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Abstract— This work addresses the problem of cyber-attack
isolation within a distributed diagnosis architecture for large-
scale interconnected systems. Considering a distributed control
architecture, malicious agents are capable of compromising the
data exchanged between distributed controllers. Building on
a distributed detection strategy existent in literature, in this
paper we propose a distributed isolation algorithm to identify
the attacked communication link. After presenting the isolation
algorithm, we give a necessary and a sufficient condition for
isolation to occur, relating to the structure of the physical
interconnection matrices. We demonstrate the effectiveness of
the proposed technique through numerical simulations.

I. INTRODUCTION

With the integration of an ever increasing number of cyber
resources in control systems, such as distributed computing
processors, wireless communication networks, and low cost
sensors, significant work has been put into the study of cyber-
physical systems (CPS) [1]. This evolution of industrial
systems and infrastructure presents many benefits, enabling
a more effective and efficient regulation of complex systems.
Conversely, introducing cyber-resources, particularly com-
munication networks, into control systems exposes them to
cyber-attacks. Recently, a number of cyber-security threats
have demonstrated the disruption these attacks may cause
the attacked systems and society as a whole, e.g. [2], [3].

Thus to ensure safe operation, security must be included in
the design of control systems [4]. Specifically, as delineated
in [5], there are three important features that must be in-
cluded in cyber-secure control systems, namely: cyber-attack
detection, isolation, and control reconfiguration. “Detection”
is the problem of evaluating whether the system, and all its
components (i.e. the plant, the actuators, the sensors, etc.),
are behaving nominally or whether they are under attack;
“isolation” relates to understanding where a cyber-attack is
present; finally, “control reconfiguration” is the problem of
automatically redesigning the control system such that, if
possible some level of performance may be maintained, or
else to ensure graceful degradation of the system. In this
paper, we focus primarily on the problem of isolation.
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A common feature in modern engineering systems is
that they are large-scale, and often composed of physically
coupled interconnected subsystems. It is well known that
this class of systems requires distributed methods to be
implemented, to address both the cost and constraint of
communication networks associated to centralized control
architectures, and to manage the high computational burden
required to centrally compute complex control laws. This,
clearly, also applies to architectures for cyber-security for
large-scale interconnected cyber-physical systems, leading
to recent research interest in the subject [6], [7], [8], [9],
[10]. Of these works, however, few focus on the problem of
distributed cyber-attack isolation [11]. It is worth noting, that
there is a consistent literature on distributed fault detection
and isolation (FDI), which addresses the problem of isolating
the presence of faults in large-scale and complex systems
(e.g. [12], [13], [14], [15], as well as the references in [16]).

In this work, we present a distributed cyber-attack isolation
algorithm, extending the monitoring architecture in [6], ana-
lyzing cyber-attacks affecting the communication between
neighboring distributed controllers. Specifically, we show
how isolation may be implemented, while giving structural
constraints limiting the isolation of the cyber-attack. Our
contributions are threefold: an isolation algorithm, comple-
menting the detection algorithm in [6]; the definition of a
sufficient condition on the structure of the physical coupling
between subsystems that allow for the construction of an
isolation algorithm; the definition of a necessary condition
to be satisfied by the physical coupling, such that isolation
may occur.

The structure of this paper is the following: in Section II
we formally introduce the problem of distributed attack isola-
tion, given a large-scale interconnected system; in Section III
we summarize the detection architecture presented in [6], and
provide an overview of its detection properties; in Section [V
we give the main results of this paper: after presenting an
isolation algorithm, we provide a necessary and a sufficient
condition on the structure of the physical coupling to verify
whether isolation may occur or not; finally, in Section V we
present numerical validation of our theoretical results.

Notation: Throughout this paper we use the following
notation. Ny is the set of non-negative integers. I,, represents
the n-dimensional identity matrix, while 0,,x, is a matrix of
zeros in R™*™_ When clear from context, I and 0 are used.
For a matrix A, A denotes its right pseudo-inverse. Given
a matrix X, o(X) is its spectrum, and p(X) its spectral
radius. For a vector x;, with ¢ an index in a set N/, Tik
denotes its k-th component. The operator | - | applied to a
set determines its cardinality, while used with matrices or



vectors it defines their component-by-component absolute
value. In this paper inequalities are considered component-
by-component, i.e. for two matrices A and B with the same
dimensions, A > B indicates the element-wise inequality;
the same is considered for vectors. With col(-), diag(-), and
ker(-) we define the column concatenation of vectors or
matrices, the block-diagonal concatenation of matrices, and
the null-space of a matrix, respectively.

II. PROBLEM FORMULATION
A. Large-scale system modeling

We consider a large-scale interconnected system com-
posed of N physically-coupled subsystems, S;,i € N =
{1,..., N}. Each subsystem has dynamics:

S, : {a:j = Aizi + Biui + & +w; 0

yi = Cizi +v;

with z;” symbolizing z;(k + 1),k € Ny, ; the state of the
subsystem, u; its control input, w; process disturbance, y; the
measurement output, v; the measurement disturbance, and &;
modeling the aggregate physical coupling between S; and a
set A; C M this set of subsystems is called the set of “neigh-
bors” of S;, and is defined as N; = {j € N|9z;/dz; # 0},
i.e. the set of indices of those subsystems that dynamically
affect the state of S;. The aggregate physical coupling term
is defined as § = > cn, Aijx;, with A;; the so-called
“coupling” matrix between S; and S;. All matrices in (1)
are given to be of appropriate dimensions.

Assumption 1: For all subsystems S;, the following hold:

o (A, B;) is stabilizable;

e (Ci, Ay) is detectable;

o the disturbances w;(k) and v;(k) are such that

<

(wi(k)| < w;, |vi(k)] <o 2)
for all k € Ny. <

B. Distributed control architecture

Each subsystem is controlled by a controller C;, which is
designed to be distributed, i.e. to rely only on information
which is local to S;, or that of its neighbors S;,j € N;.
We formalize this by defining the regulating input u,; as
u; = Ki(yi,75), where k;(-,-) is some operator defining the
control policy, and v = jg?\}ﬂ;’i is the combination of all

signals 75; that C; receives from the neighboring controllers
over some communication network. The set N represents
the collection of all subsystems which transmit data to S;.
Assumption 2: The communication network is such that
N; C N¥ holds for all subsystems S;,i € N. 4
The inclusion of communication resources in the control
system exposes it to the possibility of cyber-attacks. We
model this in the definition of the received signal 7j; as:

75 (k) = yj(k) + Bji(k — KJ;)ayi(k), (3)
where B;i(k — Kf;)a;i(k) models the effect of an attack

7
on 75, and K7; is the first instant an attacker injects a

signal on the communication between S; and S;. The attack

vector ovj;(-) is defined by the malicious agent to disrupt
the nominal' operations of the system, and j3;;(-) is a so-
called activation function, borrowing terminology from the
fault detection and isolation literature [17].

C. Distributed diagnosis architecture

The potential exposure to malicious alteration of the be-
havior motivates the introduction of a distributed diagnostic
module D;, which is tasked with detecting whether the
information ~j;,j € NF is nominal or not, relying on the
following assumption.

Assumption 3 (Trusted information set): For each subsys-
tem S;, the set of information that is trusted by diagnoser
D; is defined as:

I';T = {Miauiayi} (4)

with M; defining the knowledge of the overall system
available to D;. <

Remark 1: In Assumption 3, we consider input and mea-
surement vectors u; and y; to be trusted by D;. <

The problem of distributed attack detection and isolation
can be formalized, borrowing from the fault detection and
isolation literature, as follows:

Problem 1 (Distributed attack detection): Design a diag-
nostic unit D; capable of verifying whether the received
information 7§ is nominal or under attack. A

Problem 2 (Distributed attack isolation): Given detection
of an attack active on § by D;, isolate the communication
link (j,4) over which an attack «a;;(k) # 0. A

III. DISTRIBUTED DETECTION ARCHITECTURE

Before moving forward with the presentation of our results
on cyber-attack isolation, let us briefly summarize the detec-
tion architecture we take into consideration. We consider that
each subsystem S; is equipped with a distributed diagnosis
unit D; presented in [6].

A. Structure of diagnoser D;

The distributed diagnosis module D; we adopt in this
paper is made up of two parallel modules, O; and Oj;, each
of which is composed of the following elements [6]: 1) a
state estimator; 2) a residual generator; 3) a detection test.
Although these elements are common to both modules, their
design is dependent on the information available to each. In
the following we briefly describe the two modules.

1) Local state estimation — O;: The module O; exploits
a distributed Luenberger-like observer of the form

S - {fﬁj = A + Biui + & + Li(ys — Cidti)
7 -

oo (5)

where L; is such that Ap; = A;; — L;C; is Schur stable,
and &; is the estimate of the coupling between S; and its
neighbors, computed from received data vector ~; as & =

Zje/\fi Aijc;%c'i-

'Throughout this paper, by “nominal” we intend the operations of the
system as not exposed to attacks.



Assumption 4. The matrices C; are such that ker C; C
ker A;; for all subsystems S;, and all j € N;. <

Given the definition of L; such that p(Ar;) < 1 and As-
sumption 4, the dynamics of the estimation error €; = x; —Z;
are asymptotically stable, and therefore, given Assumption 1,
€;(k) is bounded in nominal conditions. Furthermore, given
knowledge on w; and v;, a bound €; can be explicitly
found such that [e;(k)| < &(k),Vk € {0,..., K§,}. Thus,
computing the residual as r; = y; — ¥;, the module O; is
equipped with the following detection test:

[ri(k)| > 7i(k) (6)

where 7;(k) is an appropriately defined threshold, guaran-
teeing that |r;(k)| < 7;(k) for all k € {0,..., K¢;}. Then,
if (6) holds for at least one component of r;(k), an attack is
detected, solving Problem 1.

2) Estimation of neighboring states — Oj;: The module
O;; exploits an unknown-input observer S’ji to estimate the
state of S;,j € Nf without requiring further information
to be transmitted. In rough terms, Oj; exploits trusted
knowledge of the dynamics of S;,j € N;, included in M,
in the trusted information set IiT , to verify whether the
time-varying behavior of ~7; is consistent with its nominal
dynamics. Specifically, the dynamics in (1) are rewritten as

(7
yj = Cjzj +vj

S - {l‘f = Ajjrj + Ejdj + wj
I
introducing an unknown input vector d;, which is defined
together with full column rank matrix E; such that E;d; =
Bju; 4 &;. Thus, the UIO takes the form

+_ >~
R Fizji + Kjivy ®
Ty = zji + Hjivyj,

where z;; is the internal state of the observer, 1 ;; is the state

estimate, and Hj;, F}; and Kj; are appropriately designed

such that the estimation error €;; = x; — &;; is decoupled

from d;, as presented in [18]. To guarantee existence of the
observer matrices, the following is assumed.

Assumption 5: For all S;,i € N, the dynamics (1) satisfy:

e C; is such that rank(C; E;) = rank E;;
« the system defined by the tuple (C;, A;;, F;) is strongly
observable [19, Def 7.15]. <
Given its design, €;;(k) is bounded for k& € Ny, and
therefore, given knowledge of w; and ©;, a bound €;;(k)
can be defined such that |¢;; (k)] < €;(k) holds for all
keAo,..., K;‘Z} Therefore, a similar bound on the residual
1ji = 7j; — Cj&;; can be found, and the following detection
test may be used for detection by the module O};

[750(k)| > 75i(k), )

for the information received by &; from all subsystems
S;,j € Nf. Thus, if (9) holds for at least one component of
r;i(k), an attack is detected, solving Problem 1.

B. Properties of D;

Having presented the structure of D; as introduced in [6],
let us now summarize its properties briefly. Firstly, note that
the diagnoser D; has the combined properties of O; and O;.
Indeed, it is sufficient that either (6) or (9) hold for D; to
detect an attack. This implies that any attack guaranteed to
be detected by either O; or Oj; is also guaranteed to be
detected by D;. On the other hand, similarly, for an attack
to be stealthy it must be designed to be undetected by both
(97; and 0J7

Here we focus on attacks designed to be stealthy [20], i.e.
defined by a malicious agent such that the detection module
D; cannot detect their effect on ~f. For a detailed analysis
of the properties of D;, we refer the interested reader to [6].

1) Attacks stealthy to O;: Given that O; is designed using
limited knowledge of the large-scale interconnected system’s
dynamics, namely only those of S;, this module relies on
the physical coupling between subsystems to provide the
necessary analytical redundancy for detection. Specifically,
it was shown in [6] that any attack satisfying

(diagC’}) a; € ker [rowAl-]}
JEN; JEN:

is stealthy to O;, with a; = _C(j)\l/ oj;. This limitation was
JEN;

(10)

shown in [21] to be structural, i.e. to be common to any
distributed diagnoser exploiting the local dynamics of S; and
the physical coupling ¢; to detect an attack on ;.

2) Attacks stealthy to Oj;: Let us now focus on the
properties of Oj;. Given the subsystem dynamics described
by (7) and the observer structure in (8), the subsystem
can be seen as stand-alone from the rest of the large-scale
interconnected system, as the coupling with its neighbors is
contained in the unknown input d;, as well as, in turn, each
UIO S’ﬂ Hence, Oj;; is vulnerable to all those attacks that
are stealthy to a centralized diagnoser, as highlighted in [20],
including zero-dynamics, covert, and replay attacks.

Remark 2: 1t is important to note that, given its design in
(5), O; can only detect attacks on 7]0-1-, j € N;. Thus, for all
J € NE\N;, any attack stealthy to Oj; is stealthy to D;. <

IV. DISTRIBUTED CYBER-ATTACK ISOLATION

Having shown the main detection characteristics of D;,
we are now ready to present the main results of this paper,
the cyber-attack isolation by the distributed diagnoser. Given
the design of O; and Oj;, and their properties as described
above, we can see that the distributed isolation of cyber-
attacks by D, changes depending on whether (6) or (9) hold.
In the following, we treat each case separately.

A. Isolation via Oj;

Let us start by noting that if O;; detects an attack, it is
also isolated. This is shown in the following proposition.

Proposition 1: Consider a subsystem §;, receiving com-
munication signal §; from each of its neighbors S;, j € N,
and monitored by the distributed diagnoser D;. If an attack



a;; (k) # 0 is such that (9) holds for Oj;, then the attack is
isolated to the communication link (7, 7). O
Proof: Due to space constraints proofs are omitted. H

B. Isolation by O;

Differently from the above, when an attack is detected by
O;, but not by Oj;, the possibility of isolating an attack
depends on the structural characteristics of the physical
coupling matrices A;;. Here, we consider the attack function
a; to be designed by a malicious agent to be stealthy to O;.
Indeed, if this were not the case, there may be some time
K D K; D for which (9) holds, and thus Oj; isolates the
attack aj;, where K D is the first time instant for which (6)
holds for at least one component of |r;(KP)|.

We here consider the malicious agent implements a covert
attack [20]. Suppose that an attacker injecting an attack
signal «;; on the communication link (j,¢) has perfect
knowledge of the dynamic model of S;, given by the tuple
(Cj,A;;,E;). Then, an attack strategy is said to be “covert”
if aj; is the result of the following dynamics:

g = Ajjaf; + Ejd, (11
aji = Cjxf;
with initial condition z¢,(K;) = 0, and where d3; is defined
by the attacker. It has been shown both in centralized and
distributed scenarios that these attacks are stealthy to diag-
nosers with similar structure to Oj; [20], [7], [6]. As such,
for an attack o;; defined as in (11), there is no time KJ’? for
which (9) holds. Therefore, covert attacks are an appropriate
class of attacks to analyze the isolation performance of O;.
We base our isolation algorithm on strategies of unknown-
input reconstruction, such as those defined in [22], [23].
Specifically, for time k > K2, a set of N; unknown-input
estimators are constructed to estimate a;; (k) for all j € N;.
Remark 3: Given we are analyzing the isolation properties
of O;, we can only isolate attacks on links (j,4),j € N;, as
a direct consequence of Remark 2, thus not isolating attacks
n (j,i),j € NF\N. 4
Let us now introduce the input reconstruction method used
to estimate o, critical for the isolation algorithm. It is well
known that it is only possible to estimate 7;; = rank A;;
components of a;;. Thus, introduce A;; and ay; satisfying
Azja]z = Ajjay;, with a;; € R™, A;; € R™*™5 and
rank A;; = n;;. Note that, given Assumptlon 5, the matrix
A;; is such that rank(C; A;;) = n;;, and it can be seen as a
basis for ImA,;;. Before we move on with the presentation
of the estimate éji, we introduce the following from [23].
Lemma 1 (Lemma 1, [23]): Suppose X and Y are n xm
and p x n matrices, respectively. Then rank(Y X) = rank X
if and only if exist nonsingular matrices P and S such that

Xy

0 (12)

PlX = [

| i

0 Y

where X, and Y7 have the same number of rows, with X3
full row rank and Y7 invertible. O

Given Assumption 5 and Lemma 1, it is possible to define
P;; and S;; such that:

(lj)

(ij
cuy ?‘ )

0 o
with Agfl)
column rank, and C;; €
matrix P;; is such that

€ R™i*™i and invertible, given /Lj is full
R"™iiX"ij  The transformation

Da, [0 A,
AL?,QI ALg,zz

Note that the pair (C\J 3 ,A(Llf )p) is observable, given that
the system defined by the tuple (Cs, Ari, Aij) is strongly
observable for all j € A, following Assumption 5 and
appropriate construction of L; in (5).

Let us define the following transformations: €; =
Py [T 7] = S [T 8T i
flf) R™ and pif{) € R™i. An estimate &j; of @j; can
be computed as:

dyi(klk+1) = A%) ! (0(“')‘1 G (k+ 1)
D) - ALY ()

is an estimate of nfg ), asymptotically convergent

g g (13)
% % —1
—Ai G

where ﬁ(ig )

to 77( g) which can be implemented, without loss of general-

ity, as a Luenberger-like observer, given the observability of
(C’Z(g ), A(lej no ). Specifically, 772( 9) takes the form
a0 = A+ A
+ L0 (o) - cDiD) + > AGcla 09
keNT

where ,/\/z.j = NA\{j}. £§m is such that (A(ng_)m—ﬁgmci(g))
is Schur stable, AEZJ)? e RMi=n5)xn5 s defined as
PiglAik = flg}j)l—r , and ag;(klk + 1) is the
attack estimated assuming (k, ) is the attacked link.

Remark 4: Note that with (13) we introduce a single
time-step delay. This is a feature of input reconstruction
algorithms, given the dynamic relationship between «;; and
€;. Furthermore, the estimate of o.j; depends on the properties
of the interconnection matrices A;;. <

To perform isolation, D; computes N; estimates of
@ji,j € NV;, and then compares them to some appropriately
defined thresholds 60,;, j € N;. If the condition

R
T(ig)T
AT

|aji(k[k + 1) > 6;:(k) (15)

holds for some j € N, for at least one component of

|avji(k|k 4+ 1)|, the link (j,7) is said to be isolated. The

threshold 6;;(k) is defined by exploiting Assumption 1,

asymptotic convergence of 771(5 ) to 77% ), and the triangle
=(i7)

inequality: by defining 7; 5 as the bound on the estimation




Algorithm 1: Attack isolation

1: for k > KiD do

2: Receive 75, ;¢ n. from neighbors S, j € Ni;

3 Update j:q(k), Fi(k), fﬂ(k), fji(t),Vj S M;

4: Evaluate (6) and (9)

5 if |r;;(t)| > 7j;(t) for at least one j € Nf then
6

7

8

9

Attack isolated to link (7, 1)

else
for j € N; do

: Update &;;(k — 1|k) and 6;;(k — 1)
10: if |ji(k — 1]k)| > 0;;(k — 1) then
11: Attack isolated to link (7, 1)
12: end if
13: end for
14: end if
15: end for
error (5 = {3 — () satistying 73 (k)| < 73 (k). 0,

is computed as:

0, (k) = |A(7J) 1‘ (|C(U) 1‘p(1j)(k+1)

17,1

HAGL C AT () + 1A o0 (k) )
with p{"/) = S;;'7;. The error bound ﬁfg ), on the other hand,
can be found through a procedure similar to that in [24].The
overall isolation strategy is summarized in Algorithm 1.

Remark 5: Note that, for isolation purposes, the estimate
aj; is itself used as a residual, using it directly in the
isolation test (15). Indeed, on the one hand «;; is not directly
available, and thus d; = &;; — a;; cannot be computed; on
the other a&;; = 0 in nominal conditions, and therefore a;
is suitable for isolation. N

(16)

C. Analysis of isolation properties

Having presented the isolation logic within D;, let us now
present its properties. As hinted at, the isolation of an attack
by O; depends on the physical interconnection matrices A;;,
as it is the error & — &; that leads to |r;(k)| > 7;(k), and
therefore detection.

Theorem 1: Consider a subsystem S;, equipped with a
diagnoser D;. Suppose that, for any j,k € N;,j # k,
the physical coupling matrices are such that ImA;; and
ImA;; are orthogonal. Then, a cyber attack «;; # 0 may
be isolated to the communication link (I,i), for I € N;, by
D; implementing Algorithm 1. ]

The result presented in Theorem 1 is a sufficient structural
condition on the physical coupling between subsystems such
that Algorithm 1 is an appropriate isolation strategy. In the
following, we give an equivalent necessary condition.

Theorem 2: Consider a subsystem S;, equipped with di-
agnoser D; defined in Section III. Suppose that from time
K, an attack «j; # 0 is present on the communication link
(j,1) € £. The attack may be isolated by D; only if

ImAik 7é ImAil (17)
holds for all k,I € N, k # L. O

Fig. 1: Network of N = 4 physically coupled subsystems.
The physical coupling are represented as the black solid
arrows, are shown as blue dashed arrows.

V. SIMULATION RESULTS

Let us now show the effectiveness of the proposed method
in simulation. Here, we limit ourselves to illustrating the
detection and isolation properties of O; within D;, as the
isolation properties of O;; are straightforward, and have been
shown in [6]. We consider a network of N = 4 subsystems,
with physical and communication coupling as in Figure 1.
Each subsystem has dynamics as in (1), with matrices:

(@i @iz O 0 0
Ay = |ai21 a2 0f B;=|1 0
-1 0 1 0
- (18)
aij’l 0 0
Aij = 0 aij,2 0 Cl = Ig
0 0 0

where the values of A;; are chosen randomly such that
Aj; is Schur stable, and the coupling parameters can be
found in Table I. Each subsystem is regulated by a control
input u; = [ui,l,umf, where u;; = K;x; is a decen-
tralized input guaranteeing stability of the overall system
through appropriate design of K;, and u; o = x:if is a
reference value for the first component of z;. Specifically,
x:elf = ugef + §; where u:ef is a local reference, while
d; is the result of the following consensus protocol 5i+ =
0; + ZJGNC i (’yﬂ 1~ Y, 1) The state x; 3 is an internal

integrator state, necessary to ensure x; tracks z, 1f . The
process and measurement disturbances are assumed to be
random processes with uniform dlstnbution between £w;
and +v;, w; = [O 02 0.02 0] = [0.05 0.05 O]T,
where the last element of both w; and v; are taken to be zero
given that x; 3 is an internal integrator state.We consider a
covert attack to be present on the communication link (3,1)
from time ¢ = 4s. Specifically, we assume the attacker is
capable of simulating the exact dynamics of S3, changing the

TABLE I: Physical coupling

ai12,1 0.2376 | ai2,2 0
a13,1 0 a13,2 | 0.3113
a24,1 0 a24,2 0.3031
as34,1 0.3988 | asza2 0
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Fig. 2: Component-by-component comparison of the
residual |rq| to the detection threshold 1. To visualize the
detection time K 1D , we add, in dashed pink, a flag which is
“low” for k < KP and “high” for k > KP.
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Fig. 3: Comparison of the estimates &;1,j € N; to the
isolation threshold 61, j € N. Once |&vz1| > 631, at time
t = 4.029s, the attack is isolated to the link (3,1).

reference ugef from a constant to a sinusoidal waveform. In
Figure 2, we show how the detection module O; described
in Section III detects the attack by time ¢ = 4.016s. After
detection, D; exploits the residual r; to estimate the attack,
estimating a; for j € N = {2,3}, and computes the
isolation threshold 6,;(k), as defined in (16). Thus, as in
Algorithm 1, the diagnoser D; evaluates the detection test
(15), isolating the attack to communication link (3,1) by
time ¢t = 4.029s, as shown in Figure 3. The fact that Go1 #0
is due to the effect of process and measurement noise. Note
that D; does not compute an estimate for j = 4 € NE\N,
as O; cannot detect any attacks on (4, 1), by construction.

VI. CONCLUSION

We consider the presence of cyber-attacks on the commu-
nication links between controllers in a large-scale intercon-
nected system regulated via a distributed control architecture.
We present a distributed cyber-attack isolation strategy based
on unknown-input reconstruction to identify the communi-
cation link over which an attack is present. Furthermore, we
provide a sufficient and a necessary condition that must be
satisfied by the structure of the physical coupling between
subsystems to guarantee isolability.

As future work, we will investigate how to mitigate the
effect of cyber attacks in large-scale interconnected systems,
either through attack accommodation or system reconfigura-
tion, as well as evaluating more realistic assumptions on the
communication network between distributed controllers.
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