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Abstract— In this work we present a novel distributed MPC
method for microgrid energy management based on distributed
optimization. In order to cope with uncertainty in prices and
renewable energy production, we adopt a robust min-max
approach that optimizes at each time step the worst case
scenario of the objective function. Combining the advantages
of MPC and distributed optimization, the resulting algorithm
is suitable for the control of large-scale microgrids in which
renewable energy resources are employed. Moreover, since it is
based on novel distributed optimization algorithms, the method
allows the future power profiles to be computed for each
microgrid component without sharing this information with
the others. Simulation results for a DC microgrid system model
show the effectiveness of the proposed method. The algorithm
is tested in two different scenarios: in presence of uncertainties
and considering perfect knowledge of the future price and
power profiles.

I. INTRODUCTION

The increasing demand for electrical energy and the
necessity of power system flexibility has driven the de-
ployment of distributed generation systems as opposed to
centralized power systems. Such generation systems have
three main features: they are small in size (ranging from
kW to MW), they are installed close to loads and they are
often renewable energy sources. The integration of a large
number of distributed energy resources in the distribution
power system is challenging and fuelled the development of
the concept of microgrid [12] which is defined in [15] as
a cluster of loads, distributed generation units and energy
storage systems, operated in coordination to reliably supply
electricity and connected to the power distribution grid.
Typically the control of a microgrid is based on a three
layers [24]: the primary level governs voltage regulation,
the secondary level deals with power quality issues and
the tertiary level is responsible for power management and
optimization (ensure stable delivery of power to the loads
while optimizing energy production and other operational
goals [26]). In this paper we will focus on the tertiary layer.

The design of an energy management controller for micro-
grid systems is challenging for many reasons. Firstly, the use
of renewables, imposes significant uncertainties which have
to be handled appropriately (power production which cannot
be estimated with certainty and energy price may change
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over the day). Secondly, dealing with large-scale microgrids
generates large-scale problems involving a huge number of
decision variables, requiring a great deal of computational
effort. Thirdly, knowledge of the future power profiles of
each microgrid agent is required to make predictions at the
power distribution layer which can lead to privacy issues.
The last two issues have drawn the attention of control
system engineers to distributed control frameworks that allow
a large-scale problem to be decomposed into a number of
smaller problems which are simpler, more flexible and do
not require high computational power. Moreover, providing
each subsystem with a local controller implies that some
of the data may not be shared with the other controllers
hence maintaining some level of privacy in the network.
However, many issues arise when designing distributed
controllers. On the one hand, the controller may not have
full knowledge of the rest of the system. On the other
hand, the presence of a communication network introduces
issues related to security and network imperfections. In this
paper we propose a distributed energy management system
based on model predictive control (MPC) and distributed
optimization techniques that accommodates both uncertainty
in power production and energy prices. Moreover it does not
require the solution of a complex optimization problem while
keeping private the future power trajectories.

The remainder of the paper is organized as follows. The
review of the state of the art concludes this section. Section II
presents the model of the microgrid considered in this paper.
Section III presents the distributed energy management algo-
rithm. In Section IV results of the simulations are reported.
Finally in Section V there are the concluding remarks and
future research directions.

Since the introduction of the microgrid concept in 2002,
many energy management algorithms have been proposed.
In particular optimization methods have been used and to
maximise the financial income due to energy trading while
minimizing environmental emissions and operating costs [2],
[8]. In [2], the planning of the resources is provided for
the current time step only hence without taking into account
the future power profiles, while [8] proposes to compute the
planning for the next 24 hours without considering uncer-
tainty. In order to overcome the aforementioned limitations
many methods based on MPC have been proposed. Since
optimization is repeated at each time step based on real time
measurements, MPC can efficiently compensate uncertainty.
Centralised MPC has been proposed in [19], [17] and [9]
to schedule the operation of storage devices, generators,
controllable loads and the charging of electric vehicles. In



[10] and [3] stochastic MPC algorithms have been used to
cope with the uncertainty in the microgrid. However these
methods are based on centralised algorithms which may not
be suitable for large-scale microgrids. Moreover they are
subject to single point failure and lead to potential privacy
issues. In order to deal with the aforementioned issues many
distributed MPC algorithms have been proposed. Methods
proposed in [16] and in [4] are not fully distributed since they
require a central unit to coordinate the distributed controllers.
The distributed energy management problem is solved in
[27] and [18] using a distributed MPC algorithm that shares
the future power trajectories at each time step. Hence a
large amount of data has to be communicated at each time
step. In [1] an ADMM-based MPC algorithm is proposed
to solve the energy management problem for large-scale
power systems, however a central unit is required to coor-
dinate the controllers. A fully distributed optimization-based
MPC algorithm is proposed in [13] however the uncertainty
that characterizes the microgrid operation is not considered.
Moreover all the microgrid components are assumed to be
connected to a common bus.

The aim of this paper is to propose a fully distributed
energy management algorithm able to cope with uncertainty
and suitable for meshed microgrids. More specifically, the
novel contributions of the proposed method are:
• the algorithm is based on a robust MPC that exploits

distributed optimization;
• the meshed microgrid topology is considered explicitly

within the framework;
• the proposed algorithm is robust to faults occurring in

the communication network.
In contrast to other MPC methods based on distributed

optimization (such as [1]) the proposed MPC algorithm
does not require any central unit for coordination of the
agents. Hence, similarly to [13], the MPC algorithm is
fully distributed. However it considers uncertainty in power
generation and is suitable for meshed microgrid topologies.
Moreover, through the use of novel distributed optimization
algorithms reviewed in [14], the proposed algorithm does
not require the exchange of future power trajectories among
the components and is robust to faults in the communication
network (assuming that the communication graph remains
connected).

II. MICROGRID MODEL

The components of the microgrid can be renewable gener-
ators, loads and storage systems. Moreover, each microgrid
is connected at one or more points with the utility grid. In
the following the model of each component of the microgrid
will be described.

A. Generators
Distributed renewable generators produce the power that is

fed into the grid. The amount of power Pri that a generator i
can inject in the microgrid is limited by the maximum power
that can be produced at time t:

0 ≤ Pri(t) ≤ PAri (t) (1)

The power that is fed into the microgrid is sold to the other
microgrid components that pay a price pr assumed constant.
Hence, the generator agent will try to maximise the amount
of power to sell to the other microgrid components. Since
renewable generators are stochastic by nature, we rely on
predictions of the maximum and minimum power produced
at each time, that is, we consider that the actual value of
produced power at time t is bounded by a known maximum
and minimum value:

PAri (t) =
PMri (t) + Pmri (t)

2
+ wri(t)

PMri (t)− Pmri (t)

2
(2)

where wri(t) ∈ [−1; 1] is a modeling parameter, PMri and
Pmri are the predicted bounds of power production.

B. Loads

Loads are characterized by their maximum and minimum
power demand. In particular, we assume that each load i
draws an amount of power Pci from the grid limited by a
maximum and a minimum demand value:

dmi (t) ≤ Pci(t) ≤ dMi (t) (3)

and the demand change is limited by a maximum demand
rate:

|Pci(t+ 1)− Pci(t)| ≤ rci (4)

Each load will try to maximise the power that it will draw
from the grid based on its utility function ui(t) [21]. In other
words, the utility function ui(t) is the weight associated with
the objective function of load i.

C. Storage systems

The charge of the storage system i is modeled as:

si(t+ 1) = si(t) + µTsPsi(t) (5)

where µ is the energy conversion efficiency, Ts is the sample
time of the MPC and Psi(t) is the storage power (charging
when Psi(t) ≥ 0 and vice versa). Each storage has a
maximum and minimum capacity (sMi and smi ):

smi ≤ si(t) ≤ sMi (6)

and maximum charging/discharging power:

|Psi(t)| ≤ PMsi (7)

The objectives of a storage system in a microgrid are the peak
shaving/valley filling capability [23], operating the microgrid
in island mode [26] and ensuring that enough energy is stored
in the grid during events such as faults [20].

D. Utility grid connection

The amount of energy that a microgrid can exchange with
the utility grid through each connection i is limited:

|Pgi(t)| ≤ PMgi (8)

Each agent in charge of the connection to the main grid will
try to minimize the amount of power that is exchanged with
the main grid depending on the energy price pg(t) which
is a stochastic variable. Assuming we know the predictions



of the maximum and minimum electricity price, the actual
electricity price at time t is expressed as in [11]:

pg(t) =
pMg (t) + pmg (t)

2
+ wg(t)

pMg (t)− pmg (t)

2
(9)

where wg(t) ∈ [−1; 1] is a modeling parameter, pMg and pmg
are the maximum and minimum bounds of electricity price.

E. Interconnection of the components

Each microgrid component is connected to a bus and buses
are connected through lines. The first constraint is given by
energy conservation, that is, the amount of power injected in
the microgrid buses has to be equal to the amount of power
drawn from the buses:

NB∑
i=1

PBi(t) = 0 (10)

where NB is the number of buses and PBi
is the power

injection in the bus i. It is assumed that the outgoing power
is positive and the incoming power is negative (e.g. the power
supplied to loads is positive whereas the power injected by a
renewable generators is negative). The relation between the
power flowing in the NL lines and in the NB buses in the
microgrid is given by the DC power flow equation [22]:

PL = bALBB−1PB (11)

where:
• PL ∈ RNL is the vector obtained stacking the power

that flows in each line;
• b ∈ RNL×NL is a diagonal matrix in which each

element b(i, i) is the susceptance of line i;
• ALB ∈ RNL×NB is the adjacency matrix in which each

element ALB(i, j) ∈ {0, 1,−1} respectively if the line i
and the bus j are not connected, line i starts at bus j
and line i ends at bus j;

• B ∈ RNB×NB is the admittance matrix;
• PB ∈ RNB is the vector obtained by stacking all the

bus power injections PBi
.

This relation can be used to calculate the line flows given
the power injected in each bus. Each line flow is limited:

|PLi
(t)| ≤ PMLi

(12)

III. DISTRIBUTED ENERGY MANAGEMENT SYSTEM

The goal of the energy management system is to compute
the optimal power profile of each component to optimize the
microgrid operation. Each local controller will solve its own
MPC problem communicating only with its neighbours.

A. Communication network

The communication network allows the agents to commu-
nicate with each other and solve the distributed optimization
problem. Such algorithm (that will be presented in the next
paragraph) requires to exchange the dual variables of the
optimization problem at each time step. The communication
network is modeled as an undirected graph G(V, E) where
V is the set of nodes and E is the set of edges. We assume

that each microgrid component (generator, load, storage and
connection to the utility grid) is provided with a local
controller (a.k.a agent) with communication and computation
capabilities. Hence, if the total number of components is
N , the cardinality of the set of nodes is |V| = N . The
matrix A ∈ RN×N denotes the adjacency matrix of the graph
(ai,j = 1 if component i can communicate with component
j, ai,j = 0 otherwise). In the remainder of the paper the
neighbours of component i will denote all the nodes that
can communicate with it.

B. Constrained-coupled distributed optimization

The distributed energy management MPC problem is
formulated as a constrained-coupled optimization problem:

min
{x1,...xN}

N∑
i=1

fi(xi) (13a)

s.t. xi ∈ Xi (13b)
N∑
i=1

gi(xi) ≤ 0 (13c)

in which xi, fi, Xi are respectively the local decision
variable (the future power profiles in this case study), the
local objective function and the local constraint set of com-
ponent i. The coupling constraint (13c) is used to model
the interconnections of the components. This optimization
problem is solved using the distributed dual subgradient
algorithm presented in [6] which allows the primal solution
of each agent to converge to the set of optimizers of the
centralized problem without communicating the estimate of
the decision variable xi (hence without sharing any sensitive
information). In other words, agents can cooperatively solve
problem (13a)-(13c) knowing only their local variables (xi,
fi, Xi and gi) and exchanging only dual variables. Moreover,
this algorithm does not require the solution of a centralised
problem, differently to [13], or a long tuning procedure.

C. Local MPC problems

In this paragraph the local MPC problem formulated for
each component will be described (equations (13a)-(13b)).
The interconnections among the components (equations (10)
and (12)) are the coupling constraint (13c) of the constrained-
coupled problem. The local MPC problem of the component
i of the microgrid can be written as a min-max MPC
problem:

min
{Pi(t)...Pi(t+T−1)}

max
wi

t+T−1∑
τ=t

Ji(τ) (14a)

s.t. si(τ + 1) = hi(si(τ), Pi(τ)) (14b)

Pmi (τ) ≤ Pi(τ) ≤ PMi (τ) (14c)
|Pi(τ + 1)− Pi(τ)| ≤ r (14d)

smi ≤ si(τ) ≤ sMi (14e)
wi ∈ Ωi (14f)

where T is the MPC prediction horizon, hi models the dy-
namics of component i, Pi(t) is the power flow of component



i (its decision variable), wi is a disturbance variable, Ji(t)
is the objective function of component i, si(t) is the state of
the component i, Pmi (t) and PMi (t) are the minimum and
maximum power flows of component i, r is the maximum
power rate of component i, smi and sMi are the state limits
of component i and Ωi is a bounded set. In the following, as
commonly done in literature [25], we will assume that each
objective function Ji is a convex function of the decision
variables {Pi(t) . . . Pi(t+ T − 1)}, hence can be expressed
as a quadratic form:

t+T−1∑
τ=t

Ji(τ) =
(
Pi − P̄i

)T
Λ
(
Pi − P̄i

)
(15)

where Pi is obtained stacking the decision variables
{Pi(t) . . . Pi(t+ T − 1)}, P̄i is the set point and Λ is a
diagonal matrix of weights (energy prices or utility func-
tions). A tailored MPC problem for each component can be
obtained from (14a)-(14f) using models given in Section II.

D. Distributed optimization-based MPC

Since the MPC problem (14a)-(14f) does not have the
coupling among the microgrid components it is not enough
to solve this problem for each component. Hence, in or-
der to obtain a formulation like (13a)-(13c), the coupling
constraints have to be added. The resulting optimization
problem is (13a)-(13c) in which the vector of decision
variables xi is the future power profile of each component
{Pi(t) . . . Pi(t+ T − 1)}, the objective function fi(xi) is
(14a), the set Xi represents the constraints (14b)-(14f) and
the coupling constraint (13c) is (10) and (12).

The algorithm proposed in [6] solves this distributed
optimization problem exchanging only the dual variables of
the optimization problem with the neighbours. The steps that
each agent has to do at each time step are the following:

1) Set up a local optimization problem taking into ac-
count:
• the future behaviour of stochastic variables (if

any);
• the current state of the microgrid (if the component

is dynamical);
2) apply the distributed dual subgradient algorithm of [6];
3) apply the first optimal input of the computed sequence

and discard the others.

IV. SIMULATION RESULTS

In this section an example of the application of the
proposed distributed microgrid energy management approach
is given. We will consider the microgrid in Figure 1 in which:
• S denotes the connection with the utility grid (agent 1);
• Ci denotes the consumer i (agents 2, 3 and 4);
• W denotes a wind generator (the renewable component,

agent 5);
• ST denotes the storage system (agent 6);
• Bi denotes the buses (NB = 6)
• Li denotes the lines (NL = 6)

Fig. 1. 6-bus microgrid

Table I reports the main data used for the simulations and
Figure 2 shows the utility function ui for each load and
the electricity price profile (pg). Since in this setting there
are not any specific objectives for the storage system (like
providing energy during faults or be able to operate the grid
in island mode) its objective function is set to zero. The
distributed optimization problem is solved at each time step
through the distributed dual subgradient method setting the
number of iterations to 3000. For this simulation 10 out of
15 total communication links are active (the corresponding
entries of the adjacency matrix A are set to 1). In fact
this distributed optimization algorithm allows the solution
to be computed even if some agents can communicate only
with some of the others. Hence this algorithm is intrinsically
robust to faults happening in communication links (assuming
the communication graph remains connected). Simulations
have been implemented using the DISROPT Python package
presented in [7]. In the simulations, the power flows have

Variable Value Variable Value
T 10 sM 100MWh
Ts 1h sm 20MWh
PM
L 460MW µ 0.9
rc1 6MWh−1 PM

s 30MW
rc2 90MWh−1 PM

g 200MW
rc3 110MWh−1 pr 20 $/MWh

TABLE I
MAIN SIMULATION DATA

been scheduled for 24 hours of operation of the microgrid.
Figure 3 and Table II present the results for two different
distributed energy management methods, the prescient MPC
(P-MPC, as called in [5]) and the robust min-max MPC
(R-MPC). In the first case the value of the disturbance
variables (wr and wg) is assumed known to the controller
over the entire prediction horizon whereas in the second
case the scheme relies on the worst case scenario of the
objective function. In both cases the power demand of the
loads are met, i.e. the power supplied to the loads is within
the maximum and minimum power demand throughout the
simulation time. The power supplied from the distribution
grid is always negative, which means that energy has to be
bought from the distribution grid. The amount of power that



40
50
60
70

u
i

[$
/M

W
h] u1

u2
u3

0 5 10 15 20

40
60
80

100

time [h]

p
g

pg
pmg
pMg

Fig. 2. Utility function (ui) for each load and electricity price (pg) with
its limits (pmg and pMg )

−200

0

200

Po
w

er
[M

W
]

Utility grid

0

5

10

Consumer 1

0

75

150

Po
w

er
[M

W
]

Consumer 2

0

100

200

Consumer 3

0 10 20

−100

−50

0

time [h]

Po
w

er
[M

W
]

Wind generator

0 10 20

20

100

time [h]

So
C

[%
]

Storage SoC

Fig. 3. P-MPC (blue) and R-MPC (orange) results: power profiles and
SoC (solid) and their limits (dashed)

is supplied from the wind generator changes significantly in
the two simulation cases. While in the P-MPC case the wind
generator is always able to inject into the grid all the power
that it can produce, in the second case it has to schedule its
power profile relying on the the worst case scenario, that is,
the minimum power production. The state of charge profiles
are similar in the two simulation scenarios, in both cases the
storage is used to store energy when wind production is high
(time span 12 h to 22 h) and supply it to the loads when it is
low (time span 5 h to 10 h). Table II reports some numerical
results of the P-MPC and the R-MPC. The following three
indices for each simulation are reported:

Ec =

3∑
i=1

23∑
t=0

TsPci (16)
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Fig. 4. Convergence of the distributed cost to the centralised cost in the
R-MPC scenario

P-MPC R-MPC
Ec [MWh] 3158 2624
Eg [MWh] -1592 -1626
Er [MWh] -1678 -1163

TABLE II
TOTAL ENERGY SUPPLIED TO LOADS (Ec), COMING FROM THE UTILITY

GRID (Eg ) AND SUPPLIED BY THE WIND GENERATOR (Er )

Eg =

23∑
t=0

TsPg (17)

Er =

23∑
t=0

TsPr (18)

which are respectively the total amount of energy supplied to
loads, the total energy coming from the utility grid and the
energy supplied from the wind generator. Since the amount
of power bought from the utility grid is similar in the two
cases it is clear that it is more convenient to supply less
power to loads instead of buying it from the grid.

Finally, the employed distributed dual subgradient algo-
rithm guarantees that primal variables converge to the set
of optimizers of the centralized primal problem. Figure 4
(referred to the first simulation step of the R-MPC) shows
the convergence of the cost of the distributed algorithm to
the centralized one over the 3000 algorithm iterations.

V. CONCLUSION

In this paper we presented a fully distributed energy man-
agement algorithm for microgrid systems based on MPC and
distributed optimization. In order to deal with uncertainty in
both the power production and electricity prices we propose
a robust min-max MPC algorithm. Moreover the meshed
network topology has been considered in the optimization
problem. The algorithm has been tested in two different
scenarios. In the first we assume perfect knowledge of the
disturbance variables whereas in the second they are assumed
to be unknown and bounded. Simulation results show that
the algorithm is suitable for energy management purposes
and, thanks to the specific employed algorithm, is robust to
faults in the communication network and keeps the future
power trajectories private. In terms of future work, we aim to



extend the capabilities of this algorithm to take into account
possible faults in the microgrid components or attacks in the
communication system, extensive simulation analysis will be
provided.
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[26] Yeliz Yoldaş et al. “Enhancing smart grid with micro-
grids: Challenges and opportunities”. In: Renewable
and Sustainable Energy Reviews 72 (2017), pp. 205–
214.

[27] Yi Zheng, Shaoyuan Li, and Ruomu Tan. “Distributed
model predictive control for on-connected microgrid
power management”. In: IEEE Transactions on Con-
trol Systems Technology 26.3 (2017), pp. 1028–1039.


