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Abstract— Distributed model predictive control methods for
uncertain systems often suffer from considerable conservatism
and can tolerate only small uncertainties due to the use of
robust formulations that are amenable to distributed design
and optimization methods. In this work, we propose a dis-
tributed stochastic model predictive control (DSMPC) scheme
for dynamically coupled linear discrete-time systems subject to
unbounded additive disturbances that are potentially correlated
in time. An indirect feedback formulation ensures recursive
feasibility of the DSMPC problem, and a data-driven, dis-
tributed and optimization-free constraint tightening approach
allows for exact satisfaction of chance constraints during closed-
loop control, addressing typical sources of conservatism. The
computational complexity of the proposed controller is similar
to nominal distributed MPC. The approach is demonstrated
in simulation for the temperature control of a large-scale data
center subject to randomly varying computational loads.

I. INTRODUCTION
Sensing and communication capabilities are increasingly

available in many technical systems, allowing interconnected
systems to measure information locally and share it with
other agents to optimize a common global objective. In
the case of manufacturing systems, for instance, multiple
machines may be necessary to assemble a product, and the
use of each machine can be optimally scheduled based on
shared information between the different production steps,
increasing the overall efficiency. Solving such a large-scale
control problem in a centralized manner, however, often
results in intractable communication requirements or compu-
tationally infeasible optimization problems [1]. Distributed
control algorithms address these issues by exploiting the
distributed structure of the system and carry out compu-
tations locally while only requiring state information from
neighboring subsystems.

For large-scale systems in particular, deriving an accurate
system model and description of its operating conditions is
a challenging task. In model predictive control (MPC), the
resulting uncertainties are often modeled through additive
disturbances acting on the system. These can be addressed
in a robust fashion, guaranteeing constraint satisfaction under
all disturbance realizations in a compact set [2]. Distributed
robust approaches, however, tend to introduce conservatism
as a result of, e.g., enforcing a distributed structure on a ro-
bust positive invariant set [3] or handling dynamic couplings
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as uncertainties [4]. A promising alternative is a stochastic
approach, where an underlying stochastic characteristic of
the disturbances is considered and constraints are satisfied
with a certain probability level [5], providing a quantified
assessment of risk. The closed-loop analysis for a stochastic
MPC approach, however, is typically more challenging and
often relies on bounded disturbance distributions [6], or uni-
modality and symmetric tightening assumptions [7], [8], [9].
Existing distributed stochastic MPC (DSMPC) frameworks
assume Gaussian disturbance distributions [8] or general
mean-variance information of i.i.d. disturbances [9]. In ad-
dition, chance constraints are usually enforced for all agents
simultaneously, which can again introduce conservatism, in
particular for large-scale systems.

Contributions: This paper introduces a DSMPC scheme
for dynamically coupled linear systems subject to additive
non-i.i.d. disturbances with potentially unbounded support.
The goal is to regulate each local subsystem to its respective
set-point, while satisfying local chance constraints with a
given probability level, and thereby ensuring the safety of
each local subsystem. Instead of assuming a given distribu-
tion of the disturbance, we only assume having access to
samples of the disturbances either from experiments or sim-
ulations, resulting in a data-driven MPC formulation [10]. In
contrast to existing DSMPC approaches, recursive feasibility
of the proposed DSMPC optimization problem is ensured
by relying on indirect feedback as introduced in [11], where
the actual measured state only enters the cost rather than the
constraints.

A key contribution of the presented work is a data-
driven and distributed tightening approach based on sce-
nario optimization techniques [12], [13] to handle chance
constraints on states and inputs as deterministic distributed
constraints on nominal system states and inputs, while
allowing us to provide guarantees for closed-loop chance
constraint satisfaction for each individual agent. In contrast to
related schemes (e.g., [8]), the constraint tightening does not
introduce additional conservatism compared to a centralized
solution and allows us to handle the local chance constraints
in a non-conservative manner, meaning that the desired
chance constraint probability level is realized exactly at time
steps for which a given initial condition and any disturbance
realization lead to the tightened constraint on the nominal
system being active during closed-loop operation. Moreover,
the resulting optimization problem with respect to nominal
states and inputs has computational complexity comparable
to a nominal distributed MPC problem.

Related Work: DSMPC algorithms based on distributional
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information on the disturbances have been introduced for
linear systems with zero-mean i.i.d. additive Gaussian distur-
bances in [8], and extended to output-feedback in [9]. These
techniques similarly consider unbounded disturbance distri-
butions, but cannot ensure recursive feasibility of the MPC
problem directly; instead they make use of a recovery ini-
tialization in the case of infeasibility. As a result, constraint
satisfaction is guaranteed under symmetric tightening and
unimodal disturbances only. For bounded disturbances and
dynamically decoupled systems with coupling constraints,
approaches ensuring constraint satisfaction were presented
in [14]. A DSMPC framework based on disturbance samples,
rather than distributional information, for linear systems with
parametric uncertainty and additive disturbances was investi-
gated in [15]. The constraints in the online DSMPC problem,
however, need to be fulfilled for the entire set of disturbance
samples, increasing the computational complexity. Recursive
feasibility and stability were not investigated.

Notation: A stacked vector v ∈ Rn consisting of sub-
vectors vi ∈ Rni with i ∈ M ⊆ N is denoted as v =
coli∈M(vi). The distribution Q of a random variable w is
denoted as w ∼ Q, probabilities and conditional probabilities
as Pr(A) and Pr(A|B) respectively. By Ew(x) we denote
the expected value of x w.r.t. the random variable w.

II. PROBLEM FORMULATION
We consider a network of M ∈ N time-invariant coupled

linear subsystems with discrete-time dynamics

xi(t+1) =

 M∑
j=1

Aijxj(t)

+Biui(t) +Giwi(t), (1)

with local state xi(t) ∈ Rni , input ui(t) ∈ Rmi and
stochastic disturbance wi(t) ∈ Rpi for each subsystem i
at time step t, where Aij ∈ Rni×nj , Bi ∈ Rni×mi , and
Gi ∈ Rni×pi . We denote the set of indices of all subsystems
asM = {1, . . . ,M}. The set of neighborsNi of subsystem i
contains all indices of subsystems j, for which Aij includes
nonzero entries. We assume that each subsystem is able
to exchange information with all other subsystems in its
neighborhood. The local system dynamics of subsystem i
can be written as

xi(t+1) = ANi
xNi

(t) +Biui(t) +Giwi(t), (2)

where ANi ∈ Rni×nNi and xNi(t) = colj∈Ni(xj(t)) ∈
RnNi . Each subsystem i is subject to nxi half-space chance
constraints on the local states and nui half-space chance
constraints on the local inputs

Pr(hx>i,j xi(t) ≤ 1) ≥ pxi,j , j ∈ {1, . . . , nxi }, (3a)

Pr(hu>i,j ui(t) ≤ 1) ≥ pui,j , j ∈ {1, . . . , nui }, (3b)

where hxi,j ∈ Rni , hui,j ∈ Rmi and the probabilities are
understood conditioned on the initial state.

The objective is to control the distributed stochastic sys-
tem over a potentially large, but finite, task horizon N̄
while satisfying the chance constraints (3) at every time
step t. The stochastic disturbance sequence over the task

horizon is assumed to be distributed according to W =[
coli∈M(wi(0))>, . . . , coli∈M(wi(N̄))>

]> ∼ Q, which can
be a non-i.i.d. and correlated disturbance sequence with un-
bounded support. It is not necessary to know the distribution
of the disturbances, but we assume to have access to samples
from the distribution over the entire task horizon. Handling
unbounded disturbances is especially important when the
distribution and possibly existing bounds are not known in
advance, with normal distributions as important special case.

In this paper, we introduce a distributed stochastic MPC
scheme to approximate the solution of the optimal stochastic
control problem by solving a simplified problem over a
shorter horizon N � N̄ in a receding horizon fashion. The
local system dynamics (2) are split into a nominal state zi(t)
and error ei(t) such that xi(t) = zi(t) + ei(t), as well as a
nominal input vi(t) and potentially nonlinear tube controller
πi(eNi(t)), resulting in

zi(t+1) = ANizNi(t) +Bivi(t), (4a)
ei(t+1) = ANieNi(t) +Biπi(eNi(t)) +Giwi(t), (4b)
xi(t) = zi(t) + ei(t), (4c)
ui(t) = vi(t) + πi(eNi(t)), (4d)

with initial condition zi(0) = xi(0), and therefore ei(0) =
0, zNi(t) = colj∈Ni(zj(t)) ∈ RnNi and eNi(t) =
colj∈Ni

(ej(t)) ∈ RnNi . The MPC problem optimizes the
nominal input vi(t), while the tube controller πi(eNi

(t))
is used to regulate deviations from the nominally planned
trajectory. A simple linear feedback controller stabilizing the
error dynamics (4b) can be obtained in a distributed manner
using, e.g., the methods introduced in [16].

Remark 1: It is possible to design a nonlinear tube con-
troller πi, such as, e.g., a linear feedback controller with sat-
uration, allowing for the treatment of hard input constraints
(e.g., due to physical actuator limits, see also [13]).

In Section III, we introduce a recursively feasible DSMPC
scheme based on an indirect feedback formulation [11]. In
Section IV, we then detail the design of tightened constraints
on the nominal system states and inputs, which is performed
in an optimization-free and distributed manner, and ensures
closed-loop chance constraint satisfaction.

III. DISTRIBUTED STOCHASTIC MODEL
PREDICTIVE CONTROL

We aim to solve the stochastic control task over the
task horizon N̄ by employing a receding horizon control
formulation over a shortened horizon N , i.e., the problem is
repeatedly solved at each time step based on the currently
measured state at time step t, i.e., xi(t). Most commonly,
robust and stochastic MPC schemes that are based on the
separation into a nominal and an error system as in (4) initial-
ize the nominal dynamics with the currently measured state
xi(t). In the stochastic setting, this can lead to feasibility
issues, in particular due to the potentially unbounded nature
of the stochastic disturbance [7]. Here, we rely on an indirect
feedback stochastic MPC formulation [11], resulting in the
following DSMPC problem:



min
v

M∑
i=1

EWi(t)

(
lf (xi(N |t)) +

N−1∑
k=0

lt+k(xi(k|t), ui(k|t))
)

(5a)
s.t. ∀i ∈M :

xi(0|t) = xi(t), zi(0|t) = zi(1|t−1), ei(0|t) = ei(t)
(5b)

zi(N |t) = 0 (5c)

Wi(t) =
[
wi(0|t)>, . . . , wi(N |t)>

]
∼ Qi(t) (5d)

∀k ∈ {0, . . . , N − 1} :

zi(k + 1|t) = ANi
zNi

(k|t) +Bivi(k|t) (5e)
xi(k + 1|t) = zi(k + 1|t) + ei(k + 1|t) (5f)
ei(k + 1|t) = ANi

eNi
(k|t)

+Biπi(eNi
(k|t)) +Giwi(k|t) (5g)

ui(k|t) = vi(k|t) + πi(eNi
(k|t)) (5h)

hx>i,j zi(k|t) ≤ 1− cxi,j,t+k∀j ∈ {1, . . . , nxi } (5i)

hu>i,j vi(k|t) ≤ 1− cui,j,t+k∀j ∈ {1, . . . , nui } (5j)

where v = colk∈{0,...,N−1}(v(k|t)) with v(k|t) =
coli∈M(vi(k|t)). For k ∈ {0, . . . , N} and every subsystem i,
the vector xi(k|t) ∈ Rni denotes the k-steps ahead predicted
state computed at time step t, and zi(k|t), vi(k|t), ei(k|t)
and ui(k|t) the predicted nominal state, nominal input, error
and input, respectively. The input (4d) applied to system (1)
is then defined by the solution v∗ as

vi(t) = v∗i (0|t). (6)

In problem (5), the nominal state zi(0|t) is initialized
at each time step t with the first predicted nominal state
zi(1|t − 1) obtained at time step t − 1, while the state
measurement xi(t) initializes xi(0|t) (see (5b)). Note that via
the optimization of the objective (5a) with respect to xi(k|t),
feedback is also introduced on the nominal state evolution
zi(t), hence it is referred to as indirect feedback.

As a result of this initialization, the nominal dynamics
in (4a) are valid in closed-loop operation. Note that this
is not so, if zi(0|t) is optimized, as is often the case in
robust tube MPC formulations [17], or if it is set equal to
the measured state xi(t). From this nominal state evolution,
it follows that the closed-loop error evolves independently of
the MPC optimization according to (4b) and can therefore be
simulated forward by only having access to samples of the
disturbances wi(t). This allows us to precompute the error
prediction (4b) prior to solving the optimization problem (5).

Problem (5) makes use of tightened constraints on the
nominal state and input of each subsystem in (5i) and (5j)
to realize the chance constraints in (3). While the local
error feedback πi aims at reducing deviations from the
nominally planned trajectory zi(t), the unknown disturbances
wi(t) cause a non-vanishing error ei(t) for all t ≥ 0,
which can cause closed-loop constraint violations, even if
hx>i,j zi(t) ≤ 1 and hu>i,j vi(t) ≤ 1 holds. Similar to ideas

from robust MPC, we therefore introduce tightened half-
space constraints using suitable tightening values cxi,j,t and
cui,j,t. In Section IV, we introduce a data-driven and dis-
tributed method to compute cxi,j,t and cui,j,t for the entire task
horizon N̄ depending on the distribution of the trajectories
of the error system (4b), such that the chance constraints (3)
are fulfilled non-conservatively with the desired probability
level. By non-conservativeness, we refer to the fact that if a
given initial condition and any disturbance realization lead
to a nominal constraint being active, the corresponding true
chance constraint (3) is violated exactly with the specified
probability level.

The expectation in the objective (5a) is taken with respect
to a disturbance sequence Wi(t) over the prediction horizon
distributed according to Qi(t) (5d). For disturbances corre-
lated in time, this addresses the fact that past disturbances
provide information which can be utilized in the optimization
of the cost. This information can be used, e.g., by considering
the marginal disturbances for each agent conditioned on past
disturbance realizations

p(Wi(t)) = p
(
Wi(t)|

[
wNi

(0)>, . . . , wNi
(t− 1)>

]>)
.

The expectation in (5a) can be evaluated for the special
case of i.i.d. disturbances and quadratic costs by considering
only the mean of the predicted state and input, see [11].
For a general cost, it is not possible to analytically evaluate
the expectation in (5a), but it can be approximated based
on NMPC

s,i samples of the disturbance sequence Wi(t) over
the prediction horizon N for each subsystem i. The number
of samples trade off prediction accuracy against online
computational complexity.

The optimization problem in (5) can be solved in a
distributed manner using distributed optimization techniques,
see e.g., [18], [19], since the objective and constraints are
only coupled between neighboring subsystems. This results
in a fully distributed offline and online procedure.

Remark 2: For simplicity, we use a terminal equality
constraint in (5). A less restrictive terminal constraint as
similarly proposed in [13] could be integrated by using a
distributed robust positive invariant terminal set, e.g., based
on the results introduced in [3].

Recursive feasibility of the distributed MPC scheme (5)
can be directly established using results from standard nom-
inal MPC, because the stochastic variables only affect the
objective of problem (5) and the constraints are on the
nominal states and inputs.

Theorem 1: If the optimization problem (5) is feasible
for xi(0) = zi(0), then applying the distributed control
input (4d) with (6) to the dynamic system (1), results in
problem (5) being feasible for all time steps 0 ≤ t ≤ N̄−N .

Proof: The local constraints in (5) can be combined to
constraints on the global system state and the proof follows
the standard argument in MPC using the shifted sequence
from the previous time step, as similarly shown in [13] for
the centralized case.

Remark 3: For the special case of a quadratic stage cost,
Gaussian disturbances and a terminal weight satisfying the



Algorithm 1 Computation of tightening values for all sub-
systems i, time steps t, and half spaces j.
Input: Chance constraints (3), confidence level β, l =

1, 2, .., Ns samples W (l).
Output: Tightening values cxi,j,t and cui,j,t.

1: for every sample l = 1, 2, .., Ns do
2: ({e(l)

i (t)}, {πi(e(l)
Ni

(t))}) ← distributed simulation of
error system (4b) and corresponding feedback using
disturbances W (l) and initial condition e(l)

i (0) = 0.
3: end for
4: for every agent i = 1, ..,M , time step t = 0, .., N̄ do
5: for every half-space j = 1, .., nxi do
6: Compute cxi,j,t via Alg. 2 and hxi,j , {e

(l)
i (t)}, pxi,j , β

7: end for
8: for every half-space j = 1, .., nui do
9: Compute cui,j,t via Alg. 2 and hui,j ,{πi(e

(l)
Ni

(t))},pui,j ,
β

10: end for
11: end for

Algorithm 2 Single half-space tightening computation.

Input: Half-space direction h ∈ Rq , samples ξ(l) ∈ Rq with
l = 1, .., Ns, probability level p, and confidence 1− β

Output: Tightening value c

1: Nd ← (1− p)Ns −
√

2(1− p)Ns ln
(

1
β

)
2: while number of {ξ(l)} > Ns −Nd do
3: discard ξ(l∗)(t) with l∗ ← arg maxl h

>ξ(l)

4: end while
5: c← maxl h

>ξ(l)

Lyapunov equation, the asymptotic convergence property
shown in [11] can be extended to the distributed case.

IV. DISTRIBUTED DATA-DRIVEN CONSTRAINT
TIGHTENING

In the following, we derive a distributed and data-driven
algorithm by extending the centralized version in [13], to
obtain the tightening of nominal state and input constraints in
(5i) and (5j), based on scenario rather than distributed numer-
ical optimization. Scenario optimization (see e.g., [20], [12])
allows us to perform the tightening based on Ns samples of
the disturbance sequence W (l) with l ∈ {1, · · · , Ns}. With
probability 1−β, the resulting tightening ensures satisfaction
of the chance constraints (3) in a non-conservative manner,
meaning that if a constraint on the nominal state zi(t)
or input vi(t) is always active, the probability of the real
state xi(t) or applied input ui(t), respectively, violating the
constraints is exactly 1−pxi,j and 1−pui,j as specified in (3).
Thereby, the probability 1−β is related to the number of con-
sidered samples Ns of the disturbance sequence. Compared
to related robust approaches, such as [3], the proposed design
procedure avoids the solution of a distributed optimization
problem involving bilinear matrix inequalities to determine
the constraint tightening, by instead making use of samples
of the closed-loop error according to the dynamics (4b).

Specifically, we compute tightening values cxi,j,t and cui,j,t,
which ensure that the real local state xi(t) = zi(t) + ei(t)
and input ui(t) = vi(t) + πi(eNi

(t)) satisfy the half-space
chance constraints (3) at the desired probability level if the
tightened nominal constraints (5i) and (5j) are always active.
Therefore, we choose the minimal values cxi,j,t and cui,j,t such
that for each constraint j, time step t and subsystem i

Pr(hx>i,j ei(t) ≤ cxi,j,t) ≥ pxi,j , j ∈ {1, . . . , nxi },
Pr(hu>i,j πi(eNi(t)) ≤ cui,j,t) ≥ pui,j , j ∈ {1, . . . , nui },

holds, bounding the distribution of the local error dynam-
ics (4b) and error feedback in the local half-space direc-
tions hxi,j and hui,j . The tightening values cxi,j,t and cui,j,t can
be obtained by solving the stochastic optimization problems

cxi,j,t = min cx s.t. Pr(hx>i,j ei(t) ≤ cx) ≥ pxi,j , (7a)

cui,j,t = min cu s.t. Pr(hu>i,j πi(eNi
(t)) ≤ cu) ≥ pui,j . (7b)

Arguments from scenario optimization allow us to approx-
imate these stochastic optimization problems by sampled
versions, where hx>i,j e

(l)
i (t) ≤ cx and hu>i,j πi(e

(l)
Ni

(t)) ≤ cu
are enforced as deterministic constraints for sampled error
trajectories e

(l)
i (t) based on disturbance samples W (l) as

detailed in Algorithm 1. In fact, scenario-based optimization
arguments [12] provide a confidence level 1 − β at which
the sample-based solution fulfills the probabilistic constraints
in (7) and even allow us to discard a certain fraction of
the most restrictive samples. The procedure is outlined in
Algorithms 1 and 2. In order to increase the confidence level
1− β, a larger number of samples could be considered.

Algorithm 1 takes the chance-constraints (3) as inputs, as
well as disturbance samples W (l), and the confidence level
parameter β, where 1−β corresponds to the confidence level
of the scenario optimization, i.e., the confidence at which
the computed constraint tightening results in closed-loop
chance constraint satisfaction. In a first step, we generate
the relevant error scenarios by simulating the error system
for each disturbance sample, see Algorithm 1, lines 1-3. Note
that the disturbance samples W (l) can be stored distributedly
and that the simulation is a distributed operation requir-
ing only neighbor-to-neighbor communication and therefore
scales to arbitrarily large networks. After generating the
error scenarios, every agent can approximately solve (7)
for each state and input half-space separately in lines 5-
10 using the subroutine in Algorithm 2. In Algorithm 2,
line 1, we first compute the number of scenarios Nd that
can be discarded based on the desired probability level p
and confidence level 1 − β, see [13], [12] for details. To
determine the required half-space level c, we iterate over
the disturbance samples and discard the Nd most restricting
samples in Algorithm 2, lines 2-4. The most restrictive
remaining disturbance sample is then used to obtain the
required tightening value in line 5. Note that increasing the
number of samples Ns either allows us to achieve a higher
probability level p for the chance constraints, or a higher
confidence level 1−β of the scenario optimization problem.
Since the required number of samples scales logarithmically



with β, the confidence level can typically be chosen to be
very high [12]. Note that the number of samples NMPC

s,i

chosen to approximate the MPC cost is not related to the
number of samples Ns to perform the constraint tightening
and does not affect constraint satisfaction guarantees. In
fact, one would typically have Ns � NMPC

s,i since the
number of samples for constraint tightening does not affect
the online computation, and the required offline computations
are reasonably cheap.

Recursive feasibility of problem (5) as shown in Theo-
rem 1 and the tightened constraints on the nominal states
(5i) and inputs (5j) with constants cxi,j,t and cui,j,t obtained
using Algorithm 1 allow us to establish a guarantee for the
satisfaction of the chance constraints (3) on states xi(t) and
inputs ui(t) of each subsystem in closed-loop.

Theorem 2: Let cxi,j,t and cui,j,t be obtained using Al-
gorithm 1 and the control law (4d) with (6) be applied
to the distributed system (1). With probability 1 − β, the
resulting local states xi(t) and inputs ui(t) satisfy the chance
constraints in (3).

Proof: The proof follows the proof of Theorem 3
in [13], which is summarized here for completeness. Al-
gorithm 1 greedily discards Nd of the initial Ns samples
e

(l)
i and sets the tightening value cxi,j,t as the maximum

over the remaining samples of hx>i,j e
(l)
i (t) via Algorithm 2

line 5. Therefore, for all remaining samples it holds that
hx>i,j e

(l)
i (t) ≤ cxi,j,t. From scenario optimization, we then

have with probability 1−β, that Pr(hx>i,j ei(t) ≤ cxi,j,t) ≥ pxi,j .
Therefore, constraining the local nominal state zi(t) to the
tightened constraints (5i) results in the real state of the
system xi(t) = zi(t) + ei(t) fulfilling the chance constraints
in (3). The same arguments hold for the input constraints by
using Algorithm 1 to obtain the tightening values cui,j,t.

Remark 4: The chance constraint satisfaction property in
Theorem 2 renders the proposed DSMPC framework suitable
for safety certification of distributed learning-based con-
trollers in the line of [21], i.e., using a distributed MPC to
verify and modify a proposed learning input if necessary.
While satisfaction of constraints can only be ensured in
probability, the computational complexity and conservatism
can be dramatically reduced compared with other distributed
safety certification schemes, see, e.g., [21], [22].

Remark 5: For disturbances with zero mean and known
variance, e.g., W ∼ N (0,ΣW ) and a distributed linear tube
control law πi(eNi(t)) = KieNi(t) with Ki ∈ Rni×nNi ,
one can analytically compute the mean and variance of
the error sequence. Instead of a data-based tightening, an
analytic tightening is then possible using the marginal local
and neighborhood variances Σei (t) and ΣeNi

(t), e.g., as

cxi,j,t = φ−1(pxi,j)
√
h>Σei (t)h, j ∈ {1, . . . , nxi },

cui,j,t = φ−1(pui,j)
√
h>KiΣeNi

(t)K>i h, j ∈ {1, . . . , nui },

where φ−1 is the quantile function of the standard normal
distribution and all computations can be easily carried out
in a distributed manner. A related approach computing the

full variance matrix was presented in [8], where, using a
possibly conservative additional step, guarantees are given
for all subsystems simultaneously.

V. SIMULATION EXAMPLE

To highlight the effectiveness of the proposed DSMPC
scheme we consider the example of a distributed cooling
system as used in [23]. The task of the cooling system is
to control the temperature of a server farm, which can sim-
ilarly be interpreted, e.g., as the temperature of production
machines in a big manufacturing plant. Each local subsystem
thereby has a heat source (e.g., heat production due to the
computational load) and a cooling component (e.g., a fan or
water cooling system). The temperature of each subsystem
affects the temperature of neighboring systems. Cooling of
the system is important in order to prevent defects due to
overly high temperatures or safety shutdowns. At the same
time, excessive cooling should be prevented.

We consider a server farm with M = 100 servers arranged
on a regular 10 by 10 grid with equal spacing r. Each
server is thermally coupled with its direct neighbors in
the grid. The servers heat up due to their computational
load, and their temperature influences that of neighboring
servers. Disturbances acting on each local server mimic the
temperature increase (or decrease) due to high (or low)
computations compared to the average computational load
acting on the servers. The computational load is assumed to
have a known time-varying mean over the course of the day.

The local system dynamics are defined as

xi(t+1) = 1.01xi(t)+
∑

j∈Ni\i

0.01

1 + r
xj(t)+ui(t)+wi(t), (8)

where xi(t) denotes the deviation from a desired temperature
of operation T̄i = 25◦C, with the actual temperature Ti(t) =
T̄i + xi(t), ui(t) denotes a local cooling input and wi(t)
the disturbance acting on each server. The local disturbances
are modeled as a non-i.i.d. multivariate Gaussian distribution
with a sinusoidal mean vector µ ∈ RN̄ and correlation in
time over the task horizon due to the convariance matrix
Σ ∈ RN̄×N̄ . We introduce state and input constraints as

−5 ≤ xi ≤ 5, ∀i ∈M, (9a)
−1 ≤ ui ≤ 1, ∀i ∈M, (9b)

with desired probability level of 0.9. We use a tube controller
πi(ei(t)) = −0.5ei(t) for every subsystem resulting in the
closed-loop nominal error system

ei(t+1) = 0.51ei(t) +
∑

j∈Ni\i

0.01

1 + rij
ej(t), (10)

which is stable according to the Gershgorin Circle Theo-
rem [24] if for all subsystems i

0.51 +
∑

j∈Ni\i

0.01

1 + rij
< 1. (11)

We simulate the behavior of the DSMPC scheme for the
system (8) with sampling time of 0.5h and prediction horizon
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Fig. 1. Evolution of the temperature and control input for all subsystems
over time with the one of subsystem 9 indicated in black.
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Fig. 2. The upper two subplots show the evolution of the real temperature
and input (in black), nominal temparature and input (in red) and real and
tightened constraints (dashed lines) for subsystem 9. The third subplot shows
the disturbance samples used for tightening the constraints (in orange) and
the actual disturbance acting on the system (in black).

of N = 12h over an effective task horizon N̄ − N = 2d.
The constraints are tightened using Ns = 100 disturbance
samples for each subsystem. The samples for subsystem 9
are shown in the third subplot of Fig. 2. The local stage costs
are assumed to have the form

lt(xi, ui) = x>i xi + 1000u>i ui, (12)

which represents high cooling costs. The MPC cost is ap-
proximated using NMPC

s,i = 10 samples for each subsystem.
Fig. 1 shows the temperature evolution and corresponding

inputs over the course of two days. While the chance con-
straints on the states are violated for only four subsystems,
the input constraints always hold. The upper two subplots of
Fig. 2 show temperature and inputs of subsystem 9 including
the nominal states and inputs and the respective time-varying
nominal constraints. The constraints on the nominal state and
input are active at several instances in time.

VI. CONCLUSIONS

In this paper, we introduced a distributed stochastic MPC
framework that ensures recursive feasibility, based on an
indirect feedback formulation, and satisfaction of chance
constraints in closed-loop in a non-conservative manner due
to a data-driven and optimization-free constraint tightening
approach. Both, the offline controller synthesis as well as the
online operation can be performed in a completely distributed
manner, offering a scalable and high performance scheme
with reduced conservatism compared with the literature.
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