, . . . , N ], it also



expresses the probability that specification φ will be satisfied
in this time horizon. Next express the associated DP operator

Tu(V )(x, q) := Eµ
(

max
{
1Qf (q+), V (x+, q+)

} )
, (8)

with u = µ(x, q) and with the implicit transitions q+ =
τAφ(q, L(h(x+))). Consider a policy µi = (µi+1, . . . µN )

with time horizon N − i, then it follows that V
µk−1

N−k+1 =
Tµk(V

µk
N−k). Thus if V

µk
N−k expresses the probability of

reaching Qf within N − k steps, then Tµ
k(V

µk
N−k) expresses

the probability of reaching Qf within N − k + 1 steps
with policy µk−1. It follows that for a stationary policy
µ, the infinite-horizon value function can be computed as
V µ
∞ = limN→∞(Tµ)NV0 with V0 ≡ 0. Furthermore, the

optimal DP operator T∗(·) := supµT
µ(·) can be used

to compute the optimal converged value function V ∗∞. The
corresponding satisfaction probability can now be com-
puted as Pµ := max(1Qf (q̄0), V ∗∞(x0, q̄0)), with q̄0 =
τ(q0, L(h(x0)). When the policy µ, or equivalently the
controller C, yields a satisfaction probability higher than p,
then (3) is satisfied and the synthesis problem is solved.

Due to its continuous states the DP formulation above
cannot be computed for the original model M , so we use
abstract model M̂ . Next, we adjust the method in [9] to take
into account the output- and probability deviations.

C. Bi-layered dynamic programming approach

l3

l4 l1 ∨ l2

l2
l3

l4

(a)

l3

l4 l1 ∨ l2

l2
l3

l4

(b)

l3

l4 l1 ∨ l2

l2

l3

l4

(c)

Fig. 2: DFA Aφ with labels li ∈ Σ, (a) with discrete modes
with one layer, (b) with two layers and (c) with the high-
precision layer only in modes with self loops.

To implement a layered DP approach, each simulation
relation Ri gets its own layer i to which we assign a value
function V (x, q, i). In the remainder of this section, we
present a bi-layered approach, where two simulation relations
R1 and R2 with R1 ⊇ R2, ε1 ≥ ε2, and δ1 ≤ δ2 are
given. We further assume that the layers and corresponding
switching strategies are given. A switching strategy consists
of switching actions defined for all abstract states x̂ ∈ X̂ in
each layer. In Fig. 2b, we see a DFA Aφ that is constructed
for a bi-layered approach and with edges labeled by li ∈ Σ.
Here, the fully orange modes consist of only layer 2, while
in the other modes both layers are created.

The value function defines a lower bound on the probabil-
ity that specification φ will be satisfied in the time horizon

[1, . . . , N ]. We can now define a robust operator Tû
sij as

Tû
sij (V )(x̂, q, i) =

L
(
Eû
(

min
q+∈Q+

εj

max
{
1Qf (q+), V (x̂+, q+, j)

} )
− δij

)
, (9)

with L : R→ [0, 1] a truncation function defined as L(·) :=
min(1,max(0, ·)) and with

Q+
εj (q, ŷ

+) :=
{
τA(q, L(y+)) | ||y+ − ŷ+|| ≤ εj

}
. (10)

For a given switching policy µs : X̂ × Q ×
[1, 2] → Û × [si1, si2], we define Tµs(V )(x̂, q, i) =
Tû
sij (V )(x̂, q, i) with (û, sij) = µs(x̂, q, i). Consider a pol-

icy µsk = (µsk+1, . . . , µ
s
N ), then for all (x̂, q, i) we have

that V
µsk−1

N−k+1 = Tµsk(V
µsk
N−k), initialized with V0 ≡ 0.

As before, for a stationary policy µs, the infinite-horizon
value function for both layers can be computed as V µs

∞ =
limN→∞(Tµs

)NV0 with V0 ≡ 0. Furthermore, the optimal
robust operator T∗(·) := supµs T

µs(·) can be used to
compute the optimal converged value function V ∗∞.
Consider a control strategy µs for M̂ . This strategy can

also be implemented on the combined model M̂‖M and
we can denote the value function of the combined model
as Vc(x̂, x, q). As mentioned before, the control strategy for
the combined model can be refined to a control strategy of
the original model M (1). Although Vc(x̂, x, q) expresses the
probability of satisfaction, it cannot be computed directly,
instead we can compute V (x̂, q, i) over the abstract model
M̂ using (9).

Lemma 1: Suppose M̂ �δ
ε M with a multi-layered sim-

ulation relation R is given. Let V (x̂, q, j) ≤ Vc(x̂, x, q) for
all (x̂, x) ∈ Rj , then

Tû
sij (V )(x̂, q, i) ≤ Tû(Vc)(x̂, x, q) ∀(x̂, x) ∈ Ri, (11)

where Tû
sij (V )(x̂, q, i) is the (ε, δ)-robust operator (9) with

respect to stochastic transitions of M̂ and Tû(Vc)(x̂, x, q)
is the exact recursion (8) with respect to the combined
stochastic transitions (6). �

Proof: The proof of Lemma 1 follows along the same
lines of the proof of Lemma 3 in [9].

The value function gives the probability of satisfying the
specification after 1 time step, by including the first time
instance based on x0, we can compute the robust satisfaction
probability, that is

Rµs := max(1Qf (q̄0), V µs

∞ (x0, q̄0)), (12)

with q̄0 = τAφ(q0, L(h(x0))). The robust satisfaction proba-
bility gives a lower-bound on the actual satisfaction probabil-
ity Pµs . When the policy µs defined by controller C yields
a robust satisfaction probability higher than p, then (3) is
satisfied and the control synthesis problem is solved.

D. Bi-layered dynamic programming with partial covers

To decrease the computation time, consider layer 2 to
be only present in modes with a self-loop. Such a pruned
bi-layered DFA is illustrated in Fig. 2c. To decrease the



computation time even further, we disregard action s21. Such
a switching strategy is shown in Fig. 3. For layer 1 (blue),
action s11 and s12 hold respectively for all states inside
the blue and hatched orange region. The action for layer
2 (orange) equals s22 until a new DFA state is reached.

To mitigate the effect of partial covers, we modify the
DP iterations initialized with value functions V0(x̂, q, i) ≡ 0
with i ∈ [1, 2]. First, for all states x̂k ∈ X̂ that are not
inside layer j, we set the value function Vl(x̂k, q, j) = 0
for all iterations l. Since for all (x̂, x) ∈ R2, we also have
that (x̂, x) ∈ R1 this implies that switching to layer 1 when
layer 2 is missing comes for free. Therefore, with some abuse
of notation, we define a piecewise maximum value function
as V (x̂+, q+,≤ 2) = maxj∈[1,2] V (x̂+, q+, j). Now, the
adjusted robust operator is defined as

Tû
si2(V )(x̂, q, i) =

L
(
Eû
(

min
q+∈Q+

ε2

{
1Qf (q+), V (x̂+, q+,≤ 2))

} )
− δi2

)
, (13)

with Qε2 as in (10). This adjusted operator is valid as it
preserves the lower-bound defined in (9) and can hence be
used interchangeably.

V. IMPLEMENTATION FOR LTI SYSTEMS

Let the models M (1) and M̂ (4) be linear time-invariant
(LTI) systems whose behavior is described by the following
stochastic difference equations

M :

{
x(t+ 1) = Ax(t) +Bu(t) +Bww(t)

y(t) = Cx(t), and
(14)

M̂ :

{
x̂(t+ 1) = Π (Ax̂(t) +Bû(t) +Bwŵ(t))

ŷ(t) = Cx̂(t),
(15)

with matrices A,B,Bw and C of corresponding sizes and
with the disturbances w(t), ŵ(t) generated by the standard
Gaussian distribution, i.e., w(t) ∼ N (0, I) = Pw and
ŵ(t) ∼ N (0, I) = Pŵ. The abstract model is constructed
by partitioning the state space X in a finite number of
regions Ai ⊂ X and operator Π(·) : X → X̂ maps states
x ∈ Ai to their representative points x̂i ∈ X̂. We assume
that the regions Ai are designed in such a way that the set
B := {Π(x)− x | x ∈ X} is a bounded polytope and has
vertices vert(B). Details on constructing such an abstract LTI
system can be found in [9].

A. Computing the multi-layered simulation relations

To compute the multi-layered simulation relations in Def.
4, we choose the interface function u(t) = Uv(ût, x̂t, xt) as
u(t) = û(t) and consider simulation relations Ri

Ri :=
{

(x̂, x) ∈ X̂× X | ||x− x̂||D ≤ εi
}
, (16)

where ||x||D denotes the weighted two-norm, that is,
||x||D =

√
xTDx with D a symmetric positive definite

matrix D = DT � 0. We use the same weighting matrix
D for all simulation relations Ri, with i ∈ [1, 2, . . . NR].

P2P1

−10 0 3 5 6 10

s11
s22

s12

Fig. 3: Parking areas P1, P2 and switching strategy with blue
layer R1 and orange layer R2.

For these relations, condition 1 in Def. 4 is satisfied by
choosing weighting matrix D � 0, such that

CTC � D. (17)

We can now construct kernels Wij in a similar way as in
[20]. By doing so, condition 2 of Def. 4 can be quantified
via contractive sets for the error dynamics xt+1 − x̂t+1

based on the combined transitions (6). We assume that there
exists factors αij with εj = αijεi that represent the set
contraction between the different simulation relations. Now,
we can describe the satisfaction of condition 2 as a function
of δij , αij and εi.

Lemma 2: Consider models M (14) and M̂ (15) for which
simulation relations Ri and Rj as in (16) are given with
weighting matrix D satisfying (17). For given δij , αij , and
εi, consider matrix inequalities[

1

ε2
i

D FTij

Fij r2ijI

]
� 0, (input bound) (18a)[ λijD ∗ ∗

0 (α2
ij−λij)ε

2
i ∗

D(A+BwFij) Dβl D

]
� 0 (contraction) (18b)

parameterized with λij > 0 and with the matrix Fij for rij =

|2 idf
(

1−δij
2

)
| and for all βl ∈ vert(B). Here, idf denotes

the inverse distribution function of the Gaussian distribution.
If there exists λij and Fij such that the matrix inequalities in
(18) are satisfied, then there exists aWij such that condition
2 in Def. 4 is satisfied. �

Theorem 1: Consider models M (14) and M̂ (15) for
which simulation relations Ri and Rj as in (16) are given
with weighting matrix D satisfying (17). If the inequalities
(18) hold for all i, j ∈ [1, . . . , NR]2 and there exists i ∈
[1, . . . , NR] with (x̂0, x0) ∈ Ri then M̂ is stochastically
simulated by M in a multi-layered fashion as in Def. 4,
denoted as M̂ �δ

ε M . �
Proof: The proof of both Lemma 2 and Theorem 1

can be found in the appendix. It builds on top of the proofs
of Theorem 10 and Theorem 11 in [20] for invariant sets.
Instead of invariant sets, the proof uses contractive sets to
deal with the multi-layered simulation relation.

B. Illustrative example

As an illustrative example, we consider parking a car in
a one-dimensional space. The goal of the controller is to
guarantee that the car parks in the green area P1, without
going through the red area P2, as illustrated in Fig. 3. This
specification can be written as φpark = ¬P2UP1 and can be
represented by the DFA given in Fig. 4. The dynamics of the
car are modeled using an LTI stochastic difference equation
as in (14) with A = 0.9, B = 0.5 and Bw = C = 1. We used



q0 qFq1

¬P1 ∧ ¬P2

P1 ∧ ¬P2

P1 ∧ ¬P2

¬P1 ∧ P2

Fig. 4: DFA associated with specification φpark = ¬P2UP1.

states x ∈ X = [−10, 10], inputs u ∈ U = [−1, 1], outputs
y ∈ Y = X and Gaussian disturbance w ∼ N (0, 0.5). We
considered the regions P1 = [5, 6〉, P2 = [6, 10] and used the
following labeling function

L(y) =


¬P1 ∧ ¬P2 if y < 5

P1 ∧ ¬P2 if 5 ≤ y < 6

¬P1 ∧ P2 if 6 ≤ y ≤ 10.

(19)

We obtained abstract model M̂ in the form of (15) by
partitioning with regions of size 0.1 with B = [−0.05, 0.05]
and û ∈ Û =

[
−1,− 2

3 ,− 1
3 , . . . , 1

]
. We quantified the

accuracy of M̂ with a bi-layered simulation relation. The
first layer with R1, and (ε1, δ11) = (0.5, 0) covers the
complete state space. The second layer with R2 has deviation
δ22 = 0.012 and only covers 0 ≤ x̂ ≤ 10. We chose
δ12 = 0.12 and output precision ε2 = 0.1984 that satisfy
Lemma 2. As illustrated in Fig. 3, we chose the switching
strategy:

µs =


s11 if − 10 ≤ x̂ ≤ 3 and i = 1

s12 if 3 < x̂ ≤ 10 and i = 1

s22 if 0 < x̂ ≤ 10 and i = 2.

(20)

Together, this led to the satisfaction probability in Fig. 5.
A constant precision with either simulation relation R1

or R2 yields the conservative satisfaction probability indi-
cated by the respective blue circles and orange triangles in
Fig 5. The bi-layered method (green line) takes advantage
of both simulation relations. Close to the parking areas
simulation relation R2 is generally active, which compared
to simulation relation R1 gives us a non-zero satisfaction
probability. Switching to layer 1 limits the rapid decrease
of the satisfaction probability further from the parking areas,
which is normally caused by the relatively high value of δ22.

Concluding, the multi-layered method allows switching
between multiple simulation relations and makes it possible
to use the advantages of each individual simulation relation.
Therefore, the satisfaction probability increases and is more
accurate than when using constant precision.
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APPENDIX I
PROOF OF LEMMA 2 AND THEOREM 1

For the construction of the matrix inequalities in (18), we
follow [20] and model the state dynamics of the abstract
model (15) as x̂(t + 1) = Ax̂(t) + Bû(t) + Bw(ŵγ(t) −
γ(t)) + β(t) with disturbance ŵγ ∈ W ⊆ Rp, shift γ ∈ Γ
and deviation β ∈ B. The disturbance is generated by a
Gaussian distribution with a shifted mean, ŵγ ∼ N (γ, I).
The β-term pushes the next state towards the representative
point of the grid cell. Based on [20], we choose stochastic
kernels Wij such that the probability of event w − ŵγ = 0
is large. The error dynamics conditioned on this event equal
x+

∆ = Ax∆(t) +Bwγij(t)− β(t), where state x∆ and state
update x+

∆ are the abbreviations of x∆(k) := x(t)− x̂(t) and
x∆(t + 1), respectively. This can be seen as a system with
state x∆, constrained input γij and bounded disturbance β.

For a given deviation δij , we compute a bound on the
allowable shift as γij ∈ Γij := {γij ∈ Rp | ||γij || ≤ rij} and
we parameterize the shift γij = Fijx∆ with the matrix Fij .
In the exact same fashion as the proof of Theorem 11 in [20],
we can show that if there exists λij and Fij such that the
matrix inequalities in (18) are satisfied, then the following
implications also hold

x>∆Dx∆ ≤ ε2i =⇒ x>∆F
>
ij Fijx∆ ≤ r2

ij (input bound)

x>∆Dx∆ ≤ ε2i =⇒ (x+
∆)>Dx+

∆ ≤ α2
ijε

2
i . (contraction)

Therefore, we satisfy the bound γij ∈ Γij and the simulation
relation Ri describes an αij-contractive set. Hence, using
Lemma 7 in [20], we can conclude that there exists a kernel
Wij , such that condition 2 in Def. 4 is satisfied. Since
condition 1 in Def. 4 was already satisfied by choosing D
appropriately, M̂ �δ

ε M holds as long as the conditions in
Theorem 1 are satisfied.

Concluding, since (17) holds, condition 1 in Def. 4 is
satisfied for all i, j. If in addition λij and Fij satisfy (18),
then there exists a kernel Wij such that condition 2 in Def.
4 holds (Lemma 2). Once this does not only hold for a
specific i, j, but for all i, j ∈ [1, . . . , NR] and there exists
i ∈ [1, . . . , NR] with (x̂0, x0) ∈ Ri, then we have M̂ �δ

ε M .
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